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Abstract13

In industrial settings, cutting predefined pieces from one or multiple sheets of material is a common14

optimization challenge. This problem can be formulated as a variant of the 2D bin packing problem,15

where the edges of the pieces define the cut lines. This paper presents a constraint programming16

model developed in collaboration with an industrial partner in construction to minimize scrap waste17

generated when cutting insulation pieces. The model introduces an objective function designed to18

maximize the reusability of leftover material. To fully leverage the model’s efficiency, an initial19

process transforms irregular insulation pieces into rectangles using one of four processing methods. A20

comparative analysis is conducted to evaluate the impact of these methods, as well as to benchmark21

the model’s results against the partner’s manual approach.22
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1 Introduction30

Efficient material utilization is a critical concern in modern manufacturing. Minimizing31

waste directly translates into environmental benefits and helps industries reduce costs. In the32

construction industry, cutting insulation pieces from material sheets presents a complex but33

common challenge. At its core, this problem can be seen as a variant of the two-dimensional34

bin packing problem, in which the goal is to pack irregular shapes onto sheets while minimizing35

the unused area in said sheets. Unlike classical packing problems where no cutting is done,36

the unused area here results in waste. Thus, the insulation nesting task further demands37

that scraps not only be minimized but also have a shape that favors reusability for cutting38

future pieces. For example, a single rectangular scrap is preferable to many long and thin39

pieces, even if their combined area is the same.40

In practice, insulation pieces are not always rectangles. Instead, they are often made up41

of multiple different shapes predefined in a way that fits the factory that produces them.42

Moreover, the pieces can be rotated or flipped to fit better on the sheet, which increases43
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the combinatorial complexity of the problem. This increased complexity, coupled with the44

heterogeneous nature of the available sheets (new sheets and recycled scraps), makes the45

already NP-Hard 2D bin packing problem [14, 15] even more complex and requires the use46

of sophisticated heuristics and exact methods.47

This work presents two novel constraint models that integrate one distinct objective, each.48

First, the total area of the sheets that are used to nest the pieces is minimized. This reduces49

the number of sheets used and prioritizes the use of scraps over new sheets. Second, using50

the sheets found using the first model, the placement of all pieces is optimized to enhance the51

reusability of any resultant scrap. To manage the inherent computational difficulty, irregular52

insulation pieces are transformed into rectangles by a preprocessing phase that occurs before53

the optimization phase. The preprocessing uses one of the four new algorithms that we54

introduce. These methods aim to reduce the search space of the optimization process, thus55

improving computational efficiency.56

The proposed approach is compared with the manual strategies traditionally used by our57

collaborating industrial partner. The analysis highlights improvements in material utilization58

and scrap reusability, which offer a significant step toward automated and sustainable59

production practices that can be applied to many industries.60

2 Preliminary concepts61

2.1 Cutting and Packing Problems62

Cutting and packing problems [6] are part of a category of problems that have been studied63

well before computers. The simplicity of these problems, paired with the fact that they arise64

naturally in a lot of domains, makes them good candidates for research in optimization.65

Since Gilmore and Gomory [16] laid the foundation of modern computational approaches66

to the cutting stock problem, the field grew much, and many subproblems were officially67

classified. Wäscher et al. [27] proposed the (currently) most popular of these classifications,68

splitting cutting and packing problems into two distinct categories. The first category,69

output maximization, considers problems in which items have to be packed in a single70

container of fixed size, maximizing the number of items packed (or their value). The second,71

input minimization, considers problems where all pieces must be packed in one or many72

containers, minimizing the number of containers used. This category contains problems such73

as the open dimension problem (ODP), also known as the strip packing problem (SPP) [18].74

Schutt et al. proposed a great example of the use of the SPP for industrial purposes in [24].75

The SPP considers a single container of infinite length, which differentiates it from the76

cutting stock problem (CSP) [8, 17] and the bin packing problem (BPP) [1, 3, 9, 18, 22].77

These two problems consider the use of one or many containers of fixed sizes. Although78

both subproblems manage the use of homogeneous and heterogeneous containers, their main79

difference comes from the items to pack. Where the CSP uses predefined cutting patterns80

to determine how to cut the different pieces, the BPP uses no pattern and instead works81

with highly heterogeneous items as input. Our problem is a specific implementation of the82

BPP for which we present a model that acts on a problem that is not well documented in83

the literature: maximizing the potential reusability of scraps. While minimizing scraps is84

common, maximizing their reusability is not and justifies the implementation of a new model.85
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2.2 Constraint Programming86

Constraint programming (CP) is a programming paradigm specialized in solving satisfaction87

and optimization problems, such as those presented in Section 2.1 and in [25]. These problems88

are defined as mathematical models, where the decision variables are linked together with89

constraints that restrict the possible assignments to the solution space. Many predefined90

constraints already exist in popular solvers, often under different names. This disparity91

(and the fact that solvers are often implemented in different programming languages) led, in92

2007, to the creation of MiniZinc [21], which is a CP modeling language that can seamlessly93

translate the defined problem to work with multiple solvers, such as Chuffed [10] and CP-94

SAT [23]. The presented MiniZinc models incorporate two important constraints: DiffN95

and Cumulative.96

The DiffN constraint [4, 26] considers a set of two-dimensional rectangles and constrains97

their relative placements so that they do not overlap. The constraint is formally expressed98

as: DiffN([X1, . . . , Xn], [Y1, . . . , Yn], [width1, . . . , widthn], [height1, . . . , heightn]), where Xi99

and Yi represent the positions of the rectangles and heighti and widthi their dimensions.100

This constraint is especially useful for cutting and packing problems.101

The Cumulative constraint [2, 26] is used in scheduling problems to limit the number of102

tasks that can be executed simultaneously, but it can also be used efficiently in cutting and103

packing problems. Since it encodes the placement of tasks on a timeline, it can also encode the104

position of pieces over one dimension. Formally, it is expressed as: Cumulative([s1, . . . , sn],105

[d1, . . . , dn], [r1, . . . , rn], B) , where si represents the position of a piece, di its length, and ri106

its height. B represents the maximum height allowed. It ensures that at any position along107

the dimension, the total height of the overlapping pieces does not exceed B.108

Adding the Cumulative to the DiffN is considered redundant. In our case, this109

redundancy improves the solver convergence speed by pruning invalid placements early and110

more efficiently than by using only DiffN [20].111

3 Case study112

SOKÏO is a wood manufacturer that is developing a highly customizable construction system.113

Its products are buildings whose components, such as walls, roofs, and floors, are made from114

cross-laminated timber (CLT) and are assembled directly in the factory in a fully automated115

way. For example, walls are made from layering the main CLT panel, insulation, doors,116

windows, and cladding. After being layered, all panels are brought to the site to be assembled,117

making it possible for the installation to be completed in one or two days at most.118

Built with automation in mind, the different systems fueling the factory’s production are119

seamlessly linked together and can communicate in a digital twin (DT) [12] developed in the120

Unity® game engine. Clients and architects eager to design their own dream building can121

freely do so in the DT, while the back-end of the app built using constraint programming122

ensures that the building fully respects all the different constraints of the factory.123

The system in question in this paper concerns the nesting of insulation pieces. The shapes124

and dimensions of these pieces are calculated in real time during the product configuration125

process [28], and sent to the nesting module. As explained in the next section, this system126

computes an optimal way to cut the different input pieces into predefined sheets while127

optimizing key metrics, such as scrap reusability. This process saves a lot of time for SOKÏO,128

which used to do it by hand. It also saves critical quantities of insulation material by129

facilitating its reusability and reduces operations and labor costs.130

CP 2025
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(a) Specifications (b) Examples

Figure 1 Insulation pieces

4 Problem presentation131

To provide context for the proposed algorithms, it is important to understand the basic 2D132

bin packing problem [18, 22]. This problem involves two components: i) a set of rectangular133

items, and ii) a set of rectangular bins in which we need to fit all the items. The bins134

typically have the same predefined dimensions. The items also have their dimensions set in135

advance, with the added assumption that they can fit in the bins. These items can rotate 0°136

(without rotation) or 90°. Using these definitions, the goal is to find the smallest number of137

bins in which it is possible to fit all the items.138

4.1 Insulation nesting139

When applying these concepts to the insulation nesting problem, the bins are represented140

by insulation sheets, and the precomputed insulation pieces are the items. All insulation141

sheets come in a standard size of 8 feet by 4 feet, and the precision of the tools used to cut142

by SOKÏO is 1
16 of an inch. All pieces are cut individually from the sheets, without common143

or guillotine cuts constraints [22]. We now add to the complexity of this problem by refining144

it with these new modifications/additions:145

1. The shape of the precomputed pieces is now defined by the following constraints, repres-146

ented in Figure 1: i) The piece must have a rectangular component of width w > 0 and147

height hr ≥ 0. ii) It must have a right triangle component, whose width is equal to w148

and height ht ≥ 0. iii) The sum of heights hr and ht is strictly greater than 0. These149

shape definitions allow for rectangular, triangular, and trapezoidal insulation pieces.150

2. We use two rotational values (0° and 90°) when working with rectangular elements. These151

rotations offer the possibility for the sides of the items to align in an orthogonal way to152

the edges of the bins. Although this is not enough to obtain optimality in all cases [7],153

this is a great compromise between simplicity and results that are more than sufficient154

for our particular domain. For non-rectangular elements defined by the shape presented155

in point 1, we are required to use more than two rotations. Since at most one side of156

the trapezoidal shape has two right angles, two possible rotational values (180° and 270°)157

are added to ensure that it can correctly align to the bin. Additionally, to account for158

the possible placements of the right triangle in the sheet, it is possible to flip the piece159

over. Thus, we go from two possible rotations to eight (four rotations if not flipped, four160

if flipped) when working with a shape that has a triangle height ht > 0.161
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3. Sheets are not all the same size. For SOKÏO and many other companies, the ability to162

reuse scraps and smaller sheets has great potential value. As a result, they need to be able163

to specify sheets that have dimensions smaller than the ones predefined for new sheets.164

These smaller sheets represent scraps that have been acquired by cutting insulation sheets165

in the past. The model has to be able to take these scraps into account so that they can166

be reused in the future. Following the above nomenclature, these different-sized bins are167

referred to as being strongly heterogeneous [27].168

4. Although the main objective remains similar, we now aim to minimize the total area169

of the sheets in which the pieces are nested, rather than only their number. A second170

objective is also introduced. This is justified by the fact that the "creation" of scraps of171

sizes large enough to be reused later for nesting insulation pieces is critical, as implied172

by point 3. This second objective aims to position the insulation pieces in the sheet173

in a way that maximizes the reusability of its wasted area. This goal is complex to174

describe as a quantifiable metric due to its subjective nature, and this is part of the175

reason why the literature on this exact subject is rare, especially when working with176

constraint programming.177

4.2 Instance specification178

A formal specification of an instance of the described problem is defined as follows: We are179

given two sets: i) Let P be the set of indices of the insulation pieces. For each p ∈ P, the180

piece p is defined by its width wp , its rectangular height hrp and its triangular height htp .181

ii) The set R contains the indices of rectangular sheets, which have predefined widths and182

heights (swr and shr ∀ r ∈ R). These are ordered by non-decreasing area swr · shr, and183

represent old heterogeneous insulation scraps that can be reused as bins. Using these sets,184

we define S, which contains all the scrap sheets in R plus |P| new sheets that are added185

in sufficient quantities to make the instance feasible. The new sheets all have the same186

dimensions. Each sheet s ∈ S is defined with their width sws and height shs.187

The goal is to assign each piece p ∈ P a sheet s ∈ S, a position in the sheet (considering188

that the piece’s origin is located at its bottom left corner), and a rotation such that none of189

the pieces overlap, while minimizing the total area of the used sheets. After finding optimality190

for the area of the sheets that are used, we also want to optimize the scrap reusability, further191

refining the solution of the problem. All this being said, we can consider the typology brought192

up by Wäscher et al. [27] to classify the problem as a variant of the residual bin packing193

problem (RBPP), where the dimensions of the residual pieces are considered an objective194

during the optimization process. Of course, a quantifiable metric is needed to optimize this195

value, which will be introduced in Section 5.3.2. Figure 2 shows two possible placements of196

the same pieces in a sheet. The example in Figure 2a is objectively worse than the one in197

Figure 2b when comparing the reusability of the scraps.198

5 Methodology199

5.1 Preprocessing - converting pieces to rectangles200

The NP-Hardness of the problem makes it difficult for large instances to be computed to201

optimality in a reasonable time. First, having to deal with shapes that contain angles202

non-divisible by 90° adds an incredible layer of complexity, as computing the collisions203

between the shapes now relies on using trigonometric functions rather than simple edge204

placement comparisons. The eight possible rotations also make the solver’s search tree205

CP 2025
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(a) Scraps with non-optimal reusability. (b) Scraps with optimal reusability.

Figure 2 Packing examples: Pieces (white rectangles) are packed within the hatched sheet.
Visible hatched areas are the resulting scraps.

Figure 3 Instance being passed to the different preprocessing algorithms

exponentially larger than if only two were used. That being said, four different polynomial-206

time preprocessing algorithms will be introduced and compared. Figure 3 shows an example207

of a set of pieces, which is sent to the different preprocessing methods to be analyzed in208

Figure 4. The goal of these algorithms is to reduce the search space by transforming the209

pieces into rectangles before sending them to the solver. Each preprocessing method receives210

the same input (assuming that it is working with the same instance), this being the set211

of pieces P and their dimensions. They all also return an output of the same form: First,212

each preprocessing returns two arrays of the same length that contain the dimensions of213

the newly created rectangular shapes, W and H. Second, they also return an array named214

SUB, which will be explained in more detail in Section 5.1.2. Note that the preprocessing215

presented in Section 5.1.4 introduces a way to further decompose predefined insulation pieces,216

which has significant implications for the definition of the problem in itself. We allow the217

Slope mapping + preprocessing to decompose the non-rectangular pieces in such a way that218

they can be represented as a rectangle, reducing the losses induced from the piece’s slope to219

zero. These pieces are subdivided into exactly three new smaller pieces. Subdividing further220

could allow for slightly better packing, but is not allowed since the factory wants to limit the221

necessary cutting to a minimum.222

5.1.1 Bounding box223

The Bounding box preprocessing is depicted in Figure 4a. Each piece p ∈ P is transformed224

into the smallest rectangle that can fully contain it. The width of the new rectangle is225

equal to wp , while its height is set to hrp + htp . Of course, while being fast and easy to226

comprehend, this preprocessing generates a substantial amount of scraps when working with227

trapezoid pieces, since treating them as their bounding rectangles takes up more space than228

they really occupy. Pieces with a triangular height htp of 0 do not create additional losses.229
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(a) Bounding box (b) Staircase

(c) Slope mapping (d) Slope mapping +

Figure 4 Preprocessing algorithms examples

5.1.2 Staircase230

The Staircase preprocessing goes one step further in the same direction as Bounding box did231

and creates multiple bounding boxes for each piece that has a triangular height component232

htp > 0, reducing the amount of wasted space. Figure 4b shows this reduction by highlighting233

the way it forces the model to consider pieces. Each of these pieces have their width wp234

divided into sub subdivisions of equal width
⌊ wp

sub
⌋
, with any remainder wp mod sub added235

to the last segment. The algorithm calculates the bounding box for each subdivision using236

the original dimensions of the shape. For each subdivision, the starting and ending points237

relative to the original width of the shape are known. It is possible to use the heights of the238

piece hrp and htp together with this information to calculate their respective heights. This239

calculation is shown in the following:240

Suppose that the triangular height htp of a piece is always pointing upward and that its241

bottom left corner is at the origin (0, 0). The piece is also flipped so that its upper corners242

are at coordinates (0, hrp) and (wp , hrp + htp). Each subdivision has the x position of their243

right boundary referred to as rb, which always has a value between 0 and wp (included). The244

following expression is then used to calculate the height of each subdivision:
⌈
hrp + rb

wp
· htp

⌉
.245

The bounding boxes are always high enough to contain their entire subdivision, as the value of246

rb is always greater than the value of the x position of the left boundary for each subdivision.247

Rectangular pieces that have a triangular height htp of 0 are treated differently. These248

pieces are not subdivided, so their bounding box is the same as the piece itself. The SUB249

array encodes the subdivision information for the model. In short, SUB is an array of length250

|P|, where SUBp represents the number of subdivisions in which the piece p has been split,251

∀p ∈ P. Since the pieces are always divided into the same number of subdivisions, the only252

two possible values in SUB are sub, if the piece is a triangle or a trapezoid, or 1 if the piece253

is a rectangle. Also note that an important constraint is added to the model when working254

with subdivisions. Since the shape is not split into smaller parts but is only represented as255

a combination of bounding boxes, it is important that these boxes remain connected when256

being translated or rotated. These connections between the different subdivisions make it so257

that the piece can be rotated in the eight possible rotations mentioned in Section 4 (each258

individual subdivision only truly rotates 0 or 90 degrees as they are rectangular, but the259

connection constraints model the eight feasible rotations).260

CP 2025
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5.1.3 Slope mapping261

The Slope mapping preprocessing acts as an extension of the simple Bounding box approach262

by attempting to merge pieces that have an identical triangular height and width into one263

rectangular piece. Figure 4c shows an example of two pieces that are matched together as a264

singular rectangle, and the other piece, being alone, is instead considered as its bounding box.265

For each piece p1 ∈ P , if htp1 ̸= 0, the algorithm searches for another piece p2 with the same266

width and triangular height that has not yet been matched. If a match is found between267

the pieces p1 and p2, they are stacked to create one larger rectangle, provided that their268

combined height hrp1 + hrp2 + htp1 fits within the predefined dimensions of a new sheet. If269

no match is found, p1 is transformed in the same way as it would have been by the Bounding270

box approach. This approach has the potential to remove the wasted space from two pieces271

that have the same triangular height component each time a match is found.272

5.1.4 Slope mapping +273

The Slope mapping + preprocessing refines the basic Slope mapping approach by further274

addressing pieces that still inherently create losses when sent to the model, those being pieces275

with triangular components that cannot be paired with a matching piece. Each piece p ∈ P276

that matches this condition is decomposed by the algorithm into three smaller shapes. In277

other words, each trapezoidal shape is converted into one rectangle, one triangle, and another278

triangular or trapezoidal shape. The pieces p3.1, p3.2, and p3.3, as shown in Figure 4d, are279

the result of the decomposition of piece p3 in Figure 3.280

Applying the same assumptions made for the Staircase cutting phase, the piece can be281

decomposed in a way that makes it reconfigurable as a rectangle, preventing any left losses.282

First, two cuts are made, one at the coordinate (
⌊wp

2
⌋

, 0) going up to (
⌊wp

2
⌋

, hrp +
⌈

htp
2

⌉
),283

and the other at (
⌊wp

2
⌋

, hrp +
⌈

htp
2

⌉
) going right to (wp , hrp +

⌈
htp
2

⌉
). Following these cuts,284

the new pieces are considered to be two distinct rectangles. The first rectangle p3.1 has285

a width of
⌈wp

2
⌉

and a height of hrp +
⌈

htp
2

⌉
. The second is made up of the pieces p3.2286

and p3.3 stacked, creating a rectangle that has the same dimensions as the first. Although287

it might not be ideal to cut a piece into three smaller pieces, the insulation pieces context288

allows it. The Slope mapping + preprocessing is the only one among the four methods we289

propose that leads to the cutting of a piece into smaller ones.290

5.2 Preprocessing - Cutting margins291

Before sending the data to the first optimization model, the dimensions of the sheets and292

pieces are increased so that the cutting margins are taken into account. Insulation pieces293

are cut using a 1
8 " wide water jet. This is modeled by increasing the width and height of294

all (now rectangular) insulation pieces and insulation sheets by 1
8 ". All pieces now contain295

half the width of the jet ( 1
16 ") as margins on each of their edges. Two touching pieces will296

always at least be distanced by their combined margins (equal to the width of the jet), so297

the water jet can directly cut between them and never impact the true sizes of the pieces.298

Similarly, pieces on the edge of a sheet benefit from its increased dimensions. The placement299

finished, the added dimensions of the sheet are removed, effectively removing the margins300

of the pieces that were placed on its side. Figure 5 shows the effect of the added margins,301

where 5a shows the addition of the margins to the pieces and sheets, 5b shows two pieces302

with their margins touching and touching the edges of the resized sheet, and 5c shows the303

final placement of the pieces, after the removal of the margins of the sheets.304
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(a) Addition of the margins (b) Effects of the margins (c) Sheet margins removal

Figure 5 Preprocessing - Adding the margins to the pieces and sheets

5.3 Objective functions / models305

The preprocessing step finished, it is possible to send the dimension values of the pieces306

and sheets as well as the subdivision data to the first constraint model, thus starting the307

optimization process. As mentioned earlier, two models are used sequentially. The first308

minimizes the total area of the used sheets, prioritizing the use of scraps over new sheets.309

The second optimizes the shape of the scraps. All preprocessing output their data in a way310

that can be used by the first constraint model. This model, in turn, outputs its data in a311

way that is usable by the second model.312

The use of two sequential models is justified by the computation time. In essence, the313

solver used by the first model computes the optimal sheets to use before sending them to the314

next one. The second model then optimizes the reusability of the scraps without having to315

think about reducing the total area of the used sheets again. Optimizing those two objectives316

at the same time in a unique model does not work as efficiently because the solver spends a317

lot of time optimizing the reusability of scraps even before the optimal sheets are found.318

5.3.1 Sheets minimization model319

From the selected preprocessing output, we receive the following: i) The array SUB of320

length |P| indicates the number of subdivisions for a piece. For each piece p ∈ P, we321

have SUBp = sub subdivisions if the piece p was subdivided by Staircase and SUBp = 1 if322

not. We define the set D = {1, . . . ,
∑

p∈P SUBp} to be the indices of all subdivisions. ii)323

The arrays W and H, each of length |D|, give the width and height of each subdivision.324

Pieces that were not subdivided are still considered a subdivision, which means that the325

dimensions of these pieces will also be present in W and H as a single subdivision. We326

also have iii), the sheet widths SW and the sheet heights SH which are arrays of length327

|S|. As stated earlier, the sheets in S are ordered by non-decreasing area, meaning that328

∀s ∈ S where s > 1, SW s · SHs ≥ SW s−1 · SHs−1. The first model is described below and329

uses the constants and variables presented in tables 1 and 2.330

Name Value Description
SAs SW s · SHs, ∀s ∈ S Area of the sheet s (already ordered by non-

decreasing area)
SLs

∑s−1
i=1 SW i, ∀s ∈ S X position of the left edge of sheet s

Ip 1 +
∑p−1

i=1 SUBi, ∀p ∈ P Index of the first subdivision of the piece p
R |{s ∈ S | SAs < max(SA)}| The number of sheets that are scraps

Table 1 Names, values and descriptions of model constants

CP 2025
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Name Domain Description
sheetd S, ∀d ∈ D The sheet in which the d subdivision is nested
ld {0, . . . ,

∑
s∈S SW s}, ∀d ∈ D X position of the left edge of subdivision d

rd {0, . . . ,
∑

s∈S SW s}, ∀d ∈ D X position of the right edge of subdivision d
bd {0, . . . , max(SH)}, ∀d ∈ D Y position of the bottom edge of subdivision d
td {0, . . . , max(SH)}, ∀d ∈ D Y position of the top edge of subdivision d
rwd {0, . . . , max(SW )}, ∀d ∈ D Width of subdivision d after rotation
rhd {0, . . . , max(SH)}, ∀d ∈ D Height of subdivision d after rotation
rotd {1, . . . , 8}, ∀d ∈ D Rotation of subdivision d
ta {0, . . . ,

∑
s∈S SAs} Total area of the used sheets.

Table 2 Names, domains and descriptions of model variables

5.3.1.1 Constants331

We position the sheets on the Cartesian plane, side by side from left to right, in non-decreasing332

order of area (in the order in which they are in S). For each sheet s ∈ S, SAs denotes the333

area of s, and SLs holds the x position of its left edge. For each piece p ∈ P , Ip is the index334

of the first subdivision belonging to p. The constant R contains the number of sheets that335

are scraps, i.e. sheets whose area is smaller than the area of the largest sheet. The constants336

and their values are summarized in Table 1.337

5.3.1.2 Variables338

For each subdivision d ∈ D, we have the decision variables ld and bd that are the coordinates339

of the lower left corner of the subdivision and the variable rotd that encodes one of the eight340

possible rotations (four if d is flipped, four if not). In addition to the decision variables,341

there are functional variables. The values of these variables can be fully determined once the342

values of the decision variables are known. These variables are, for each subdivision d ∈ D,343

the coordinates (rd, td) of the upper-right corner of the subdivision, the sheet number sheetd344

on which lies the subdivision, the width rwd and height rhd of the subdivision after being345

rotated. Furthermore, the variable ta is used to represent the total area of the used sheets in346

the solution. The variables and their domains are summarized in Table 2.347

5.3.1.3 Constraints348

The following constraints ensure that subdivisions are fully nested inside a single sheet and349

that subdivisions do not overlap each other.350

Constraints (1) to (3) apply to each piece p ∈ P and its subdivisions d. Constraint (1)351

applies to pieces that have a single subdivision and, therefore, are rectangular. It ensures352

that the rotation is either 0° or 90°. Constraints (2) and (3) consider the current rotation of353

subdivision d and fix the width and height of the subdivision.354

SUBp = 1 =⇒ rotd ≤ 2 ∀p ∈ P, d ∈ {Ip, . . . , Ip + SUBp − 1} (1)355

rotd mod 2 = 0 =⇒

{
rwd = Hd

rhd = W d
∀d ∈ D (2)356

rotd mod 2 ̸= 0 =⇒

{
rwd = W d

rhd = Hd
∀d ∈ D (3)357
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Constraint (4) links the left-side coordinate, the right-side coordinate and the width of a358

subdivision together. The same is true for the top and bottom coordinates and the height of359

the subdivision. This constraint takes into account the rotation of the piece.360

rd = ld + rwd ∧ td = bd + rhd ∀d ∈ D (4)361

Constraints (5) to (7) have two purposes: 1) to force each subdivision d ∈ D to be fully362

contained in one sheet and 2) to assign the sheet in S on which subdivision d lies to the363

variable sheetd.364

ld ≥ SLsheetd ∀d ∈ D (5)365

rd ≤ SLsheetd + SW sheetd ∀d ∈ D (6)366

td ≤ SHsheetd ∀d ∈ D (7)367

Constraint (8) links the subdivisions of a piece p ∈ P . It ensures that the subdivisions are368

assigned to the same sheet and the same rotation. Finally, it ensures that the subdivisions369

are positioned side by side. The right edge of one subdivision coincides with the left edge of370

the other subdivision, or the top edge of one subdivision coincides with the bottom edge of371

the other subdivision. The constraint takes into account the eight combinations of rotations372

and flips.373

∀p ∈ P, d ∈ {Ip, . . . , Ip + SUBp − 2} :374

sheetd = sheetd+1 ∧ rotd = rotd+1∧375 
rotd mod 4 = 1 → rd = ld+1
rotd mod 4 = 2 → td = bd+1
rotd mod 4 = 3 → ld = rd+1
rotd mod 4 = 0 → bd = td+1

 ∧


rotd ∈ {1, 7} → bd = bd+1
rotd ∈ {2, 8} → rd = rd+1
rotd ∈ {3, 5} → td = td+1
rotd ∈ {4, 6} → ld = ld+1

 (8)376

The constraint DiffN ensures that the subdivisions do not overlap on each other. This377

constraint has in its scope the positions of the subdivisions and their dimensions. We also378

use the Cumulative constraint. It is redundant but comes with more filtering algorithms379

that improve the performance of the model. The Cumulative constraint only considers the380

positions of the subdivisions on the x-axis, as the range defined by the y-axis is not large381

enough for its filtering algorithms to offer any improvements.382

DiffN(l, b, rw, rh) (9)383

Cumulative(l, rw, rh, max(SH)) (10)384

Constraint (11) constrains ta, which is the objective variable to minimize, to be equal to385

the total area of the sheets used by the solution. The constant R indicates the number of386

scrap sheets that are available for use. These scrap sheets have smaller areas than the new387

sheets, they are therefore labeled with indices smaller than or equal to R. The summation388

in (11) adds the area of the used scrap sheets. The second term computes the area of new389

sheets. Since all have the same area, we simply multiply the area of new sheets, max(SA),390

by the number of new sheets used, max(sheet) − R. Using max(sheet) − R to encode the391

number of used new sheets forces the solver to break symmetries by assigning pieces to392

new sheets with lower indices. We found that using this formulation instead of explicitly393

specifying a value precedence constraint among the new sheets offered equivalent results394

while being slightly faster.395

ta =
( ∑

s∈{1,...,R}
∃d∈D,sheetd=s

SAs

)
+ max(SA) · (max(sheet) − R) (11)396

CP 2025
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Figure 6 Computing the touching perimeter metric

Constraint (12) breaks symmetry between similar solutions where the pieces nested in a397

new sheet can be swapped for the pieces nested in another new sheet. This symmetry occurs398

less often with scrap sheets, as their area can differ. The constraint states that the first piece399

can only be nested on the first new sheet, the second piece on the first two sheets, and so on.400

sheetd ≤ p + R ∀p ∈ P, d ∈ {Ip, . . . , Ip + SUBp − 1} (12)401

We implemented this model in MiniZinc using the Chuffed solver [10], which offers the402

priority search [13] annotation to model the branching heuristic.403

solve::priority_search(l,404

[int_search([rotd, ld, bd], input_order, indomain_min) | d ∈ D ],405

smallest, complete) minimize ta;406

The priority search selects the subdivision that can be placed the farthest to the left on407

the sheet with the smallest index. Once the subdivision is selected, it fixes its rotation and408

position (in that order). The solver also uses solution-based phase saving [11] as it offers a409

significant speed increase in the time needed to compute optimality.410

Using a contiguous coordinate system for packing the pieces on the sheets instead of the411

classic method where each sheet has its own coordinate system avoids the need for optional412

variables, hence simplifying the way the problem is modeled.413

5.3.2 Scrap reusability maximization model414

The subsequent model uses the same base as the first model (Section 5.3.1). We only change415

the objective function, some data given as input, and the branching heuristic.416

We introduce the new objective function, which is inspired by the touching perimeter417

heuristic introduced by Lodi et al. [19]. The intuition is to maximize the length of the418

perimeter of the subdivisions that touches either the side of a sheet or the side of another419

subdivision. Maximizing this value is equivalent to maximizing the density of the pieces in420

the sheet. This also indirectly concentrates the waste in each sheet, increasing the size of the421

scraps and their reusability. Where Lodi et al. [19] use a greedy heuristic to try to maximize422

the touching perimeter, our objective maximizes it directly.423

Figure 6 shows three pieces that need to be packed in the most efficient way. In the first424

sheet, those pieces float in the middle without touching any edges, resulting in an objective425

value of 0 and a suboptimal packing. In the second and last sheets, their placement is further426

optimized, and we can clearly see parts of their perimeter that come in contact. In this427

example, the last sheet shows the best way to place the three pieces, as it offers the best428

scrap reusability in terms of the pieces SOKÏO often produce.429

The objective variable of the total used sheet area ta is discarded and replaced by the430

touching perimeter variable tp, whose domain is {0, . . . , 2 ·
∑

d∈D(W d + Hd)} and whose431
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value should be maximized. Constraint (13) constrains tp to be equal to the total touching432

perimeter of the subdivisions where the notation JbK returns 1 if b is true or 0 otherwise.433

Specifically, the first summation computes the perimeter of the subdivisions that are in434

contact with the edges of the sheet in which they are nested, while the second summation435

computes the perimeter of the subdivisions that are in contact with the edges of other436

subdivisions. The only pairs of subdivisions that are considered are those that are on the437

same sheet. Each pair is considered at most once (d1 < d2), which means that the touching438

perimeter will only be counted once, when both touching edges should be taken into account.439

This explains the multiplication by two, which makes it so that the touching edges of the440

subdivisions have their touching perimeter added correctly.441

tp =
∑
d∈D

(
Jld = SLsheetdK · rhd + Jrd = SLsheetd + SW sheetdK · rhd+442

Jbd = 0K · rwd + Jtd = SHsheetdK · rwd

)
+443

2 ×
∑

d1,d2∈D
d1<d2

sheetd1 =sheetd2

(
Jrd1 = ld2 ∨ rd2 = ld1K · max(0, min(td1 , td2) − max(bd1 , bd2))+444

Jtd1 = bd2 ∨ td2 = bd1K · max(0, min(rd1 , rd2) − max(ld1 , ld2))
)

(13)445

The input of this model is still a list of subdivisions and sheets, but we only feed this446

second model with the sheets that were assigned pieces by the first model. This reduces the447

search space and ensures that the total area of the used sheets remains optimal.448

To solve this model, we use the CP-SAT solver [23] using four threads (using six threads449

did not improve performance in any way, and more than six worsened it). CP-SAT does450

not offer solution-based phase saving and does not offer a priority search. Despite that, we451

have found that CP-SAT is faster than Chuffed for this specific model. The second model452

uses this specific search annotation that selects the variable in the l and b arrays with the453

smallest value in its domain and branches on that value.454

solve::int_search( l ∥ b, smallest, indomain_min) maximize tp;455

6 Experimentations456

6.1 Benchmarks457

This section benchmarks both models presented in this paper and compares our solutions458

with those of SOKÏO, for a particular instance. All experiments were run on a computer459

with a 6-core Intel Core i7-10750H CPU @ 2.60 GHz and 16 GB of memory.460

6.1.1 Sheets minimization model461

The experiments consisted of four instances ranging from 15 to 188 pieces, which were462

analyzed with each of the preprocessing methods. For the Staircase preprocessing, we463

experimented with 2 and 4 as values for the number of subdivisions sub. Each of these tests464

was also performed with 3 different sets of scrap sheets R. The first one contains no scrap,465

so only new sheets can be used. The other ones contain 30 and 60 scraps of different sizes.466

We use three key metrics to compare the different experiments made with the first model:467

1) the number of new sheets used, 2) the waste ratio, expressed as a percentage of the total468

CP 2025
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Figure 7 CLT panels breakdown of instance 2

used sheets area. This is calculated using the following expression:469 (
1 − Total area of the pieces (before the preprocessing)

Total area of the used sheets

)
· 100%,470

as well as 3) the time required to compute the solution, which is by far the most valuable471

resource for SOKÏO.472

Our results will be compared with those obtained by SOKÏO on instance 2, which repres-473

ents the only structure currently in production. This structure is composed of prefabricated474

panels, which are shown in Figure 7. SOKÏO, exactly as we now do in an automated way,475

had to compute the best shapes, sizes, placements, etc. of the insulation pieces so that476

they would completely cover the structure’s panels, excluding the different openings. Their477

manual computation landed them with a set of pieces that were then nested in a total of 46478

new sheets. Note that no scraps were used to create these pieces or kept after the cutting479

process due to their suboptimal sizes. SOKÏO’s waste metric on this specific instance is480

21.58%, and their manual nesting took an entire week to complete.481

Table 3 shows our results for the instance 2 produced by SOKÏO, as well as for the others.482

For this model, all instances were subject to a 5-minute timeout. For instance 2, we were483

able to calculate a solution that is much more efficient than what SOKÏO achieved manually484

on site, with an optimal solution of 39 new sheets obtained in 2.91 seconds using the Slope485

mapping + preprocessing. This equates to a material waste of 6.71%. Compared to SOKÏO’s486

solution of 46 new sheets and 21.58% wasted material (which took a week of planning).487

Looking at these results, it is safe to say that the two objectives that were a priority for488

SOKÏO, reducing the amount of time needed to obtain the solutions and improving their489

quality based on the number of new sheets used, have been achieved. Figures 8 and 9 in490

Appendix A show visualizations of the scrap minimization process for instance 2 using the491

Bounding box and Slope mapping + preprocessings. All instances in Table 3 are feasible.492

Although SOKÏO did not yet work on the other instances, we can assume that the time493

needed to compute their solution, as well as the number of new sheets used, will be much494

lower in the results provided by the first model than the manual results SOKÏO would have495

obtained if they had done so. The models can also work with scraps. This allows SOKÏO496

to recycle them, which they could not even consider before due to their small sizes in the497

solution they had. Table 3 shows that while instances that contain scraps take more time498

to compute to optimality, they offer even better solutions both in terms of the new sheets499

used and in the amount of waste generated (which is computed on all sheets used, not only500

new ones). The results also show that the Slope mapping + preprocessing is the best of the501

four we presented on these metrics. This is easily explained by the fact that the subdivisions502

generated by Slope mapping + do not contain any wasted area, while those generated by the503

other three preprocessings on triangular and trapezoid pieces do. As mentioned above, Slope504

mapping + cuts some pieces into three smaller pieces, and the current context allows it. For a505



M. Chastenay 36:15

Table 3 Model 1 - Performance Metrics Across All Instances and Preprocessing Methods

Preprocessing |D| New Sheets
[0/30/60]

Waste (%)
[0/30/60]

Time (s)1

[0/30/60]

Instance 1 (15 Pieces)
Bounding box 15 9 / 7 / 7 20.67 /13.13/10.51 0.51 / 0.60 / 0.74
Staircase - sub = 2 21 9 / 7 / 7 20.67 /13.13/10.51 0.63 / 0.78 / 0.92
Staircase - sub = 4 33 8 / 8 / 7 10.76/10.76/10.51 0.83 / 1.27 / 1.59
Slope mapping 15 9 / 7 / 7 20.67 /13.13/10.51 0.47 / 0.60 / 0.69
Slope mapping + 21 8 / 6 / 5 10.76/7.51/5.01 0.71 / 1.01 /10.23

Instance 2 (74 Pieces)
Bounding box 74 44 / 42 / 39 17.31 /16.42/14.11 2.17 / 4.88 /64.77
Staircase - sub = 2 94 43 / 42 / 38 15.38 /15.14/13.86 6.21 / 8.68 / –
Staircase - sub = 4 134 43 / 42 / 38 15.38 /14.39/12.10 12.96/19.36/ –
Slope mapping 67 42 / 40 / 36 13.37 /11.73/ 9.29 1.90 / 3.45 /13.80
Slope mapping + 73 39 / 37 / 35 6.71 /5.34/4.30 2.91 / – / –

Instance 3 (106 Pieces)
Bounding box 106 65 / 63 / 60 12.26 /11.32/ 9.46 – / – / –
Staircase - sub = 2 114 65 / 62 / 60 12.26 /11.10/ 9.69 – / – / –
Staircase - sub = 4 130 65 / 62 / 59 12.26 /10.58/ 9.05 – / – / –
Slope mapping 106 65 / 63 / 57 12.26 /11.32/ 9.46 – / – / –
Slope mapping + 114 63 / 60 / 59 9.47 /7.41/7.18 – / – / –

Instance 4 (188 Pieces)
Bounding box 188 123/120/ 118 10.29 / 8.90 / 8.34 – / – / –
Staircase - sub = 2 214 122/119/ 116 9.55 / 8.71 / 8.03 – / – / –
Staircase - sub = 4 266 122/119/ 118 9.55 / 8.83 / 8.19 – / – / –
Slope mapping 188 123/119/ 117 10.29 / 8.90 / 8.34 – / – / –
Slope mapping + 214 116/115/ 112 4.87 /4.44/4.52 – / – / –

Values in columns represent results for instances where S contains [0 scraps / 30 scraps / 60 scraps].
Lowest waste percentage per scrap group within each instance highlighted in bold.

1 ‘–‘ indicates the 300-second time limit was reached.

problem where this behavior is not allowed, the Slope mapping and Staircase preprocessings506

also offer great results, especially when the sheet set S contains reused scraps.507

6.1.2 Scrap reusability maximization model508

The benchmark for the second model consists of 12 instances obtained by testing each of the509

4 base instances from model 1 with the 3 different numbers of scrap sheets, |R| ∈ {0, 30, 60}.510

These new instances are based on the results provided by the best preprocessing in Table 3.511

In all cases, the best preprocessing (based on the waste ratio metric) was Slope mapping +,512

so all 12 runs were performed using the results of this preprocessing. Table 4 shows the513

results obtained for these 12 experiments after a 30-minute timeout (which was reached in514

all instances). A higher touching perimeter percentage (TPP) means a higher density of the515

pieces in each sheet, which translates into better packing and more reusable scraps. A TPP516

of 100% could only be obtained with a waste ratio of 0%. Bigger instances generally provide517

a higher TPP, because the larger number of possible combinations yields a higher probability518
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Table 4 Model 2 - Touching Perimeter Ratio (Solutions from model 1 using Slope mapping +).

Instance Touching Perimeter (%)1

0 Scraps 30 Scraps 60 Scraps

Instance 1 (15 Pieces) 81.71 77.68 77.88
Instance 2 (74 Pieces) 78.82 77.43 77.54
Instance 3 (106 Pieces) 83.68 – –
Instance 4 (188 Pieces) 73.00 – –

1 ‘–‘ indicates no result was obtained before reaching the 30-minute time limit.

that efficient packing can be achieved. Figure 10 in Appendix A shows visualizations of519

the scrap reusability maximization process for instance 2, using the result from the Slope520

mapping + preprocessing in Figure 9. All instances in Table 4 are feasible.521

Table 4 shows that the model generates initial solutions quickly (and keeps increasing522

their quality) for small instances that reuse no scraps, but takes a longer time for larger523

instances that try to reuse many scraps. Of course, the objective of the second model is way524

more complex than the one of the first model, and large instances suffer from that.525

When time is not an issue, waiting for the solver to output solutions for the second model526

is clearly beneficial. After 16 hours, the solver achieved a TPP of 88.04% on the 60-scrap527

version of instance 4, which is by far the largest and most complex. Although 16 hours528

may seem long, it is still a short amount of time compared to the manual results of SOKÏO.529

Where SOKÏO took a week to compute their results for instance 2 and did not generate any530

reusable scraps, we are able to guarantee that our solution for instance 4 (which is more than531

twice the size of instance 2) obtained in 16 hours will result in scraps with great reusability.532

6.2 A word on the dataset533

All the different instances of the problem considered in this paper were created using the534

product configurator mentioned in Section 3. This software was developed using the Unity®
535

game engine, and allows the user to edit the model of a structure to his/her liking before536

ordering it. This offers a load of possibilities in regards to industry 4.0 parametric product537

configuration, at the cost of needing to optimize each newly created building instance and538

its related parts, such as insulation cutting and nesting, as discussed.539

7 Conclusion540

We introduced four different preprocessing methods that work with trapezoidal shapes in541

the bin packing problem, using solvers that typically only work with rectangular shapes.542

We compared the nesting produced by our algorithms with the one manually obtained by543

SOKÏO. Each preprocessing achieved better results than those provided by SOKÏO. We544

introduced a new objective function that optimizes scrap reusability. This objective refines545

the results returned by the sheet minimization model and proposes new solutions that make546

better use of the space given by the optimal sheets that were found, allowing SOKÏO to547

create more reusable scraps. Directions for future work include the implementation of a548

constraint described by Beldiceanu et al. [5] that directly supports trapezoidal shapes. We549

also aim to further explore the implementation of the touching perimeter objective function550

to speed up the convergence of the second model. Finally, we want to model scrap sheets of551

non-rectangular shapes by fixing virtual pieces at locations where the scrap cannot be used.552



M. Chastenay 36:17

References553

1 Ranga Prasad Abeysooriya. Cutting patterns for efficient production of irregular-shaped pieces.554

PhD thesis, University of Southampton, 2017. URL: https://eprints.soton.ac.uk/414693/555

1/23._Final_submission_of_thesis.pdf.556

2 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve com-557

plex scheduling and placement problems. In Jean-Paul Delahaye, Philippe Devienne, Phil-558

ippe Mathieu, and Pascal Yim, editors, JFPL’92, 1ères Journées Francophones de Pro-559

grammation Logique, 25-27 Mai 1992, Lille, France, volume 17, page 51, 1992. URL:560

https://www.sciencedirect.com/science/article/pii/089571779390068A, doi:10.1016/561

0895-7177(93)90068-A.562

3 Brenda S. Baker, Edward G. Coffman Jr., and Ronald L. Rivest. Orthogonal packings in two563

dimensions. SIAM J. Comput., 9(4):846–855, 11 1980. doi:10.1137/0209064.564

4 N Beldiceanu and E Contejean. Introducing global constraints in chip. Mathematical and565

Computer Modelling, 20(12):97–123, 1994. URL: https://www.sciencedirect.com/science/566

article/pii/0895717794901279, doi:10.1016/0895-7177(94)90127-9.567

5 Nicolas Beldiceanu, Qi Guo, and Sven Thiel. Non-overlapping constraints between convex568

polytopes. In Toby Walsh, editor, Principles and Practice of Constraint Programming - CP569

2001, 7th International Conference, CP 2001, Paphos, Cyprus, November 26 - December570

1, 2001, Proceedings, volume 2239 of Lecture Notes in Computer Science, pages 392–407.571

Springer, Springer, 2001. URL: https://doi.org/10.1007/3-540-45578-7_27, doi:10.1007/572

3-540-45578-7_27.573

6 Julia A. Bennell and José Fernando Oliveira. A tutorial in irregular shape packing problems. J.574

Oper. Res. Soc., 60(S1):S93–S105, 2009. arXiv:https://doi.org/10.1057/jors.2008.169,575

doi:10.1057/jors.2008.169.576

7 David W. Cantrell, Erich Friedman, et al. Packing unit squares in squares: A survey577

and new results. The Electronic Journal of Combinatorics, 5(DS7), 1998. URL: https:578

//www.combinatorics.org/files/Surveys/ds7/ds7v1-1998.pdf.579

8 CH Cheng, BR Feiring, and TCE Cheng. The cutting stock problem—a survey. International580

Journal of Production Economics, 36(3):291–305, 1994. doi:10.1016/0925-5273(94)00045-X.581

9 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation582

and online algorithms for multidimensional bin packing: A survey. Comput. Sci. Rev., 24:63–79,583

2017. doi:10.1016/j.cosrev.2016.12.001.584

10 Geoffrey Chu. Improving combinatorial optimization. PhD thesis, University of Melbourne,585

Australia, 2011. URL: https://hdl.handle.net/11343/36679.586

11 Emir Demirovic, Geoffrey Chu, and Peter J. Stuckey. Solution-based phase saving for CP:587

A value-selection heuristic to simulate local search behavior in complete solvers. In John N.588

Hooker, editor, Principles and Practice of Constraint Programming - 24th International589

Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008 of590

Lecture Notes in Computer Science, pages 99–108. Springer, Springer, 2018. URL: https:591

//doi.org/10.1007/978-3-319-98334-9_7, doi:10.1007/978-3-319-98334-9_7.592

12 Andreas A. Falkner, Alois Haselböck, Gerfried Krames, Gottfried Schenner, and Richard593

Taupe. Constraint solver requirements for interactive configuration. In Lothar Hotz, Michel594

Aldanondo, and Thorsten Krebs, editors, Proceedings of the 21st Configuration Workshop,595

Hamburg, Germany, September 19-20, 2019, volume 2467 of CEUR Workshop Proceedings,596

pages 65–72. CEUR-WS.org, 2019. URL: https://ceur-ws.org/Vol-2467/paper-12.pdf.597

13 Thibaut Feydy, Adrian Goldwaser, Andreas Schutt, Peter J Stuckey, and Kenneth D Young.598

Priority search with minizinc. In ModRef 2017: The Sixteenth International Workshop599

on Constraint Modelling and Reformulation, 2017. URL: https://ozgurakgun.github.io/600

ModRef2017/files/ModRef2017_PrioritySearchWithMiniZinc.pdf.601

14 M. R. Garey and David S. Johnson. "strong" np-completeness results: Motivation, examples,602

and implications. J. ACM, 25(3):499–508, jul 1978. doi:10.1145/322077.322090.603

CP 2025

https://eprints.soton.ac.uk/414693/1/23._Final_submission_of_thesis.pdf
https://eprints.soton.ac.uk/414693/1/23._Final_submission_of_thesis.pdf
https://eprints.soton.ac.uk/414693/1/23._Final_submission_of_thesis.pdf
https://www.sciencedirect.com/science/article/pii/089571779390068A
https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1137/0209064
https://www.sciencedirect.com/science/article/pii/0895717794901279
https://www.sciencedirect.com/science/article/pii/0895717794901279
https://www.sciencedirect.com/science/article/pii/0895717794901279
https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/10.1007/3-540-45578-7_27
https://doi.org/10.1007/3-540-45578-7_27
https://doi.org/10.1007/3-540-45578-7_27
https://doi.org/10.1007/3-540-45578-7_27
https://arxiv.org/abs/https://doi.org/10.1057/jors.2008.169
https://doi.org/10.1057/jors.2008.169
https://www.combinatorics.org/files/Surveys/ds7/ds7v1-1998.pdf
https://www.combinatorics.org/files/Surveys/ds7/ds7v1-1998.pdf
https://www.combinatorics.org/files/Surveys/ds7/ds7v1-1998.pdf
https://doi.org/10.1016/0925-5273(94)00045-X
https://doi.org/10.1016/j.cosrev.2016.12.001
https://hdl.handle.net/11343/36679
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/978-3-319-98334-9_7
https://ceur-ws.org/Vol-2467/paper-12.pdf
https://ozgurakgun.github.io/ModRef2017/files/ModRef2017_PrioritySearchWithMiniZinc.pdf
https://ozgurakgun.github.io/ModRef2017/files/ModRef2017_PrioritySearchWithMiniZinc.pdf
https://ozgurakgun.github.io/ModRef2017/files/ModRef2017_PrioritySearchWithMiniZinc.pdf
https://doi.org/10.1145/322077.322090


36:18 A Bin Packing Approach to Minimize Scraps and Maximize their Reusability

15 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of604

NP-Completeness. W. H. Freeman, New York, 1979.605

16 Paul C Gilmore and Ralph E Gomory. A linear programming approach to606

the cutting-stock problem. Operations research, 9(6):849–859, 1961. URL:607

https://www.researchgate.net/publication/266478800_A_Linear_Programming_608

Approach_to_the_Cutting_Stock_Problem_I, doi:10.1287/opre.9.6.849.609

17 Mikael Z. Lagerkvist, Martin Nordkvist, and Magnus Rattfeldt. Laser cutting path plan-610

ning using CP. In Christian Schulte, editor, Principles and Practice of Constraint Pro-611

gramming - 19th International Conference, CP 2013, Uppsala, Sweden, September 16-20,612

2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 790–804, Ber-613

lin, Heidelberg, 2013. Springer. URL: https://doi.org/10.1007/978-3-642-40627-0_58,614

doi:10.1007/978-3-642-40627-0_58.615

18 Andrea Lodi, Silvano Martello, and Michele Monaci. Two-dimensional packing problems: A616

survey. Eur. J. Oper. Res., 141(2):241–252, sep 2002. doi:10.1016/S0377-2217(02)00123-6.617

19 Andrea Lodi, Silvano Martello, and Daniele Vigo. Heuristic and metaheuristic approaches for618

a class of two-dimensional bin packing problems. INFORMS J. Comput., 11(4):345–357, 1999.619

doi:10.1287/ijoc.11.4.345.620

20 MiniZinc Documentation. Redundant Constraints. URL: https://docs.minizinc.dev/en/621

stable/efficient.html#redundant-constraints.622

21 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and623

Guido Tack. Minizinc: Towards a standard CP modelling language. In Christian Bessiere,624

editor, Principles and Practice of Constraint Programming - CP 2007, 13th International625

Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume626

4741 of Lecture Notes in Computer Science, pages 529–543. Springer, Springer, 2007. URL:627

https://doi.org/10.1007/978-3-540-74970-7_38, doi:10.1007/978-3-540-74970-7_38.628

22 Óscar Oliveira, Dorabela Gamboa, and Elsa Silva. An introduction to the two-dimensional629

rectangular cutting and packing problem. Int. Trans. Oper. Res., 30(6):3238–3266, nov 2023.630

doi:10.1111/itor.13236.631

23 Laurent Perron and Vincent Furnon. Or-tools. URL: https://developers.google.com/632

optimization/.633

24 Andreas Schutt, Peter J. Stuckey, and Andrew R. Verden. Optimal carpet cutting. In Jimmy Ho-634

Man Lee, editor, Principles and Practice of Constraint Programming - CP 2011 - 17th Interna-635

tional Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, volume 6876636

of Lecture Notes in Computer Science, pages 69–84, Berlin, Heidelberg, 2011. Springer. URL:637

https://doi.org/10.1007/978-3-642-23786-7_8, doi:10.1007/978-3-642-23786-7_8.638

25 Helmut Simonis and Barry O’Sullivan. Search strategies for rectangle packing. In Peter J.639

Stuckey, editor, Principles and Practice of Constraint Programming, 14th International Con-640

ference, CP 2008, Sydney, Australia, September 14-18, 2008. Proceedings, volume 5202 of641

Lecture Notes in Computer Science, pages 52–66, Berlin, Heidelberg, 2008. Springer. URL:642

https://doi.org/10.1007/978-3-540-85958-1_4, doi:10.1007/978-3-540-85958-1_4.643

26 The MiniZinc Team. The MiniZinc Handbook. URL: https://docs.minizinc.dev/en/latest/644

index.html.645

27 Gerhard Wäscher, Heike Haußner, and Holger Schumann. An improved typology of cutting646

and packing problems. Eur. J. Oper. Res., 183(3):1109–1130, dec 2007. doi:10.1016/j.ejor.647

2005.12.047.648

28 Linda L Zhang. Product configuration: a review of the state-of-the-art and future research.649

International Journal of Production Research, 52(21):6381–6398, nov 2014. doi:10.1080/650

00207543.2014.942012.651

https://www.researchgate.net/publication/266478800_A_Linear_Programming_Approach_to_the_Cutting_Stock_Problem_I
https://www.researchgate.net/publication/266478800_A_Linear_Programming_Approach_to_the_Cutting_Stock_Problem_I
https://www.researchgate.net/publication/266478800_A_Linear_Programming_Approach_to_the_Cutting_Stock_Problem_I
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1007/978-3-642-40627-0_58
https://doi.org/10.1007/978-3-642-40627-0_58
https://doi.org/10.1016/S0377-2217(02)00123-6
https://doi.org/10.1287/ijoc.11.4.345
https://docs.minizinc.dev/en/stable/efficient.html#redundant-constraints
https://docs.minizinc.dev/en/stable/efficient.html#redundant-constraints
https://docs.minizinc.dev/en/stable/efficient.html#redundant-constraints
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1111/itor.13236
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1007/978-3-642-23786-7_8
https://doi.org/10.1007/978-3-642-23786-7_8
https://doi.org/10.1007/978-3-540-85958-1_4
https://doi.org/10.1007/978-3-540-85958-1_4
https://docs.minizinc.dev/en/latest/index.html
https://docs.minizinc.dev/en/latest/index.html
https://docs.minizinc.dev/en/latest/index.html
https://doi.org/10.1016/j.ejor.2005.12.047
https://doi.org/10.1016/j.ejor.2005.12.047
https://doi.org/10.1016/j.ejor.2005.12.047
https://doi.org/10.1080/00207543.2014.942012
https://doi.org/10.1080/00207543.2014.942012
https://doi.org/10.1080/00207543.2014.942012


M. Chastenay 36:19

A Additional visualizations652

653

Figure 8 Solution obtained with Bounding box preprocessing on instance 2 - 44 new sheets
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654

Figure 9 Solution obtained with Slope mapping + preprocessing on instance 2 - 39 new sheets
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655

Figure 10 Results from Figure 9 after being optimized with the scrap reusability maximization
model for one hour, with a final touching perimeter percent of 78.84 %.
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