
Acquiring and Selecting Implied Constraints with
an Application to the BinSeq and Partition

Global Constraints

J. Cheukam Ngouonou1,2,4, R. Gindullin1,2, C.-G. Quimper4,
N. Beldiceanu1,2 and R. Douence1,2,3

1IMT Atlantique, Nantes, France 2LS2N, Nantes, France
3INRIA, Nantes, France 4Université Laval, Québec City, Canada

ramiz.gindullin@it.uu.se, nicolas.beldiceanu@imt-atlantique.fr,
jovial.cheukam-ngouonou.1@ulaval.ca, Remi.Douence@imt-atlantique.fr,

Claude-Guy.Quimper@ift.ulaval.ca

Abstract. We propose a machine-assisted approach to synthesise im-
plied constraints for global constraints based on combinatorial objects.
By reusing the Bound Seeker [8], we generate thousands of relationships
between features. We present a scalable algorithm that automatically
selects the relationships that filter the most, which we manually prove.
We consider the Partition and the BinSeq constraints, which model
the different ways of dividing a collection of objects into clusters, or the
repartition of shifts in a 0–1 sequence. We use Partition and BinSeq in
the Balanced Academic Curriculum Problem (BACP), and the Balanced
Shift-Scheduling Problem (BSSP), where we optimise the distribution
of the work to balance the workload. For 2 models of the BACP and 2
models of the BSSP, we show how the filtering inferred by the Bound
Seeker improves the cost of the solution found on different solvers. This
filtering proved optimality for all CSPLib instances of the BACP.

1 Introduction

Constraint solvers rely on Filtering Algorithms (FAs) that are designed for each
constraint. In recent decades, an effort has led to the custom development of
FAs [29,7,5] to reduce the search space. Synthesising FAs can be traced back to
research on the Rabbit solver [23], and studies on synthesising propagators for
low-arity constraints [17]. However, the need to consider the interaction of an in-
creasing number of constraint parameters raises the question of how to synthesise
FAs that can be used in different solvers. We propose a novel machine-assisted
approach to generate a FA that consists of a set of bounds used for filtering a
constraint for which a reformulation already exists. The Bound Seeker [8] dis-
covers each bound, and our method chooses the most important ones that we
manually prove after the selection process. We consider satisfaction or optimi-
sation problems whose solution is given by a combinatorial object, e.g. a graph,
a 0–1 sequence, and a partition. The constraints are imposed on the features of
this object. e.g. in the balanced academic curriculum problem, one wants to

2 Cheukam Ngouonou et al.

partition courses into terms. The solution is a partition that is constrained to
spread the workload between terms. One can define a constraint optimisation
problem whose objective is to minimise the sum of the squares of the partition
sizes. Modelling this problem to obtain a strong filtering is not trivial.

The Bound Seeker [8,20] identifies conjectures of sharp bounds between the
features of a combinatorial object. These conjectures are inequalities between
a single feature and a function over other features, e.g. consider a partition of
n elements where M is the size of the largest partition and S is the sum of
the squares of the partition sizes. The Bound Seeker discovers the sharp bound
S ≤ (n mod M)2−M(n mod M)+nM . This bound can be added, as a redundant
constraint, to a model to enhance filtering. As our machine-assisted synthesis
method is independent of bound generation, we treat the Bound Seeker [8] as a
black box that takes combinatorial object instances as input and outputs valid
inequalities, i.e. arithmetic constraints, for all input data.

The Bound Seeker can find thousands of relations between features, but not
all of these bounds are equally useful for filtering. We designed an algorithm
that selects a subset of these bounds that are relevant for filtering the variable
domains of a constraint satisfaction problem whose solution is an instance of the
combinatorial object. Finally, we add the inequalities associated with the bounds
to the constraint model. The filtering performed by these inequalities acts as a
filtering algorithm for a global constraint encoding the combinatorial object.
To illustrate the efficiency of our method, we choose the partition and 0–1 se-
quence combinatorial objects introduced in [20]. Partitions are used in rostering
problems to distribute workload between employees or in the balanced academic
curriculum problem [22] to group courses of a same term. 0–1 sequences are used
in nurse scheduling problems to assign shifts to nurses wrt to a set of rules. An
objective is to obtain partitions or shifts of similar size. It is usual to approximate
this objective by minimising the size of the largest partition or the longest shift,
as filtering algorithms for this objective are efficient. More balanced solutions
can be obtained by minimising the squared size of partitions or shift sizes, but
this is more difficult, and few constraints exist. Spread [26,31] minimises the
variance of a vector, equivalent to minimising the sum of squares when the mean
is fixed. Deviation [27,30] computes the sum of absolute differences between a
vector’s values and their mean. In contrast, Partition aims to spread the num-
ber of times these values occur. Balance [11] minimises the difference between
the most and least frequent values, as does Partition, while also minimising the
squared number of occurrences. This is where exploiting the inequalities found
by the Bound Seeker becomes useful. Our contributions include: (1) Machine
Assisted Implied Constraints Synthesis. Based on a set of discovered bounds,
we present a framework for generating FAs that can be easily integrated into
multiple constraint solvers. (2) Bound Selection. We propose a method for se-
lecting the most significant bounds automatically from a large set of candidates.
(3) Global Constraints for Balanced Solutions. We improve the search for better
balanced solutions to partitioning and shift scheduling problems by introducing
the Partition and BinSeq constraints. (4) Theoretical Insights. We prove a

Acquiring and Selecting Implied Constraints 3

sharp lower bound on the sum of the squared partition sizes that penalises both
results above and below the load average. The penalty increases quadratically,
which helps to prevent large deviations.

Sect. 2 gives the background. Sect. 3 presents the framework for selecting
redundant constraints. Sect. 4 defines the Partition and BinSeq constraints.
Sect. 5 uses the framework of Sect. 3 to generate redundant constraints for
Partition and BinSeq. Sect. 6 evaluates their impact on the BACP and BSSP.

2 Background

Presolvers Presolvers simplify models by fixing variables, reducing constraints,
and strengthening bounds in mixed integer programs [2]. SAT solvers use tech-
niques like unit propagation and subsumption [12]. Constraint satisfaction prob-
lem preprocessing is complex due to constraint diversity, but subexpression elim-
ination enhances filtering [28]. Presolving can globally improve models, as seen in
time series pattern analysis for bound inference [4]. Redundant constraints can
strengthen filtering and reduce search space. Gent et al. [18] synthesise filtering
algorithms for small constraints via exponential offline preprocessing. Charnley
et al. [14] generate implied constraints for finite algebra. Our work differs in
that their implied constraints have a simpler form, and their constraint selection
process is costly, analysing all possible subsets of constraints up to a limit.

Conjecture Discovery Few systems search for bounds on the features of a com-
binatorial object. Among the best known are the S. Fajtlowicz’s Graffiti pro-
gram [16] and P. Hansen’s AutoGraphiX system [3,21]. We describe a third,
more recent system called the Bound Seeker [8] to exploit the sharp bounds it
discovers, to synthesise implied constraints. Let O be a combinatorial object
identified by m features x1, x2, . . . , xm taking integer values, where the maxi-
mum value of the first feature x1 restricts the range of x2, . . . , xm. The Bound
Seeker takes as input a set of extreme instances for O and learns inequalities
of the forms xi ≤ ui(P) and xi ≥ li(P), where li and ui are symbolic func-
tions and P ⊆ {x1, . . . , xi−1, xi+1, . . . , xm}. Thus, there is a possibility of m2m

unique bounds. These inequalities bound the feature xi, and the Bound Seeker
guarantees that these bounds are tight, i.e. there exists an instance of O for
which the equality holds. These bounds, called conjectures, were derived from
some instances of O and may not apply to all possible instances. Turning these
conjectures into theorems requires a formal proof.

3 The Framework

The framework takes a combinatorial object and returns a set of constraints.
They are computed only once, and later used to strengthen filtering. The Bounds
Seeker breaks down the process into three steps. First, it starts with input in-
stances of a combinatorial object and generates conjectures in the form of re-
dundant constraints that enhance filtering. However, not all constraints result

4 Cheukam Ngouonou et al.

in additional filtering. In Step 2, we remove some constraints to create a subset
that filters as effectively as if all constraints were included. Two constraint sets
are equivalent if replacing one set with another in a constraint model solves a
problem with the same number of backtracks. In Step 3, we manually prove the
conjectures underlying the selected constraints.

3.1 Generating Candidate Constraints

We start with a constraint satisfaction problem whose solution is expressed in
terms of a combinatorial object, e.g. a graph, a 0–1 sequence, or a partition.
We identify the features x1, x2, . . . , xm of this combinatorial object that are
important for the model. These features are numerical values that characterise
the solution. For a graph, this could be the number of nodes, edges, components,
etc. The problem’s definition usually constrains these features.

The Bound Seeker [20] takes as input instances of a combinatorial object
and a list of features that can be computed on these objects. It computes a
set of conjectures C = {C1, . . . , C|C|}. Each conjecture Ci is of the form xi ≤
ui(xj1 , xj2 , . . .) or xi ≥ li(xj1 , xj2 , . . .). These inequalities could be added directly
to the model of the constraint satisfaction problem to enhance filtering. Even
if, in practice, the Bound Seeker is unable to find all m2m possible distinct
conjectures in a reasonable time, it is nevertheless able to compute thousands
of them. The time spent on filtering these constraints could outweigh the time
saved by pruning the search tree. Many conjectures may filter the same values,
and some conjectures might have their filtering dominated by others.

Alg. 2 is an algorithm that removes some conjectures on bounds from the set
C without reducing the filtering. It returns a subset of conjectures that is minimal
in the sense that removing any conjecture from this subset reduces the amount of
filtering. Alg. 2 solves a Constraint Satisfaction Problem (CSP). Given the input
C of bound conjectures, let M(C) be a CSP outputting all possible combinations
of values for the features x1, x2, . . . , xm wrt an upper limit ℓ for x1, where the
feature x1 bounds the size of the generated object, leading to a finite set of solu-
tions. Let I(O) be the instances of the combinatorial object. M(C) is defined by:

x1 ≤ ℓ (1) (x1, x2, . . . , xm) ∈ I(O) (2)

C1 ∧ C2 ∧ . . . ∧ C|C| (3) xi ∈ dom(xi) ∀i ∈ {1, . . . ,m} (4)
M(C) ⇐⇒

{
The constraint (1) bounds a feature (often chosen to be the size) to make the

number of solutions finite. The constraint (2) forces the features to be consistent
with the definition of the combinatorial object. That is, the features must have
values that correspond to an instance of the combinatorial object, e.g. a graph
could not have nine edges but only two nodes. This constraint (2) can be encoded
according to the modeller’s preferences. It can be seen as the modeller’s prior
knowledge of the constraint. This may be a decomposition into constraints that
entirely define the possible values for the features. The constraint (3) is the
conjunction of the conjectures in C. Let Enumerate be an algorithm that takes

Acquiring and Selecting Implied Constraints 5

Algorithm 1: SelectOne(F,C,nback)
1 if |C| = 1 then
2 nback ′ ← Enumerate(M(F));
3 if nback = nback ′ then return (∅, C) else return (C, ∅);
4 Evenly partition C into sets C1, C2; nback ′ ← Enumerate(M(F ∪ C2));
5 if nback = nback ′ then // K stands for Keep, R for Reject
6 (K,R)← SelectOne(F,C2,nback); return (K,C1 ∪R);
7 else return SelectOne(F ∪ C2, C1,nback) ;

Algorithm 2: Selection(C)

1 nback ← Enumerate(M(C)); F ← ∅;
2 repeat
3 (K,R)← SelectOne(F,C,nback); F ← F ∪K; C ← C \ (K ∪R);
4 until K = ∅ ∨ C = ∅;
5 return F ;

as input a model that returns the number of backtracks to enumerate all the
solutions by a solver.
Alg.1 takes as input a set of forced conjectures F , a set of candidate conjectures
C, and the number of backtracks nback taken by the solver to enumerate all
solutions using all conjectures found by the Bound Seeker. It returns a tuple of
two sets: A set K containing a single conjecture to keep, as it contributes to
the filtering or an empty set if none exists, and a set R of conjectures to reject,
as they do not contribute to any filtering. Alg. 1 works as a binary search to
find the first constraint that impacts the filtering with O(log |C|) calls to the
solver. If enumerating the solutions of M(F ∪ C2) triggers nback backtracks,
then the constraints in C1 do not filter values that are not already filtered by
the constraints in F∪C2. We can reject the constraints C1 and continue searching
in C2. Otherwise, the enumeration of M(F ∪C2) triggers more backtracks, and
there exists at least one constraint in C1 that captures a filtering missed by
C2. The binary search can continue in C1. Alg. 2 calls Alg. 1 multiple times and
extracts, one by one, the conjectures that have an impact on the filtering. It
executes O(|F | log(|C|)) calls to the solver where |F | is the number of selected
conjectures. The algorithms might return different sets of constraints depending
on the order they eliminate the constraints. They might not find the smallest
subset, but the subset is minimal, since removing any conjecture increases the
number of backtracks. We also did an incremental version of Alg.2 in which calls
to the Enumerate function in Alg.1 were optimised. These calls detect whether
enumerating all solutions with a subset of conjectures takes as many backtracks
as enumerating using all conjectures. The enumeration can stop as soon as
the solver finds a solution with more backtracks than it required while using
all constraints. In such a case, nback ̸= nback ′ even if we let the enumeration
complete. Selected conjectures can be proved using a theorem prover or by a

6 Cheukam Ngouonou et al.

human to become theorems. Adding the constraints to the model and letting
the solver filter them leads to a correct and reinforced filtering.

4 Defining the Partition and the BinSeq Constraints

Humans are interested in balanced solutions for assignment problems. Examples
of such problems are (i) problems where the total amount of work or time
assigned to each worker or the amount of coursework to be validated by students
for each session in an academic curriculum must be evenly distributed, and
(ii) problems where the shift lengths assigned to each nurse should not vary
too much, while meeting the demands of each period and the regulation. In this
context, several constraints, such as NValue [24], Balance [7,11], Among [9]
and Stretch [25] were introduced in constraint programming; these constraints
are unified by the Partition and the BinSeq constraints.

4.1 Defining the Partition Constraint

A partition of a set U is a collection of subsets S1, S2, . . . , SP that are pairwise
disjoint, but whose union gives U . An array X = [X1, X2 . . . , Xn] of integers
encodes a partition as follows. The value i ∈ U belongs to the subset Sj if
and only if Xi = j. The partition has six features: (i) n the dimension of the
array, i.e. the cardinality of U , (ii) P the number of distinct values in X , i.e. the
number of subsets, (iii) M (resp. (iv) M) the number of occurrences of the least
(resp. most) frequent integer in X , (v) M the difference M −M , (vi) S the sum
of the squares of the number of occurrences for each distinct integer in X .

Definition 1. We define Partition([X1, X2, . . . , Xn], P,M,M,M,S) as a con-
straint satisfied if and only if

P = |{X1, X2, . . . , Xn}| S =
∑
j∈X

|{i | Xi = j}|2 (5)

M = min
j∈X

|{i | Xi = j}| M = max
j∈X

|{i | Xi = j}| M = M −M (6)

Example 1 (Example for the Partition Constraint). Given the array X =
[1, 5, 6, 1, 1, 1, 1, 1, 1, 1, 6], Partition(X , 3, 1, 8, 7, 69) holds, as X contains P = 3
distinct values, the least (resp. most) frequent one being value 5 (resp. 1) with
M = 1 (resp. M = 8) occurrences, the difference between the occurrences of the
most and the least frequent used values being M = 7, and the sum of the squares
of the number of occurrences of distinct values being S = 82 + 22 + 12 = 69.

A Decomposition of the Partition Constraint Partition generalises NValue
where X are the values, P is the number of values, and the remaining variables
are ignored. As enforcing domain consistency on NValue [10] is NP-Hard, so is
it for Partition. Therefore, we introduce the following decomposition named
(DECOMP_PART). The Partition constraint can be encoded using the Global

Acquiring and Selecting Implied Constraints 7

Cardinality (GCC) and the NValue constraints as follows. Constraint (9) is
redundant, but improves filtering. Let v be an upper bound on the number of
partitions. For instance, one can fix v to maxi∈[1,n] max(dom(Xi)).

NValue(X , P) (7) GCC(X , [O1, O2, . . . , Ov]) (8)

v∑
j=1

Oj = n ∧
n∑

i=1

Xi =

v∑
j=1

j ·Oj (9) Min0([O1, O2, . . . , Ov],M) (10)

M = max(O1, . . . , Ov) ∧ M = M −M ∧ S =

v∑
j=1

O2
j (11)

The Min0([O1, O2, . . . , Ov],M) constraint holds for the variables O1, . . . , Ov

with domains in [0, n] iff at least one variable Oi (with i ∈ [1, v]) has a value
in N+, and M is the smallest such value. Introducing the auxiliary variables
A0, A1, . . . , Av, Min0([O1, O2, . . . , Ov],M) can be reformulated as (i) A0 = n,
(ii) ∀i ∈ [1, v] : Oi = 0 ⇒ Ai = Ai−1, Oi > 0 ∧ Oi ≥ Ai−1 ⇒ Ai = Ai−1,
Oi > 0 ∧Oi < Ai−1 ⇒ Ai = Oi, and (iii) M = Av ∧ M > 0.

4.2 Defining the BinSeq Constraint

Consider an array X = [X1, X2, . . . , Xn] of 0/1 integers, where a stretch is a sub-
sequence of maximal length of successive 1, and an inter-distance is a subsequen-
ce of maximum length of successive 0 located between 2 consecutive stretches.

Definition 2. We define BinSeq([X1, X2, . . . , Xn],N1 ,G , G,G,G,GS , D,D,D,
DS) as a constraint satisfied if and only if

• N1 is the number of values 1 in the sequence,
• G is the number of stretches of 1s,
• G (resp. G) is the length of the smallest (resp. longest) stretch of 1s,
• G is the difference between the lengths of the longest and the smallest stretch,
• GS is the sum of the squared lengths of the stretches of 1s,
• D (resp. D) is the length of the smallest (resp. longest) inter-distance of 0s,
• D is the difference D −D,
• DS is the sum of the squared lengths of the inter-distances of 0s.

When there is no stretch, G=G=0; when there is no inter-distance, D=D=0.

Example 2 (Example for the BinSeq Constraint). Given the array X = [0, 0, 0, 1,
1, 0, 0, 1, 1, 1, 1, 0, 1], the BinSeq(X , 7, 3, 1, 4, 3, 21, 1, 2, 1, 5) constraint holds, as
the array X contains N1 = 7 occurrences of 1s, G = 3 stretches of minimum
(resp. maximum) length G = 1 (resp. G = 4) with G = G − G = 3, the sum
of the squared lengths of the stretches GS = 22 + 42 + 12 = 21, the minimum
(resp. maximum) inter-distance D = 1 (resp. D = 2) with D = D −D = 1, and
the sum of the squared lengths of the inter-distances DS = 22 + 12 = 5.

8 Cheukam Ngouonou et al.

Decomposing the BinSeq Constraint For any M ∈{N1 ,G , G,G,G,GS , D,D,D},
an automaton with O(n) states accepts the sequence X1, X2, . . . , Xn,M . For
M = DS , the automaton has O(n2) states. The conjunction of these automata
has O(n11) states, proving that domain consistency can be enforced on BinSeq
in polynomial time using the Regular constraint. Due to such size, we cre-
ated two decompositions of the BinSeq constraint for use in our experiments,
which we describe briefly for space reasons. The first decomposition, named
(DECOMP_SEQ_GCC), has the advantage of using standard constraints and can
therefore be encoded in MiniZinc. The key idea is to associate a unique odd
(or even) number with each stretch (or inter-distance) in the array X . For
instance, the array X = [0,0,0,1,1,0,0,1,1,1,1,0,1] from Example 2 is mapped
to X ′ = [0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5]. Then a Global Cardinality Constraint
(GCC) on the array X ′ exposes the number of occurrences of each value in
X ′. The occurrence variables of this GCC constraint can easily express the ten
features of the BinSeq constraint: occurrences of even (resp. odd) values corre-
spond to the lengths of stretches of 0s (resp. 1s). The 2nd decomposition, named
(DECOMP_SEQ_AUT), is based on the SICStus register automaton constraint [6],
which is not available in MiniZinc. For each feature f in the BinSeq constraint,
we associate a register automaton with at most 5 states to link the array X to
the feature f . When tested with SICStus, this 2nd decomposition proved to filter
the BinSeq constraint variables much better than the first decomposition.

4.3 Challenge Behind the Partition and the BinSeq Constraints

The weakness of the decompositions (DECOMP_PART), (DECOMP_SEQ_GCC) and
(DECOMP_SEQ_AUT) of the Partition and BinSeq constraints is that while most
of the features of these two constraints are linked to the variables X1, X2, . . . , Xn,
there is virtually no direct link between the features, apart from the equalities
M = M − M , G = G − G and D = D − D. As these features do not vary
independently, this poses a challenge for getting an efficient filtering algorithm.
To alleviate this problem, we show in Sect. 5 how to extract such missing links.

5 A Machine Assisted Generated Filtering Algorithm
with an Application to Partition and BinSeq

We use the framework presented in Sect. 3 to strengthen the decompositions
provided for Partition and BinSeq. We apply Alg. 2 to select, from a set of
conjectures generated by the Bound Seeker for the partition and 0–1 sequence
combinatorial objects, those that do not reduce the amount of filtering when
all conjectures are used. We show how we generate the conjectures, how we use
Alg. 2 to select them, and we prove the most complicated selected conjecture.

Generating the Conjectures for Partition and BinSeq The first step is to gen-
erate the conjectures using the Bound Seeker. We provided instances of partitions

Acquiring and Selecting Implied Constraints 9

and 0–1 sequences I(O) of size n ≤ 30 and reused CP models, which break sym-
metries where the different parts of a partition and the different stretch lengths
are sorted by increasing size. For each object, we use all the features intro-
duced in the Partition and BinSeq constraints as primary features. For the
Partition constraint, we also manually introduced a set of secondary features
at the partition object level, which the Bound Seeker uses to systematically
search for all the sharp bounds of the partition object’s features, whereas for
the BinSeq constraint we did not introduce any secondary features to avoid any
human assistance. These instances of partitions (or 0–1 sequences) were sent to
the Bound Seeker, which returned 92 (or 3739) conjectures.

Generating Secondary Features for Partition Most of these secondary fea-
tures correspond to conditional expressions, where the value associated with the
base case is either the constant 0, or is tied only to the size of the smallest par-
tition. As the primary features focus on the largest and smallest partitions, the
secondary features provide statistics on the other partitions. VV is the number
of partitions, excluding the largest and smallest, and NN is the number of val-
ues that are not in the smallest or largest partition. A is the average size of the
partitions that are neither the smallest nor the largest, rounded down. A = 0 if
no such partition exists. SS is the sum of the squared sizes of the smallest and
largest partitions. If there is only one partition, SS is its squared size.

VV =

{
P − 2 if P > 1

0 otherwise
(12) NN =

{
n−M −M if P > 1

0 otherwise
(13)

A =

{⌊
NN
VV

⌋
if P > 2

0 otherwise
(14) SS =

M2 +M
2

if P > 1

M2 otherwise
(15)

R is the number of elements remaining after removing M elements from each
partition. MID is, when the number of largest partitions is maximal, the size of
an intermediate partition, either the one in between the smallest and largest, or
the smallest, if no such partition exists. RR is the number of largest partitions
or 0 if all partitions have the same size. SM is the gap between the squared sizes
of the smallest and largest partitions. SMIN is the sum of the squared sizes of
partitions when they are all at the smallest size and with one partition excluded.

MID =

{
M + (R mod M) if M > 0

M otherwise
(16) R = n− P ·M (17)

RR =


⌊

R
M

⌋
if M > 0

0 otherwise
(18)

SM = M
2 −M2 (19)

SMIN = M2 · (P − 1) (20)

10 Cheukam Ngouonou et al.

Applying Alg. 2 to Partition and BinSeq We implemented Alg. 2 in SICStus
using the clp(FD) solver on a Mac Studio M2 Ultra. We define M(C) as the de-
composition (DECOMP_PART) for Partition and (DECOMP_SEQ_AUT) for BinSeq.
To limit the number of conjectures to be proved, we impose a limit of 20 on
the number of conjectures returned by Alg. 2, and run the selection algorithm
on increasing value of n. We also stopped the search process when the same set
of conjectures was selected for three consecutive values of n. Alg. 2 selects 4
conjectures out of 92 with n = 7 for Partition in 0.5 sec and 17 conjectures
out of 3728 with n = 10 for BinSeq in 150 min. Using an incremental version
of the selection algorithm sketches at the end of Sect. 3.1, these two times were
reduced to 0.1 sec and 17 min. We have proved all the selected conjectures listed
in Table 1, and we now focus on the most interesting one for the BACP problem,
which is a sharp lower bound on the sum of the squares of the partition sizes
wrt the n, P , M and M features of the Partition constraint.

A Sharp Lower Bound for the Sum of the Squares of the Partition Sizes Using
the four secondary features introduced in (12)–(15), the Bound Seeker returned
the following conjecture for which we provide a proof and intuition.

S ≥ −A2 ·VV −A ·VV + 2 ·A ·NN + SS +NN (21)

The intuition behind (21) is that, to achieve the smallest possible sum of
squares, the largest partition has size M , the smallest partition has size M , and
the other partitions have size NN /VV . But since the size must be an integer,
NN mod VV partitions have their size rounded up to A+1, while the rest have
their size rounded down to A. To prove (21), we first need to introduce Theo. 1.

Theorem 1 (minimisation of S =
∑P

i y2i). Let y1, y2, · · · , yP be positive in-
tegers whose sum is equal to n and which minimise S =

∑P
i=1 y

2
i . Then n mod P

of these integers are equal to ⌊n/P ⌋+ 1, and the others are all equal to ⌊n/P ⌋.

Proof. y1, y2,· · ·, yP minimise
∑P

i=1 y
2
i only if yi − yj ≤ 1. Assume i and j with

yi − yj ≥ 2 then (yi − 1)2 + (yj + 1)2 +
∑P

k/∈{i,j} y
2
k =

∑P
k y2k − 2(yi − yj) + 2 <

y2i + y2j +
∑P

k/∈{i,j} y
2
k =

∑P
k y2k. As (yi − 1) + (yj + 1) +

∑P
k/∈{i,j} yk = n, the

previous strict inequality shows that the decomposition y1 − 1, y2 +1, y3 · · · , yP
minimises better

∑P
i=1 y

2
i than the decomposition y1, y2, · · · , yP , a contradiction.

The only way to have yi−yj≤1 and
∑P

i yi=n is to set the values of the integers,
as stated by Theo. 1, otherwise, we always have

∑P
k=1 yk ̸= n. □

Proof (Conjecture (21)). If P = 1, substituting (12) to (15) into (21) simplifies to
S ≥ n2 which is tight and consistent with the definition Partition. If P = 2, we
have n=M+M . By substituting (12), Conj. (21) is simplified by S ≥ M

2
+M2,

which is also tight and consistent. If P > 2, then A =
⌊
NN
VV

⌋
leading to NN =

A ·VV +NN mod VV . After substituting NN by A ·VV +NN mod VV inside
Conj. (21) we have S ≥ −A2 ·VV + 2 ·A2 ·VV + 2 ·A · (NN mod VV) + SS +

Acquiring and Selecting Implied Constraints 11

Table 1. Bounds selected by Alg. 2 for (A) Partition and (B) BinSeq

(A) M ≤ min(P · M − n,M − 1) M ≤ n − P · M

S ≥ −A2 · VV − A · VV + 2 · A · NN + SS + NN (21) S ≤ MID2 + SM · RR + SMIN

(B) N1 ≤ min(G · G,n − G + 1) G ≤


n + G if G = n · D⌊
n − G − D − min(D, 1) − 1

min(D, 1) + 2

⌋
+ G otherwise

G ≥
⌊

n

n − N1 + 1

⌋
D ≤ JG ≥ 2K · (n − G · G − G + 2) GS ≥ G2 · G

D ≤


0 ifG ≤ 1⌊
n − G + 1 − G

G − 1

⌋
ifG > 1

G ≤


n ifG = 1 ∧ D = 0

min(G, 1) ifG ̸= 1 ∧ D = 0

n−D−(G−2) · D−G+min(G, 1) ifG ̸= 1 ∧ D ≥ 1

GS ≥ max(G
2
+ 1 − [D = 0] − [G = 0], 0) GS ≤


max(N1

2+G−1, 0) ifG ≤ 1

max((N1 −G+1)2 + G − 1, 0) otherwise

GS ≤


max(N1

2, 0) if D = 0 ∧ min(N1 , 1) = 1

0 if D = 0 ∧ min(N1 , 1) = 0

max((N1 − 2)2 + 2, 0) if D ≥ 1

DS ≥ D2 · (G − 1)

DS ≥ D
2

DS ≤

 0 if N1 ≤ 1

(n − N1)
2 otherwise

DS ≥

 0 if G ≤ 1

max((D + 1)2 + G − 2, 0) otherwise

DS ≤

max((n−N1 −(G−2))2+G−2, 0) if G ≥ 2

max(G − 2, 0) otherwise
GS ≥ G · (G + 1) · min(G, 1) + G + G

GS ≤


max(n2, 0) if G = 1 ∧ D = 0

max((min(G, 1))2 + G − 1, 0) if G ̸= 1 ∧ D = 0

max((n − D − (G − 2) · D − G + 1)2 + G − 1, 0) if G ̸= 1 ∧ D ≥ 1

NN mod VV which simplifies to S ≥ A2 ·VV +(2 ·A+1) · (NN mod VV)+SS .
By substituting (2 ·A+1) by (A+1)2−A2, and SS by M

2
+M2, we obtain this

inequality that is proved by Theo. 1: S ≥ M
2
+M2+(A+1)2 ·(NN mod VV)+

A2 · (VV − (NN mod VV)) □

6 Experiments on the BACP and the BSSP Problems

We test our framework on the Balanced Academic Curriculum Problem (BACP)
[22] and the Balanced Shift-Scheduling Problem [15]. These problems involve

12 Cheukam Ngouonou et al.

combinatorial objects, such as partitions or binary sequences, where multiple
features are restricted, making sharp bounds essential. We describe the BACP
and the two models we use for it. We outline the BSSP and the two models we de-
veloped for it. We evaluate these models with and without using the conjectures
selected by Alg. 2 on the Chuffed [19] and SICStus clp(FD) [13] solvers.

6.1 Describing the BACP Problem and its Models

Problem Description The BACP is a problem in which a set of n courses must
be assigned to v periods. Let Xi denote the period of course i. A lower and upper
limit m and limit m for the number of courses per period must be respected. Let
Prec be the set of pairs of courses (i, k) such that i is the prerequisite for k, and
let c(i) be the number of credits for course i. The load, i.e. the sum of the credits
of the assigned courses, for each period, must be in [L0, L0]. The course load
must be balanced over the different periods. There are many ways to balance
the load. One can minimise the maximum load or the load range. To distribute
the load more evenly, we minimise the sum of the squares of the loads.

Description of the Models The first model, which we call (BACP_PART), con-
tains the constraints (22) to (30). The array of variables [X1, X2, . . . , Xn] par-
titions the courses 1 . . . n into time periods 1 . . . v. The constraints (23), (25),
(26), and (27) enforce a lower and upper limit on the number of courses taught
per period. The constraint (28) enforces precedences between the correspond-
ing courses i and k. The Partition constraint (31) imposes that the param-
eter S is the sum of the squares for the load of each time period. The array
[X1, . . . , X1︸ ︷︷ ︸

c(1) times

, . . . , Xn, . . . , Xn︸ ︷︷ ︸
c(n) times

] contains c(i) occurrences of variable Xi for each

course i. One occurrence of a value of Xi represents one credit of the course i. As
Xi takes a value of a time period, the number of occurrences of a time period j
in the array is the sum of credits of all courses for that time period, i.e. the load
for the period j is

∑n
i=1[Xi = j] · c(i). Constraint (31) also ensures that L is the

range between the minimal and maximal load L and L. Constraint (29) ensures
the respect of the lower and upper limits of the load per period. (30) define the
initial domains of the variables Xi and ensure that the time periods that are
used are contiguous. The model minimises S for a better balance of load among
periods, rather than minimising L or L, as it is usually done.

Minimize S (22)

GCC([X1, X2, . . . , Xn], [M1, . . . ,Mv]) (23)
v∑

j=1

Mj = n ∧
n∑

i=1

Xi =

v∑
j=1

j ·Mj (24) M = min(M1, . . . ,Mv) (25)

M = max(M1, . . . ,Mv) (26) m ≤ M ∧ M ≤ m (27)

∀(i, k) ∈ Prec, Xi < Xk (28) L0 ≤ L ∧ L ≤ L0 (29)

Acquiring and Selecting Implied Constraints 13

∀i ∈ [1, n], 1 ≤ Xi ≤ v ∧Xi ≤ P (30)

Partition([X1, . . . , X1︸ ︷︷ ︸
c(1) times

, . . . , Xn, . . . , Xn︸ ︷︷ ︸
c(n) times

], P, L, L, L, S) (31)

A second model, we call (BACP_CUM), by Mats Carlsson [22], uses constraints (22)
to (28) and (30) and encodes the rest using a Cumulative constraint.

6.2 Describing the BSSP Problem and its Models

Problem Description: We present the Balanced Shift-Scheduling Problem (BSSP)
to optimise employee schedules, balancing work and rest periods, with no require-
ment for equal number of rests per employee. There is only one activity on which
all employees work on. An employee has lunch and has rests between periods of
work. An employee rests for at least four hr at the beginning and end of a day,
with work periods ranging from 1 to 4 hr between rests. We divide a day into 96
slots of 15 mins. When the rest is between periods of work, it is at least 15 mins.
long and not more than an hr long. Lunch is one hr long. An employee should
have at least three rest periods during the workday, which should be between 6
and 8 hr. At time i, there should be mi employees working. Let Mi be the actual
number of employees working at time i. There is a penalty cost pi associated
with overemployment and a penalty cost p

i
associated with underemployment.

The total penalty cost is
∑96

i=1(Mi > mi) · pi + (Mi < mi) · pi. As we seek the
most balanced work-rest distribution, we add to that penalty cost the sum of
squared work periods GS e and rest periods DS e for each employee e.

Models Description: We encode an employee schedule with an array X =
[X1, . . . , Xn] of 0/1 integers, where 1 represents a 15-min. work period and 0
a 15-min. rest period; e.g., [00011111111111100111100001111011110111101111000]

means that the employee starts with a 45-min. rest, works for 3 hr, takes a 30-
min. break, and then works 1 hr before lunch. After lunch, s/he finishes his day
with 4 hr of work, separated by 15-min. breaks. We are interested by the follow-
ing features of X : its size n, G the number of stretches of 1, i.e. the number of
periods of work, N1 the number of 1 in the array, i.e. the total work time, G (G)
the smallest (largest) length of a stretch of 1, i.e. the shortest (longest) period of
work, G the difference G−G, GS the sum of the squares of the stretch lengths,
D (D) the smallest (largest) inter-distance between consecutive stretches of 1,
i.e. the smallest (largest) rest between work periods, D the difference D − D,
DS the sum of the squares of the inter-distance lengths.

We encode the BSSP using the BinSeq constraint. Let m be the max-
imum number of employees required in a day. Constraint (32) ensures bal-
anced schedules and the lowest penalty cost. (33) connects the decision variables
Xe = [X1e, . . . , Xne] to n,N1 ,G , G,G,G,GS , D, D,D,DS . The variable Xi e is
1 iff employee e works at time i. (34) enforces employees to take at least 4 breaks
of at least 15 min. and no more than 1 hr, including 1 lunch break of exactly 1

14 Cheukam Ngouonou et al.

hr. (35) catches the number of employees working in each time slot. (36) ensures
that an employee works between 6 and 8 hr and between 1 hr and 4 hr before
a rest. As employees are required to have at least 4 hr of rest at the beginning
and end of each workday, we exclude the first and last 16 time slots.

Minimize
m∑
e=1

GS e +DS e +

96∑
i=1

(Mi > mi) · pi + (Mi < mi) · pi (32)

∀e ∈ [1 : m],BinSeq(Xe,N1 e,Ge, Ge, Ge, Ge,GS e, De, De, De,DS e) (33)

1 ≤ De ∧De = 4 ∧ 4 ≤ Ge (34) ∀i ∈ [1 : 64],Mi =

m∑
e=1

Xie (35)

24 ≤ N1 e ≤ 32 ∧ 4 ≤ Ge ∧Ge ≤ 16 (36)

Using the (DECOMP_SEQ_GCC) and (DECOMP_SEQ_AUT) decompositions of the
BinSeq constraint, we obtain the two models (BSSP_GCC) and (BSSP_AUT).

6.3 Evaluation

Settings for the BACP We evaluate the models on 31 real-world instances
with up to 10 periods and 42–66 courses, all from CSPLib [1] with SICStus
and Chuffed. For SICStus, we use two strategies: (i) When the learnt bounds
are unused, the 1st strategy selects the most constrained variable from X =
X1, . . . , Xn, and performs a dichotomic search. (ii) The 2nd strategy branches
first on L, S, P, L, L, then on X using the 1st strategy, prioritising feature vari-
ables that makes the objective smaller. As it is more aggressive, we use it only
with models that include bounds. For Chuffed, using the free search, the search
branches on L, S, P, L, L, and chooses the values in ascending order. Then, it
branches on X in that order and chooses the values in descending order.

Settings for the BSSP We evaluate the models on 10 real instances with 2–7
employees. For SICStus, we use an aggressive strategy that, after restricting G,
fixes the variables by increasing time slot i, restricting first the covering cost
(Mi > mi) · pi + (Mi < mi) · pi, and then the variables Xi e for time slot i. For
Chuffed in free search, we enumerate on variables Xi e by increasing time slot i.

Results We generate the implied constraints only once, not for each instance.
This process is roughly equivalent to a human designing and programming a
filtering algorithm. It took the Bound Seeker about one week on the Digital Re-
search of Alliance of Canada clusters to generate all conjectures. We used a single
core of a Mac Studio M2 Ultra with a fifteen-min. timeout. For each model and
solver, we report the number of instances where the solver (i) proves optimality
(#optimality), (ii) the timeout (#timeout), (iii) finds no solution (#not found),
and (iv) the number of instances for which a model is the best (#best) for the

Acquiring and Selecting Implied Constraints 15

Table 2. Results of the experiments where the best results are shown in bold

Problem BACP BSSP

Solver SICStus Chuffed SICStus Chuffed

Model (BACP_PART) (BACP_CUM) (BACP_PART) (BACP_CUM) (BSSP_AUT) (BSSP_GCC)

Used bounds no yes no yes no yes no yes no yes no yes

#optimality 0 12 0 30 0 31 0 30 0 0 6 6

#timeout 31 17 31 1 31 0 31 1 10 10 4 4

#not found 2 19 2 0 0 0 0 0 5 0 0 0

#best 0 0 0 19 0 10 0 2 0 3 1 6∑
obj / / / 222359 225375 222359 232769 222529 / 5697 5524 7005592∑
time / / / 17min 5h 5min 5h 29min / 137min 81min 71min

corresponding solver. The best models are those proving optimality faster. If none
do, we select the one with the lowest objective value in the least time. We also
provide the sum of objective values (

∑
obj) and the sum of times spent (

∑
time)

to find the best solution for all instances where a solution was found. Table 2
gives the aggregated results. For the BACP, none of the models proves optimal-
ity without using the bounds. When using bounds, although (BACP_PART) proves
optimality for 12 instances with SICStus, it proves optimality for all instances
with Chuffed.1 The fastest model is (BACP_PART) with 222359 as the smallest
sum of objective values found in 5min for all the instances when using bounds
with Chuffed.2 For the BSSP, Table 2 shows that the models find better solu-
tions and are faster when using bounds. The fastest model is (BSSP_GCC) with
71 min as the total time on the 10 instances when using bounds, meaning that
when using bounds, it is 1.14 times faster than the same model without using
bounds. The sum of objective values 7005592 is large due to one instance where
using bounds degraded the results. But for the other instances, the (BSSP_GCC)
is six times the best among all models when using bounds. Although (BSSP_AUT)
never proved optimality, using bounds, it found the best solution three times,
but failed to find any solution for five instances without exploiting bounds.

7 Conclusion

Bound Seeker-generated conjectures can lead to better filtering for problems with
multiple features of a combinatorial object. We synthesise redundant constraints
supported by various solvers. Our algorithm addresses two major issues: the
impossibility of proving thousands of conjectures produced by the Bound Seeker
and the need to identify impactful conjectures to improve filtering.
1 The 19 instances where SICStus with (BACP_PART) did not find any solution when

using bounds is due to the aggressive search strategy quoted earliest.
2 The incremental version of Alg. 2 and all conjecture proofs are in an arXiv report.

16 Cheukam Ngouonou et al.

References

1. CSPLib: A problem library for constraints. https://www.csplib.org/, accessed:
2024-12-06

2. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve re-
ductions in mixed integer programming. INFORMS J. Comput. 32(2), 473–506
(2020). https://doi.org/10.1287/IJOC.2018.0857, https://doi.org/10.1287/
ijoc.2018.0857

3. Aouchiche, M., Caporossi, G., Hansen, P., Laffay, M.: Autographix: a survey.
Electron. Notes Discret. Math. 22, 515–520 (2005). https://doi.org/10.1016/
j.endm.2005.06.090, https://doi.org/10.1016/j.endm.2005.06.090

4. Arafailova, E., Beldiceanu, N., Simonis, H.: Deriving generic bounds for time-series
constraints based on regular expressions characteristics. Constraints An Int. J.
23(1), 44–86 (2018). https://doi.org/10.1007/s10601-017-9276-z, https://
doi.org/10.1007/s10601-017-9276-z

5. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problems. Kluwer (2012)

6. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: Wallace, M. (ed.) Principles and Practice of Constraint
Programming - CP 2004, 10th International Conference, CP 2004, Toronto,
Canada, September 27 - October 1, 2004, Proceedings. Lecture Notes in Com-
puter Science, vol. 3258, pp. 107–122. Springer (2004). https://doi.org/10.1007/
978-3-540-30201-8_11, https://doi.org/10.1007/978-3-540-30201-8_11

7. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog, (revision
a) (2012)

8. Beldiceanu, N., Cheukam-Ngouonou, J., Douence, R., Gindullin, R., Quimper, C.:
Acquiring maps of interrelated conjectures on sharp bounds. In: Solnon, C. (ed.)
28th International Conference on Principles and Practice of Constraint Program-
ming, CP 2022, July 31 to August 8, 2022, Haifa, Israel. LIPIcs, vol. 235, pp.
6:1–6:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.
org/10.4230/LIPIcs.CP.2022.6, https://doi.org/10.4230/LIPIcs.CP.2022.6

9. Beldiceanu, N., Évelyne Contejean: Introducing global constraints in chip. Mathe-
matical and Computer Modelling 20(12), 97–123 (1994). https://doi.org/https:
//doi.org/10.1016/0895-7177(94)90127-9, https://www.sciencedirect.com/
science/article/pii/0895717794901279

10. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms for
the nvalue constraint. In: Barták, R., Milano, M. (eds.) Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
Second International Conference, CPAIOR 2005, Prague, Czech Republic, May 30 -
June 1, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3524, pp. 79–
93. Springer (2005). https://doi.org/10.1007/11493853_8, https://doi.org/
10.1007/11493853_8

11. Bessière, C., Hebrard, E., Katsirelos, G., Kızıltan, Z., Picard-Cantin, É., Quim-
per, C., Walsh, T.: The balance constraint family. In: O’Sullivan, B. (ed.) Prin-
ciples and Practice of Constraint Programming - 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceedings. Lecture Notes in Com-
puter Science, vol. 8656, pp. 174–189. Springer (2014). https://doi.org/10.1007/
978-3-319-10428-7_15, https://doi.org/10.1007/978-3-319-10428-7_15

12. Biere, A., Järvisalo, M., Kiesl, B.: Handbook of Satisfiability, chap. 9: Preprocessing
in SAT Solving, pp. 391–435. IOS Press (2021)

https://www.csplib.org/
https://doi.org/10.1287/IJOC.2018.0857
https://doi.org/10.1287/IJOC.2018.0857
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1016/j.endm.2005.06.090
https://doi.org/10.1016/j.endm.2005.06.090
https://doi.org/10.1016/j.endm.2005.06.090
https://doi.org/10.1016/j.endm.2005.06.090
https://doi.org/10.1016/j.endm.2005.06.090
https://doi.org/10.1007/s10601-017-9276-z
https://doi.org/10.1007/s10601-017-9276-z
https://doi.org/10.1007/s10601-017-9276-z
https://doi.org/10.1007/s10601-017-9276-z
https://doi.org/10.1007/978-3-540-30201-8_11
https://doi.org/10.1007/978-3-540-30201-8_11
https://doi.org/10.1007/978-3-540-30201-8_11
https://doi.org/10.1007/978-3-540-30201-8_11
https://doi.org/10.1007/978-3-540-30201-8_11
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://doi.org/https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/https://doi.org/10.1016/0895-7177(94)90127-9
https://www.sciencedirect.com/science/article/pii/0895717794901279
https://www.sciencedirect.com/science/article/pii/0895717794901279
https://doi.org/10.1007/11493853_8
https://doi.org/10.1007/11493853_8
https://doi.org/10.1007/11493853_8
https://doi.org/10.1007/11493853_8
https://doi.org/10.1007/978-3-319-10428-7_15
https://doi.org/10.1007/978-3-319-10428-7_15
https://doi.org/10.1007/978-3-319-10428-7_15
https://doi.org/10.1007/978-3-319-10428-7_15
https://doi.org/10.1007/978-3-319-10428-7_15

Acquiring and Selecting Implied Constraints 17

13. Carlsson, M., Mildner, P.: Sicstus prolog – the first 25 years. CoRR abs/1011.5640
(2010), http://arxiv.org/abs/1011.5640

14. Charnley, J.W., Colton, S., Miguel, I.: Automatic generation of implied constraints.
In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI 2006, 17th
European Conference on Artificial Intelligence, August 29 - September 1, 2006,
Riva del Garda, Italy, Including Prestigious Applications of Intelligent Systems
(PAIS 2006), Proceedings. Frontiers in Artificial Intelligence and Applications,
vol. 141, pp. 73–77. IOS Press (2006), http://www.booksonline.iospress.nl/
Content/View.aspx?piid=1649

15. Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid col-
umn generation approach. Constraints 11(4), 315–333 (2006). https://doi.org/
10.1007/s10601-006-9003-7, https://publications.polymtl.ca/23185/, aR-
RAY(0x55680943b278)

16. Fajtlowicz, S.: On conjectures of Graffiti. Discret. Math. 72(1-3), 113–118 (1988).
https://doi.org/10.1016/0012-365X(88)90199-9, https://doi.org/10.1016/
0012-365X(88)90199-9

17. Gent, I.P., Jefferson, C., Linton, S., Miguel, I., Nightingale, P.: Generating
custom propagators for arbitrary constraints. Artif. Intell. 211, 1–33 (2014).
https://doi.org/10.1016/J.ARTINT.2014.03.001, https://doi.org/10.1016/
j.artint.2014.03.001

18. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Generating special-purpose
stateless propagators for arbitrary constraints. In: Cohen, D. (ed.) Principles
and Practice of Constraint Programming - CP 2010 - 16th International Con-
ference, CP 2010, St. Andrews, Scotland, UK, September 6-10, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6308, pp. 206–220. Springer (2010).
https://doi.org/10.1007/978-3-642-15396-9_19, https://doi.org/10.1007/
978-3-642-15396-9_19

19. Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange,
Kathryn Francis: Chuffed 0.12.1, a lazy clause generation solver. https://github.
com/chuffed/chuffed (2023)

20. Gindullin, R., Beldiceanu, N., Ngouonou, J.C., Douence, R., Quimper, C.G.:
Boolean-arithmetic equations: Acquisition and uses. In: Proceedings of the 20th In-
ternational Conference on the Integration of Constraint Programming (CPAIOR)
(2023)

21. Hansen, P., Caporossi, G.: Autographix: An automated system for find-
ing conjectures in graph theory. Electron. Notes Discret. Math. 5, 158–161
(2000). https://doi.org/10.1016/S1571-0653(05)80151-9, https://doi.org/
10.1016/S1571-0653(05)80151-9

22. Hnich, B., Kiziltan, Z., Walsh, T.: CSPLib problem 030: Balanced academic cur-
riculum problem (bacp). http://www.csplib.org/Problems/prob030 (1999)

23. Laurière, J.: Constraint propagation or automatic programming. Tech. Rep. 19,
IBP-Laforia (1996), available at https://www.lri.fr/~sebag/Slides/Lauriere/
Rabbit.pdf

24. Pachet, F., Roy, P.: Automatic generation of music programs. In: Jaffar, J.
(ed.) Principles and Practice of Constraint Programming - CP’99, 5th Interna-
tional Conference, Alexandria, Virginia, USA, October 11-14, 1999, Proceedings.
Lecture Notes in Computer Science, vol. 1713, pp. 331–345. Springer (1999).
https://doi.org/10.1007/978-3-540-48085-3_24, https://doi.org/10.1007/
978-3-540-48085-3_24

http://arxiv.org/abs/1011.5640
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1649
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1649
https://doi.org/10.1007/s10601-006-9003-7
https://doi.org/10.1007/s10601-006-9003-7
https://doi.org/10.1007/s10601-006-9003-7
https://doi.org/10.1007/s10601-006-9003-7
https://publications.polymtl.ca/23185/
https://doi.org/10.1016/0012-365X(88)90199-9
https://doi.org/10.1016/0012-365X(88)90199-9
https://doi.org/10.1016/0012-365X(88)90199-9
https://doi.org/10.1016/0012-365X(88)90199-9
https://doi.org/10.1016/J.ARTINT.2014.03.001
https://doi.org/10.1016/J.ARTINT.2014.03.001
https://doi.org/10.1016/j.artint.2014.03.001
https://doi.org/10.1016/j.artint.2014.03.001
https://doi.org/10.1007/978-3-642-15396-9_19
https://doi.org/10.1007/978-3-642-15396-9_19
https://doi.org/10.1007/978-3-642-15396-9_19
https://doi.org/10.1007/978-3-642-15396-9_19
https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
https://doi.org/10.1016/S1571-0653(05)80151-9
https://doi.org/10.1016/S1571-0653(05)80151-9
https://doi.org/10.1016/S1571-0653(05)80151-9
https://doi.org/10.1016/S1571-0653(05)80151-9
http://www.csplib.org/Problems/prob030
https://www.lri.fr/~sebag/Slides/Lauriere/Rabbit.pdf
https://www.lri.fr/~sebag/Slides/Lauriere/Rabbit.pdf
https://doi.org/10.1007/978-3-540-48085-3_24
https://doi.org/10.1007/978-3-540-48085-3_24
https://doi.org/10.1007/978-3-540-48085-3_24
https://doi.org/10.1007/978-3-540-48085-3_24

18 Cheukam Ngouonou et al.

25. Pesant, G.: A filtering algorithm for the stretch constraint. In: Walsh, T.
(ed.) Principles and Practice of Constraint Programming - CP 2001, 7th In-
ternational Conference, CP 2001, Paphos, Cyprus, November 26 - December
1, 2001, Proceedings. Lecture Notes in Computer Science, vol. 2239, pp. 183–
195. Springer (2001). https://doi.org/10.1007/3-540-45578-7_13, https://
doi.org/10.1007/3-540-45578-7_13

26. Pesant, G., Régin, J.C.: Spread: A balancing constraint based on statistics. In:
Proceedings of the 11th International Conference on Principles and Practice of
Constraint Programming (CP 2005). pp. 460–474 (2005)

27. Pierre Schaus, Yves Deville, P.D.: Bound-consistent deviation constraint. In: Pro-
ceedings of the 13th International Conference on Principles and Practice of Con-
straint Programming (CP 2007). pp. 620–634 (2007)

28. Rendl, A., Miguel, I., Gent, I.P., Gregory, P.: Common subexpressions in con-
straint models of planning problems. In: Bulitko, V., Beck, J.C. (eds.) Eighth
Symposium on Abstraction, Reformulation, and Approximation, SARA 2009, Lake
Arrowhead, California, USA, 8-10 August 2009. AAAI (2009), http://www.aaai.
org/ocs/index.php/SARA/SARA09/paper/view/823

29. Régin, J.C.: Modélisation et Contraintes Globales en Programmation par Con-
traintes. HDR dissertation, Université de Nice (2004)

30. Schaus, P., Deville, Y., Dupont, P., Régin, J.C.: The deviation constraint. In:
Proceedings of the 4th International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2007). pp. 260–274 (2007)

31. Schaus, P., Deville, Y., Dupout, P., Régin, J.C.: Simplification and extension of the
spread constraint. In: Proceedings of the third international workshop on constraint
propagation and implementation. pp. 77–91 (2006)

https://doi.org/10.1007/3-540-45578-7_13
https://doi.org/10.1007/3-540-45578-7_13
https://doi.org/10.1007/3-540-45578-7_13
https://doi.org/10.1007/3-540-45578-7_13
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/823
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/823

	Acquiring and Selecting Implied Constraints with an Application to the BinSeq and Partition Global Constraints

