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Abstract: The shift toward sustainable aviation has accelerated research into hybrid electric
aircraft, particularly in the context of Regional Air Mobility. To support this transition,
we introduce the Soft Fixed Route Hybrid Electric Aircraft Charging Problem with Vari-
able Speed (S-FRHACP-VS), a novel optimization problem for managing hybrid electric
aircraft operations that considers variable speed. The objective is to minimize total costs
by determining charging strategies, refueling decisions, hybridization ratios, and speed
decisions while adhering to a soft schedule. This paper introduces an iterative variable-
based fixation heuristic, named Iterative Two-Stage Mixed-Integer Programming Heuristic
(ITS-MIP-H ), that alternatively optimizes speed and hybridization ratios while considering
the soft schedule constraints and nonlinear charging and energy consumption functions.
In addition, a metaheuristic genetic algorithm is proposed as an alternative optimization
approach. Experiments on ten realistic flight instances demonstrate that optimizing speed
leads to an average cost reduction of 7.64% compared to the best non-speed-optimized
model, with reductions of up to 18.64% compared to an all-fuel-based heuristic. Although
genetic algorithm provides a viable alternative that performs better than the best non-
speed-optimized model, the proposed iterative variable-based fixation heuristic approach
consistently outperforms the metaheuristic, achieving the best solutions within seconds.
These results provide new insights into the integration of hybrid electric aircraft within
transportation networks, contributing to advancements in aircraft routing optimization,
energy-efficient operations, and sustainable aviation policy development.

Keywords: S-FRHACP-VS; Mixed-Integer Programming; Genetic Algorithms; Nonlinear
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List of Abbreviations
Abbreviation Definition
FRHACP Fixed Route Hybrid Electric Aircraft Charging Problem
S-FRHACP Soft FRHACP
S-FRHACP-VS S-FRHACP with Variable Speed
FRVCP Fixed Route Electric Vehicle Charging Problem
MIP Mixed-Integer Programming
ITS-MIP-H Iterative Two-Stage MIP Heuristic
ITS-MIP-H-One-It ITS-MIP-H ran on a single iteration
S1-MIP-H Stage-1 MIP Heuristic
GA Genetic Algorithm
GA-Warm-Start GA with warm start
DP Dynamic Programming
DP+GD Dynamic Programming with Gradient Descent Post-Treatment
FF-H Fuel-First Heuristic
MB-H Max-Battery Heuristic
eVTOL Electric Vertical Takeoff and Landing
TB Toulouse-Bordeaux
OT Ottawa-Toronto
KT Kelowna-Thunderbay
ST Saint-Johns-Thompson
TV ThunderBay-Vancouver
VT Vancouver-Toronto

1. Introduction
Historically, air transportation has relied heavily on aircraft propelled by combustion

engines that use non-renewable fossil fuels. However, in recent years, there has been a
growing interest in exploring alternative propulsion systems aiming to reduce greenhouse
gas emissions from aviation [1]. For that purpose, electric-powered aircraft, including hy-
brid electric aircraft that combine internal combustion engines with electric power sources,
have been proposed. Projects such as NASA electrified Powertrain Flight Demonstration [2]
and case studies on electric air taxis [3] are currently in progress exploring these promising
avenues. These aircraft are expected to play a crucial role in advanced air mobility, operat-
ing in a variety of multi-flight missions, including on-demand services of varying length
and duration [4].

Advanced air mobility refers to the next generation of air transportation systems designed
to move people and goods efficiently using innovative aircraft technologies, such as electric
vertical takeoff and landing (eVTOL) aircraft, autonomous drones, and hybrid electric
propulsion systems [5]. Advanced air mobility encompasses urban air mobility, which
focuses on short-range air travel within cities (e.g., air taxis), regional air mobility, which
connects suburban, rural, and remote areas typically inside a country, micro air mobility
focusing on good deliveries with eVTOL, typically inside a city, and intercontinental air
mobility, which connects different countries. Multiple research projects focus on urban
air mobility and micro air mobility, mainly for last mile delivery of goods [6–8] and taxi
services using eVTOL [3]. Regional air mobility has received less interest in the context of
passenger transportation, with most research done on analyzing the potential of electric or
hybrid electric aircraft for this use case [9,10]. Other studies focus on the development of
such aircraft [11,12], while there is a research gap on how such hybrid electric aircraft will
be operated in the future of advanced air mobility. The purpose of this paper is to fill this
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gap and explore the potential benefits of using such an aircraft for companies.

Recent studies on hybrid electric aircraft routing have focused mainly on fixed-speed oper-
ations, often neglecting the dynamic nature of real-world missions. For example, problems
such as the Fixed Route Hybrid electric Aircraft Charging Problem (FRHACP) [13] and
the extended FRHACP [14] optimize total costs under static speed assumptions, limiting
the potential savings coming from variable speed that exploits the non-linearity of the
energy consumption functions. Moreover, the lack of a public dataset for these problems
hinders future research. These limitations underscore the need for a more comprehensive
framework that integrates variable-speed decisions while providing a public dataset to
support future research.

However, the adoption of electric propulsion introduces several complex challenges. Be-
yond flight path planning, effectively managing energy consumption throughout entire
missions is critical. This includes considering aircraft specifications, infrastructure availabil-
ity, security requirements, and scheduling priorities. Such considerations are particularly
important from a planning point of view given the current non-negligible and nonlinear
duration of electricity charging [15]. Operators must make informed decisions about refuel-
ing and charging at each mission terminal. Additionally, the consideration of hybridization
introduces decisions on the energy source to use (electricity and/or fuel)—the hybridization
ratio—during each flight leg. These decisions require prediction of the energy consumption
from nonlinear energy models depending, among others, on vehicle characteristics, speed,
mass, and temperature [16–18]. Ultimately, the main goal for operators is to minimize
overall mission costs by ensuring efficient energy utilization.

In summary, the contributions of this paper are the following:

• We introduce the S-FRHACP-VS, a novel optimization problem for managing hybrid
electric aircraft operations that considers variable speed;

• We propose a new iterative variable-based fixation heuristic (Iterative Two-Stage MIP
Heuristic) to solve it;

• We propose a new genetic algorithm approach to solve it;
• A benchmark of ten realistic instances is published for this problem;
• The proposed approaches are compared on this benchmark with previously published

approaches for similar problems.

2. Background
This paper builds upon two previously published papers [13,14]. The first [13] intro-

duces the Fixed Route Hybrid Electric Aircraft Charging Problem (FRHACP), where we
optimize the energy management of a hybrid electric aircraft for a fixed route. It is similar
to the Fixed Route Electric Charging Problem (FRVCP), a subproblem of the Electric Vehicle
Routing Problem introduced by Montoya et al. [15]. Although both problems involve
optimizing energy consumption across a fixed route, FRHACP differs in four fundamental
ways: 1) the vehicle is a hybrid electric aircraft, introducing hybridization ratio decisions
between fuel and electricity; 2) hard scheduling constraints must be respected that can
limit charging duration at terminals; 3) the energy consumption functions are significantly
more complex than in FRVCP, as fuel weight changes the mass of the aircraft, affecting
the energy consumption; and 4) the objective function of the FRHACP is to minimize
total costs while the FRVCP minimizes total duration. Despite these differences, the ap-
proaches used to solve the FRVCP can be adapted to solve the FRHACP, such as dynamic
programming [13] and Mixed-Integer Programming [14]. Moreover, similar MIP-based
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optimization frameworks have been proposed in ground transportation contexts, such as
tramway networks [19], where hybrid storage systems under operational constraints offer
insights directly transferable to the infrastructure and scheduling challenges addressed by
the S-FRHACP-VS.

The FRHACP considers hybrid electric aircraft in a multi-flight mission setting. Formally,
a mission is defined as a fixed route r := (n1, n2, . . . , n|N |) of consecutive nodes ni ∈ N .
Each node ni ∈ N on the route is either a terminal from set T or a waypoint from set W
(N := T ∪W). A terminal is typically an airport where facilities are available to refuel
and charge the aircraft. The route r starts and ends at a terminal, n1 and n|N | ∈ T , while r
induces a natural order τ1, τ2, . . . , t|T | on the terminals in T . Between consecutive terminals,
the route is defined by waypoints, typically reference points in the air that must be part of
the aircraft trajectory. We define legs as route segments connecting two consecutive nodes
such as L := {(ni, ni+1) : i = 1, . . . , |N | − 1}. The different parameters of the FRHACP are
listed in Table 1.

We resume the decision variables of the FRHACP, presented in Table 2, as follows. For
each terminal τ ∈ T , FD

τ and SD
τ are respectively the fuel quantity and state of charge of

the aircraft when leaving terminal τ. Then, for each leg l ∈ L, D f
l is the hybridization

ratio on leg l as its distance traveled using fuel. The intermediate variables FA
τ and SA

τ

describe the deduced fuel quantity and state of charge upon arrival at terminal τ ∈ T ,
while the distance traveled using electricity, Ds

l , is deduced by Ds
l = dl − D f

l ∀l ∈ L. The
objective is to minimize fuel and electricity costs as expressed by Equation (1), with cs

τ and

c f
τ respectively being the electricity and fuel costs at terminal τ.

min ∑
τ∈T

(
cs

τ(S
D
τ − SA

τ ) + c f
τ(FD

τ − FA
τ )

)
(1)

In our second paper [14], we introduce the Extended-FRHACP, an extension of the FRHACP
where the schedule is subject to a soft constraint on arrival and departure times at each
terminal with monetary costs associated with deviation from the given scheduled times.
Furthermore, it adds a decision of waiting, i.e. to perform other tasks (e.g., for maintenance
purposes) than charging and refueling at the charging and refueling stations at a terminal,
which can be constrained. Decision variables TA

τ and TD
τ are thus added for each terminal

τ ∈ T that respectively represent the arrival and departure times at terminal τ, which can
differ from the scheduled arrival and departure times (tA and tD respectively). Moreover,
additional constraints such as maximum charging duration and fuel availability can be
specified at each terminal, while the availability of charging/refueling facilities can also
vary. Finally, the possibility of enforcing a specific source of energy to use on a given leg
(e.g., forcing taxi phases to use electricity) is added. The objective function is expressed
by Equation (2), with c<tA and c>tA being respectively the costs associated with arriving
before or after the arrival scheduled time and c<tD and c>tD being respectively the costs
associated with departing before or after the departure scheduled time at each terminal
τ ∈ T . In this paper, we formally name this problem Soft-FRHACP (S-FRHACP).

min ∑
τ∈T

(
cs

τ(S
D
τ − SA

τ ) + c f
τ(FD

τ − FA
τ ) +

c<tA
τ max(0, tAτ − TA

τ ) + c>tA
τ max(0, TA

τ − tAτ ) +

c<tD
τ max(0, tDτ − TD

τ ) + c>tD
τ max(0, TD

τ − tDτ )
)

(2)
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For the S-FRHACP [14], five approaches ranging from heuristics to exact methods are
proposed to solve the problem:

• Fuel-First Heuristic (FF-H ): This heuristic aims to maximize fuel usage. It only uses
electricity when mandatory (such as the legs that are enforced on electricity). Its main
goal is to be a comparison point to estimate the potential gains of using the hybrid
engine.

• Max-Battery Heuristic (MB-H ): This heuristic aims at maximizing battery usage by
always consuming fuel first, and then finishing using the electricity. It is based on
the assumption that, on a given leg, consuming fuel first is the optimal strategy [20].
However, this assumption is false when looking at a flight composed of a series
of legs [13]. At each terminal, we charge at maximum capacity while respecting
the schedule and other constraints such as limited charging duration, then take the
smallest amount of fuel in order to complete the flight.

• Dynamic Programming (DP ): This heuristic uses dynamic programming to minimize
fuel consumption for all flights. Based on different mostly realistic assumptions, such
that fuel costs are higher than electricity costs and that fuel costs are the same at each
terminal, it has been shown to be the optimal strategy to optimize total costs for the
FRHACP [13], while producing good solutions for the S-FRHACP [14].

• Dynamic Programming with Gradient Descent Post-Treatment (DP+GD ): This heuris-
tic is the same as DP , where a gradient descent post-treatment is applied to handle
cases where fuel cost varies between terminals. It has been shown to yield optimal
results for the FRHACP [13] and good results for the S-FRHACP [14].

• Mixed-Integer Programming (MIP): This MIP model solves the S-FRHACP to opti-
mality with respect to its approximations of the energy consumption function and the
charging duration functions [14]. It is the state-of-the-art for the S-FRHACP, obtaining
optimal solutions within seconds on a benchmark of ten realistic instances. In this
paper, this model is used as a comparison point as the best approach that does not
optimize speed.

Experiments were conducted on a benchmark of 10 realistic instances, described in detail
in Section 3.4, with realistic schedule, fuel and electricity costs, and flight itineraries. The
results show that the MIP model reduces total costs on average by 15% compared to the
FF-H , with a solving time on average below 10 seconds. Scalability analysis demonstrates
that the MIP model can solve in reasonable time instances of up to 15 terminals, while
realistic instances do not exceed 10 terminals.

3. Materials and Methods
3.1. Problem Definition: The Soft Fixed Route Hybrid Electric Aircraft Charging Problem with
Variable Speed (S-FRHACP-VS)

The S-FRHACP-VS is a generalization of the S-FRHACP where flight speed decisions
are added. It asks to decide how much to refuel and charge the aircraft at each terminal
while deciding the hybridization ratio and flight speed for each leg. These decisions are
limited by security margins, physical capacity, and soft schedule constraints on departure
and arrival times. The time required to charge the aircraft battery at a terminal is encoded
as a function dependent on the initial and final states of charge, usually nonlinear [15],
while the refueling duration is given by a constant rate. Hybridization ratio decisions on the
energy source to use (electricity and/or fuel) during each leg are encoded as the traveled
distance using fuel first. This is based on the hypothesis that fuel has a non-negligible
mass, which is an important nonlinear factor in energy consumption prediction [16–18],
and that using fuel first is the optimal energy management strategy on a leg [20]. Thus, fuel
and electricity consumption models are encoded as functions dependent on the traveled
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distance, the total mass, and the flight speed. These may include other physical parameters,
such as altitude, and trajectory angle, but are assumed constant on a given leg (but can
vary between legs). Moreover, monetary costs are associated to the deviation from the
given scheduled times. It is thus possible to wait at a terminal, i.e. to perform other tasks
than charging and refueling at a terminal, which can be constrained (e.g., for maintenance
purposes). A maximal charging duration and fuel availability can be specified as con-
straints at each terminal, while the availability of charging/refueling facilities can also
vary. Finally, a specific source of energy to use can be enforced on a given leg (e.g., to
enforce that taxi phases use electricity). Figure 1 presents a visual representation of an
instance of the S-FRHACP-VS and the different decision variables related to the problem.
In summary, an S-FRHACP-VS instance requires the parameters listed in Table 1 and the
decision variables are listed in Table 2. Elements are split between the elements specific for
the FRHACP, the S-FRHACP, and the S-FRHACP-VS. These tables are additives, such that
the S-FRHACP uses all elements from the FRHACP in addition to the listed ones, while the
S-FRHACP-VS uses all elements. Finally, the objective of the S-FRHACP-VS is the same as
for the S-FRHACP, i.e., to minimize total costs, as expressed by Equation (2).

Figure 1. Visual representation of an instance of the S-FRHACP-VS and its decision variables. The
fixed route is composed of a series of terminals (typically airports) with waypoints splitting the
route between two terminals. The decision variables are split between terminal’s decisions (charging
quantity, refueling quantity, and waiting time) and leg’s decisions (flight speed on the fuel and electric
portion of the leg, and hybridization ratio).

3.1.1. Challenges for optimizing speed

Solving the S-FRHACP-VS requires to consider the speed on each leg when using elec-
tricity and fuel. Since the constraints encoding the duration divide the distance by speed,
direct optimization of speed within a MIP model is impractical. Therefore, optimizing the
duration of the route becomes the only feasible option (since duration encodes speed). As
a result, the nonlinear energy consumption functions on each leg are functions of three
decision variables: 1) the distance, equivalent to the hybridization ratio decisions; 2) the
weight, affected by the fuel taken on the previous terminals and the hybridization ratio
decisions; and 3) the route duration, which is dependent on the speed and distance. While
Misener et al. [21] describe methods to encode such functions in a MIP model, the extensive
sampling required for accurate approximations slows the MIP model excessively. Addi-
tionally, distance and route duration are interdependent, complicating sampling: some
combinations of these variables are infeasible, and introducing infinity in the sampling
fails to handle these cases properly. As a result, designing an exact MIP model to solve the
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Table 1. Description of the different parameters required by an instance of the S-FRHACP-VS,
with their unit, split between the specific parameters for the FRHACP, the S-FRHACP, and the
S-FRHACP-VS.

Parameter Description Unit

FRHACP
s1 Initial state of charge at the origin %
f1 Initial fuel quantity at the origin L
t1 Initial time at the origin h
smin Minimal state of charge %
smax Maximal state of charge %
f min Minimal fuel quantity L
f max Maximal fuel quantity L
tDτ Scheduled departure time at terminal τ ∈ T h
α f Refueling rate of the aircraft L/h
m f Fuel mass kg/L
ma Empty aircraft mass kg
mp

l Payload mass on leg l ∈ L kg
dl Travel distance on leg l ∈ L km
vl Recommended aircraft speed on leg l ∈ L km/h

δs
l (d, m, v) Function of the electricity consumption given the distance d (km),

the mass m (kg), and the speed v (km/h) on leg l ∈ L %

δ
f
l (d, m, v) Function of the fuel consumption given the distance d (km), the

mass m (kg), and the speed v (km/h)d on leg l ∈ L L

cs
τ Electricity cost at terminal τ ∈ T $/%

c f
τ Fuel cost at terminal τ ∈ T $/L

S-FRHACP
tAτ Scheduled arrival time at terminal τ ∈ T h
∆twait,min

τ Minimal waiting duration at terminal τ ∈ T h
∆ts,max

τ Maximal charging duration at terminal τ ∈ T h
∆ f max

τ Available fuel quantity at terminal τ ∈ T L
cans

τ 1 if we can charge at terminal τ ∈ T , else 0 Bool
can f

τ 1 if we can refuel at terminal τ ∈ T , else 0 Bool
alloweds

l 1 if we can use electricity on leg l ∈ L, else 0 Bool
allowed f

l 1 if we can use fuel on leg l ∈ L, else 0 Bool

c<tA
τ

Cost of arriving earlier than the scheduled arrival time at terminal
τ ∈ T $/h

c>tA
τ

Cost of arriving later than the scheduled arrival time at terminal
τ ∈ T $/h

c<tD
τ

Cost of departing earlier than the scheduled departure time at
terminal τ ∈ T $/h

c>tD
τ

Cost of departing later than the scheduled departure time at ter-
minal τ ∈ T $/h

S-FRHACP-VS
vmin

l Minimal speed on leg l ∈ L km/h
vmax

l Maximal speed on leg l ∈ L km/h

S-FRHACP-VS remains challenging. Thus, in this paper, we propose two new heuristics to
solve this problem. One is based on an iterative variable-based fixation heuristic, inspired
by Wilbaut et al. [22] and described in Section 3.2, while the other is based on genetic
algorithm, described in Section 3.3.
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Table 2. Decision variables of the S-FRHACP-VS, with their domain and unit, split between the
specific variables for the FRHACP, the S-FRHACP, and the S-FRHACP-VS.

Variable Domain Description Unit

FRHACP
SA

n [smin, smax] Arrival state of charge at node n ∈ N %
SD

n [smin, smax] Departure state of charge at node n ∈ N %
FA

n [ f min, f max] Arrival fuel quantity at node n ∈ N L
FD

n [ f min, f max] Departure fuel quantity at node n ∈ N L
Ds

l [0, dl ] Traveled distance using electricity on leg l ∈ L km

D f
l [0, dl ] Traveled distance using fuel on leg l ∈ L km

S-FRHACP
∆Twait

τ [∆twait,min
τ , ∞] Waiting duration at terminal τ ∈ T h

S-FRHACP-VS
Vs

l [vmin
l , vmax

l ] Aircraft speed using electricity on leg l ∈ L km/h

V f
l [vmin

l , vmax
l ] Aircraft speed using fuel on leg l ∈ L km/h

3.2. Solving the S-FRHACP-VS: Iterative Two-Stage Mixed-Integer Programming Heuristic
(ITS-MIP-H)

We propose an iterative variable-based fixation heuristic, named the Iterative Two-
Stage MIP heuristic (ITS-MIP-H ), to solve the S-FRHACP-VS. It solves the problem of
interdependency between the duration and distance by solving them in two separate
Stages. In the first Stage, the S-FRHACP (without variable speed) is optimized using the
MIP model of Deschênes et al. [14] (S1-MIP-H ), which assumes a constant speed—initially
the recommended speed, and, in subsequent iterations, the speed obtained from Stage 2.
In the second Stage, a different MIP model described in Section 3.2.1 is used to address
varying speed, where the distances are fixed at the optimal values found in Stage 1. As
a result, each MIP model applies perturbations on the instance of the next MIP model,
allowing to escape local minima. This process can then be repeated until convergence,
perturbing alternatively the speeds and distances of each instance of the MIP models. By
fixing speeds and distances alternatively, the complexity of the Stage-2 MIP model is similar
to the complexity of the Stage-1 MIP model for the S-FRHACP. Figure 2 presents a visual
representation of the ITS-MIP-H . This heuristic is guaranteed to converge since at each
Stage we can either improve the total costs or select the optimal speeds or distances that
are the same as for the previous Stage. This is used as a stopping criterion, i.e., when the
solution does not change between two consecutive iterations. However, it is not guaranteed
that the ITS-MIP-H converges to a global optimum.

3.2.1. Stage-2 MIP model

The Stage-2 MIP model considers that the hybridization ratio decisions are parameters
(instead of decision variables) and optimizes the duration of the legs on fuel and on electric-
ity. Once the distances are fixed, deciding the duration is equivalent to deciding the speed.
The model is similar to the MIP model of Deschênes et al. [14]. The main differences are:
1) traveled distance variables are now fixed parameters; 2) the speed on each leg is encoded
as the duration traveled using fuel or electricity, thus transforming some constraints in
decision variables; and 3) the energy consumption functions are dependent on the weight
and the duration of the leg (instead of the weight and the distance). As a result, a new
hyperparameter is introduced, the number of points in the grid for the duration, t̃, used to
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Stage 1:
Solve the S-FRHACP with speeds fixed to ŝ

Initialize ŝ to recommended speeds

Extract optimal
distances d̂
from the opti-
mal solution
and perturbate
Stage 2 instance

Stage 2:
Solve the S-FRHACP-VS with distances fixed to d̂

Extract optimal
speeds ŝ from
the optimal so-
lution and per-
turbate Stage 1
instance

Figure 2. Flowchart representing the Iterative Two-Stage MIP Heuristic for the S-FRHACP-VS. The
heuristic starts by fixing the speeds to the initial recommended speeds, then solve the resulting
S-FRHACP instance in Stage 1. The optimal distances are extracted from the optimal solution of
Stage 1. Then, the heuristic solves the S-FRHACP-VS where the distances are fixed to the extracted
distances (using the Stage-2 MIP model). Finally, the optimal speeds are extracted from the optimal
solution of the Stage 2 and the process can then be repeated using the newly extracted speeds until
convergence.

linearize the energy consumption functions.

Variables

As for the S-FRHACP, the main decision variables for the Stage-2 MIP model of the
S-FRHACP-VS are related to the charging and refueling durations/quantities, and the
waiting duration at each terminal. Moreover, speed decisions are encoded as the duration
on electricity or fuel on each leg. These variables, as well as the intermediate variables used
by the MIP model, are presented in Table 3, along with their initial domain based on the
parameters from Table 1.

Objective

The objective is to minimize the total cost of the multi-flight mission. It includes
energy-related costs (charging and refueling), as in the S-FRHACP, but also costs induced
by deviation from the scheduled arrival and departure times. It is the equivalent to Equa-
tion (2), with intermediate variables representing the costs of the deviation of the schedule.

min ∑
τ∈T

[
cs

τ(S
D
τ − SA

τ ) + c f
τ(FD

τ − FA
τ ) + C<tA

τ + C>tA
τ + C<tD

τ + C>tD
τ

]
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Table 3. Variables of the Stage-2 MIP model and their initial domain.

Variable Domain Description Unit

∆Ts
τ [0, ∆ts,max

τ ] Charging duration at terminal τ ∈ T h
∆T f

τ [0, 1
α f · ∆ f max

τ ] Refueling duration at terminal τ ∈ T h
∆Twait

τ [∆twait,min
τ , ∞] Waiting duration at terminal τ ∈ T h

SA
n [smin, smax] Arrival state of charge at node n ∈ N %

SD
n [smin, smax] Departure state of charge at node n ∈ N %

FA
n [ f min, f max] Arrival fuel quantity at node n ∈ N L

FD
n [ f min, f max] Departure fuel quantity at node n ∈ N L

Ms
l [ma, ∞] Mass of the aircraft when using electricity on leg l ∈ L kg

M f
l [ma, ∞] Mass of the aircraft when using fuel on leg l ∈ L kg

∆Ts
l [0, dl/vmin

l ] Traveled duration using electricity on leg l ∈ L h

∆T f
l [0, dl/vmin

l ] Traveled duration using fuel on leg l ∈ L h
TA

n [t1, ∞] Arrival time at node n ∈ N h
TD

n [t1, ∞] Departure time at node n ∈ N h

C<tA
τ [0, ∞] Total cost for arriving early at terminal τ ∈ T $

C>tA
τ [0, ∞] Total cost for arriving late at terminal τ ∈ T $

C<tD
τ [0, ∞] Total cost for departing early at terminal τ ∈ T $

C>tD
τ [0, ∞] Total cost for departing late at terminal τ ∈ T $

Constraints

The constraints of the Stage-2 MIP model are presented below. We use M as a suffi-
ciently large constant. Constraints (3) set the initial conditions at n1 ∈ T .

SA
n1

= s1, FA
n1

= f1, TA
n1

= t1 (3)

Constraints (4) ensure that the charging duration is a function of the arrival and departure
state of charges at a terminal. This function is usually nonlinear and must be linearized in
the model. Constraints (5) ensure that charging is only possible when allowed. Similarly,
constraints (6) ensure that the refueling duration at a terminal is proportional to the aircraft
refueling rate, while constraints (7) allow refueling only when allowed.

∆Ts
τ = αs

τ(S
A
τ , SD

τ ) ∀τ ∈ T (4)

∆Ts
τ ≤ M · cans

τ ∀τ ∈ T (5)

∆T f
τ =

1
α f (FD

τ − FA
τ ) ∀τ ∈ T (6)

∆T f
τ ≤ M · can f

τ ∀τ ∈ T (7)

By assumption, constraints (8) enforce that charging, refueling, and waiting are not allowed
at any waypoint.

SD
w = SA

w , FD
w = FA

w , TD
w = TA

w ∀w ∈ W (8)

Constraints (9) define the mass of the aircraft at the beginning of each leg based on its
initial fuel quantity. Since fuel consumption reduces the mass of the aircraft, constraints (10)
calculate the mass of the aircraft during the electric part of the leg after considering the fuel
used on the fuel part of the leg. This mass can vary depending on the amount of remaining
fuel, including any additional reserves kept for later use.
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M f
li
= ma + mp

li
+ m f FD

ni
∀li := (ni, ni+1) ∈ L (9)

Ms
li = ma + mp

li
+ m f FA

ni+1
∀li := (ni, ni+1) ∈ L (10)

Constraints (11) and (12) compute the arrival state of charge and fuel at each node with
respect to the energy consumption functions. These functions are nonlinear and require
linearization in order to be used in the MIP model. d̂li is the optimal hybridization ratio
found by the Stage-1 MIP model.

SA
ni+1

= SD
ni
− δs

li
(dli − d̂li , Ms

li , (dli − d̂li )/∆Ts
li ), ∀li := (ni, ni+1) ∈ L (11)

FA
ni+1

= FD
ni
− δ

f
li
(d̂li , M f

li
, d̂li /∆T f

li
) ∀li := (ni, ni+1) ∈ L (12)

Constraints (13) encode the departure time from a terminal, defined by its arrival time, the
charging and refueling durations, and the waiting duration. Constraints (14) encode the
arrival time at a node according to its incoming leg duration.

TD
τ = TA

τ + ∆Ts
τ + ∆T f

τ + ∆Twait
τ ∀τ ∈ T (13)

TA
ni+1

= TD
ni
+ ∆Ts

li + ∆T f
li

∀li := (ni, ni+1) ∈ L (14)

Finally, the constraints (15) to (18) relate the schedule costs to their associated time variable.

C<tA
τ ≥ c<tA

τ (tAτ − TA
τ ) ∀τ ∈ T (15)

C>tA
τ ≥ c>tA

τ (TA
τ − tAτ ) ∀τ ∈ T (16)

C<tD
τ ≥ c<tD

τ (tDτ − TD
τ ) ∀τ ∈ T (17)

C>tD
τ ≥ c>tD

τ (TD
τ − tDτ ) ∀τ ∈ T (18)

Function Linearizations

As for Deschênes et al. [23], the nonlinear charging functions αs
τ(s1, s2) are approxi-

mated using multiple linear functions, each adding a binary variable to the model for each
terminal τ ∈ T . The nonlinear electricity and fuel consumption functions, δs

l (d, t) and

δ
f
l (d, t), both depend on distance and duration decisions. We approximate these multidi-

mensional functions in the MIP model using the methodology of Misener et al. [21], which
uses grid sampling. This leads to two hyperparameters: the number of points in the grid
for the dimension of mass m̃ and for the dimension of duration t̃. The approximation adds
m̃ + t̃ binary variables for each leg l ∈ L. It is known that the finer the grid, the better
approximations will be, but the harder it will be to solve.

3.3. Solving the S-FRHACP-VS: Genetic Algorithm

The Iterative Two-Stage MIP Heuristic relies on approximations of the energy con-
sumption and charging duration functions, which can affect the quality of the solution
depending on the sampling size. Although these approximations can be made more pre-
cise with sufficient sampling points, the iterative nature of the two-stage heuristic also
affects the returned solution. Since the model alternates between optimizing speed and
hybridization ratio instead of solving them jointly, the resulting solution depends on the
iterative sequence rather than converging to a guaranteed global optimum. As a result,
the Iterative Two-Stage MIP Heuristic is an advanced heuristic rather than a strictly exact
approach, which justifies exploring metaheuristic approaches such as genetic algorithms.
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Although these approaches do not guarantee global optimality, they offer flexibility in
navigating complex solution spaces and efficiently identifying high-quality solutions. More-
over, genetic algorithms are easier to implement and can directly use the nonlinear energy
consumption and charging functions, making them an attractive alternative, particularly
when using complex nonlinear functions such as neural networks. Since the solution
space is large (approximately 200 variables), genetic algorithm is preferred over particle
swarm optimization since it is known that particle swarm optimization performs poorly
for high-dimensional problems [24].

3.3.1. Genes

All decision variables of the S-FRHACP-VS can be encoded using continuous variables
between 0 and 1. For a given instance, the genes of an individual are sequential from n1 to
n|N |−1, as shown by Figure 3. All nodes ni ∈ N have three genes: 1) the percentage of the
traveled distance to do on fuel for the next leg (hybridization ratio); 2) the flight speed for
the fuel portion of the next leg, with 0 equal to the minimum speed (vmin

li
) and 1 equal to the

maximum speed (vmax
li

); and 3) the flight speed for the electric portion of the next leg with
0 equal to the minimum speed (vmin

li
) and 1 equal to the maximum speed (vmax

li
). Moreover,

there are three additional genes if ni is a terminal (these correspond to charging/refueling
decisions): 1) the departure fuel quantity, with 0 equal to the minimal fuel quantity ( f min)
and 1 equal to the maximal fuel quantity ( f max); 2) the departure state of charge, with 0
equal to the minimal state of charge (smin) and 1 equal to the maximum state of charge
(smax); and 3) the waiting duration, with 0 equal to no waiting and 1 equal to the scheduled
waiting duration if we respect the schedule. When ni is a terminal, the associated genes are
located before the node genes in the individual. All other intermediate variables, such as
the arrival fuel and state of charge, can be determined from these variables.

Figure 3. Visual representation of how the genetic algorithm genes relate to an instance of the
S-FRHACP-VS. The first variables are at the starting terminal and they represent charging, refueling
and waiting decisions. During the flights, the genes represent the hybridization ratio (km), the chosen
flight speed for the fuel portion of the leg and the flight speed electric portion of the leg.

3.3.2. Fitness Function

We use a simulation to compute the total costs associated to an individual’s genes.
The fitness function is thus equal to Equation (2) plus a penalization function that applies
an additional cost when arriving below margins for the fuel (10$/L.) and/or the state of
charge (10$/%) at each terminal. These values are large enough to ensure that the best
individuals respect the margins while not penalizing too much individuals that are close to
respecting the margins. This penalty function is mandatory, as there is no guarantee that
an individual respects these constraints. In contrast, constraints such as charging/refueling
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station availability and enforcing electricity or fuel on a leg are enforced before simulating
the individual by changing the value of the corresponding genes to either 0 or 1 depending
on the case.

3.3.3. Warm Start

In the traditional genetic algorithm framework, the initial population is randomly
sampled. However, it is also possible to provide some individuals of the initial population
to guide the search. As such, we test whether giving all of the non-MIP solutions (DP ,
DP+GD , FF-H , MB-H ) as part of the initial population helps to improve the performance
of the genetic algorithm. We excluded the MIP solutions, as they can take a long time to
compute, which could significantly increase the computation time of the genetic algorithm.

3.4. Experiments

We implemented the MIP models from Section 3.2 in the MiniZinc 2.9.2 language [25]
and used CPLEX 22.1.2 for solving, with an optimal relative gap setting of 1e−10 and a
timeout of five minutes. The DP , its gradient descent post-treatment (DP+GD ), and the
heuristics (FF-H , MB-H ) from Deschênes et al. [14] were also implemented in Python 3.11.
The genetic algorithms were implemented in Python 3.11 using PyGAD [26]. Moreover,
the optimal hybridization ratios previously found using a grid search for DP and DP+GD
are now found using Brent’s algorithm [27]. The experiments were performed on an Intel
CoreTM Ultra 7 155H, 3800 Mhz, 16 cores, 22 logical processors, 16GB RAM. In order
to compare each method on the same basis, a simulation using the non-approximated
functions is always performed as a post-treatment. Additionally, all MIP models perform
energy quantity corrections after the simulation to reduce their approximation errors and
stay as close to their original optimal solution as possible.

3.4.1. Dataset

Our dataset consists of the ten real-life inspired instances from Deschênes et al. [14],
which were created from day-long sequences of commercial aircraft flights in Canada and
France. The dataset is available and published as a benchmark for this problem1. It is
summarized in Table 4. All costs are presented in CAD ($). The number of terminal varies
from 4 to 10, with a number of waypoints between 30 and 107, and a traveled distance of
up to 9456 km.

Table 4. Description of the ten instances forming the dataset including the number of terminal (|T |),
the number of waypoints (|W|), the total duration and distance of the combined flights, the electricity
costs range (cs) and the fuel cost range (c f ) of each instance.

Instance |T | |W| Duration Distance (km) cs ($/kWh) c f ($/L)

PN 4 59 4h30 2740 0.1397 1.46
TB 5 42 6h42 2812 0.1397 1.46
MS 6 30 7h22 2294 0.0533 [1.16, 1.25]
OT 7 43 9h34 4709 [0.0533, 0.1140] [1.03, 1.28]
KT 7 47 10h45 5165 [0.0776, 0.1408] [1.13, 1.38]
ST 6 52 13h10 6788 [0.0898, 0.1234] [1.03, 1.37]
TV 6 64 14h36 8493 [0.0976, 0.1408] [1.13, 1.44]
SK 7 107 16h33 9456 [0.0533, 0.1408] [1.16, 1.44]
BK 10 72 16h46 8143 [0.0590, 0.1408] [1.13, 1.44]
VT 5 49 11h17 5886 [0.0776, 0.1408] [1.26, 1.41]

1 The dataset is available at https://github.com/AnthonyDeschenes/S-FRHACP-VS-Dataset

https://github.com/AnthonyDeschenes/S-FRHACP-VS-Dataset
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All instances also use Cessna S550 Citation II as the aircraft, which is augmented with
a battery of 216 kWh, and has the specifications from Deschênes et al. [13]. It relies on
the OpenAP aircraft performance model [18] to predict energy consumption as nonlinear
functions δs

l (d, m, v) and δ
f
l (d, m, v), using the fixed parameters of leg l ∈ L. Since OpenAP

does not handle consumption predictions while taxiing, we enforce that the associated legs
are fully electric and instead use a physical model for electric vehicles [17]. For the charging
functions αs

τ(si, s f ), it uses for all terminals τ ∈ T the nonlinear charging function from
Deschênes et al. [23].

Additionally, we assume the following parameters for the S-FRHACP as for Deschênes
et al. [14]. We fix the scheduled arrival times using the departure times and the planned

durations. The soft schedule costs are fixed for all terminals τ ∈ T to c<tA
τ = $0.25/min and

c>tA
τ = $20/min. Some terminals do not have electric charging stations, while every taxi

leg is forced to be traveled using only electricity. For the S-FRHACP-VS, we set the maximal
speed (vmax

l ) to 1.2 multiplied by the recommended speed (vl ) and the minimal speed
(vmin

l ) to 0.8 multiplied by the recommended speed. For this benchmark, the remaining
parameters are set in a way that does not incur additional constraints.

3.4.2. Hyperparameters Selection Methodology

Both the MIP models and DP have hyperparameters, which affect the solving time
and the quality of the solution, that must be chosen. To avoid biased conclusions when
comparing the approaches, these hyperparameters should be selected using an objective
methodology. Following the methodology of Deschênes et al. [14], the dataset is split into a
training set, used to determine the hyperparameters, and a test set, used to compute the
results. We use the same split as for Deschênes et al. [14], with the training set being PN, MS,
SK, and BK. The test set contains the remaining six instances. Since we use the same training
and test sets as for Deschênes et al. [14], we use the same hyperparameters as they found
for the Stage-1 MIP model, (d̃, m̃) = (2, 4). For DP and the Stage-2 MIP model, a Pareto
front of different combinations of hyperparameters is computed on the training set and
the distance from the ideal point algorithm [28] is used to decide which combination of
hyperparameters to use on the test set.

For the DP and DP+GD approaches, we use the same hyperparameters for both since
DP+GD is a post-treatment of DP . These approaches both have two hyperparameters: s̃,
the number of states of charge sampled by the dynamic programming algorithm, and d̃, the
maximal number of iterations of Brent’s algorithm [27] when finding the best hybridization
ratio, as presented in Deschênes et al. [13]. For s̃, we tested values ranging from 10 to 100
with a step of 10. For d̃, we tested the following values, [5, 6, 7, 8, 9, 10, 15, 20, 30, 40], for a
total of 100 combinations. The values for d̃ are smaller than those tested by Deschênes et
al. [14] since Brent’s algorithm [27] converges quickly and takes on average 10 steps to find
the optimal hybridization ratio for our training instances. Figure 4 presents the resulting
Pareto front. The chosen combination of hyperparameters is point G, with (s̃, d̃) = (10, 15).

For the Stage-2 MIP model, the model has two hyperparameters: m̃ and t̃. These represent
respectively the number of points in the grid sampling used to approximate the energy
consumption functions for the weights and for the durations. Since m̃ has already been
chosen for the Stage-1 MIP model, we also use the value of 4 for this hyperparameter in
the Stage-2 MIP model. This ensures convergence when alternating between the two MIP
models during the iterative process. As a result, the only hyperparameter to decide for the
Stage-2 MIP model is t̃, which we computed values from 3 to 10 with an increment of 1 for
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Figure 4. Resulting Pareto front for the DP and DP+GD approaches on the training set with tested
hyperparameter combinations. Each point from A to J represents a combination of state of charge
sampled (s̃) and maximal number of iterations of Brent’s algorithm (d̃) that dominates either on
average total costs or average solving time on the training set. This Pareto front can then be used to
choose a combination of hyperparameters to use on the test set (Point G).

a total of 8 combinations. The value of 2 is not considered, since it leads to arrival states
of charge below the margin due to its poor approximation of the electricity consumption
function. Figure 5 presents the resulting Pareto front and the corresponding value of the
hyperparameter on top of each point. The chosen hyperparameter is thus 3 for t̃.

Figure 5. Resulting Pareto front for the Stage-2 MIP model on the training set with tested hyperpa-
rameter values. Each point represents a value of the number of points in the grid sampling used to
approximate the energy consumption functions for the durations (t̃) that dominates either on average
total costs or average solving time on the training set. This value is shown above each point in the
plot. This Pareto front can then be used to choose the value of this hyperparameter to use on the test
set (3).

The genetic algorithm has many hyperparameters. Since the algorithm runs for a given
number of generations, the choice of hyperparameters mostly does not affect the computa-
tion time (except for the population size and the maximal number of generations). As a
result, for this algorithm, we are interested in choosing hyperparameters that minimize the
total costs only. However, testing a single combination of hyperparameters takes up to 30
minutes and the search space is large enough that we cannot effectively use a grid search.
Instead, we use Bayesian optimization [29] to explore the search space and find a good
combination of hyperparameters. The most important hyperparameters are the crossover
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type, the mutation percentage, the population size, and the number of parents to keep
between each generation. We determine the maximal number of generations in relation
to the population size in order to have a total of 15,000 individuals, which corresponds to
approximately five minutes of computation time for a medium-sized instance. We fixed
the following hyperparameters: parent selection type: steady state selection; mutation
type: random between -1 and 1. We also use early stopping when the best solution has not
improved for 40 generations. The following state space (of size 30,560) is explored by the
Bayesian optimization algorithm for 64 iterations, with the best combination found in bold:

• Crossover type: [Single Point or Two Points] (Two Points);
• Mutation percentage: 1 to 20 (4);
• Population size: 10 to 200 (144);
• Number of parents to keep: 2 to 5 (2).

4. Results and Discussions
The objective of the S-FRHACP-VS is to minimize total costs, thus this performance

criterion will be used to evaluate each approach. However, the solving time will also be
evaluated since it is a relevant criterion for the use of the approaches in the real world.
Since the S-FRHACP-VS is a novel problem, no other work exists in the literature. As
such, the new algorithms proposed in this paper, such as the genetic algorithms (GA and
GA-Warm-Start ) and the MIP heuristics (ITS-MIP-H and ITS-MIP-H-One-It ) are compared
to algorithms previously published for similar problems described in Section 2. Mainly, the
Fuel-First Heuristic (FF-H ) [13], the Max-Battery Heuristic (MB-H ) [13], two dynamic pro-
gramming heuristics (DP and DP+GD ) [13] and a MIP model (S1-MIP-H ) [14]. The main
difference between our approaches and these approaches is that none of these approaches
in the literature optimizes the flight speed.

Table 5 presents the solving time of each instance in seconds as well as total costs—
distinguished between the minimum, maximum, and mean costs over 20 runs with a
confidence interval of 95% for all approaches. GA-Warm-Start is the genetic algorithm that
uses all non-MIP solutions as starting individuals, while GA is the genetic algorithm that
starts from random individuals. All approaches except for the GA-Warm-Start and GA
are deterministic, thus the same solution is obtained for each run and only this solution
is presented. Moreover, for TB, the fuel cost does not vary, thus DP+GD returns the same
solution as DP . ITS-MIP-H-One-It is the iterative two-stage MIP heuristic with one single
iteration. Only ITS-MIP-H , ITS-MIP-H-One-It , GA , and GA-Warm-Start optimize speed,
all other approaches use the recommended speed.

4.1. Total Costs

For total costs, ITS-MIP-H obtains the smallest costs for all instances, with an average of
$7,918.29. Figure 6 presents the average difference in total costs between the ITS-MIP-H
and each other approaches, with a positive value representing that the ITS-MIP-H obtains
solutions that are smaller/better. Figure 7 presents the average percentage increase in the
total costs of all approaches over the test instances in comparison with the ITS-MIP-H . The
iterative process allows on average the ITS-MIP-H to reduce the total cost by $145 (2.33%),
while reducing the total costs on average by $578 (7.63%) compared to the best model
that does not optimize the speed (S1-MIP-H ). This shows the benefits of optimizing the
speed on the total costs. In comparison with the DP+GD , the ITS-MIP-H reduces the total
costs on average by $700 (8.87%) and $955 (11.43%) compared with the DP . MB-H greedily
tries to maximize battery usage by always burning fuel first to minimize overall weight. It
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Table 5. Solving time of each instance in seconds as well as total costs—distinguished between
the minimum, maximum and mean costs over 20 runs with a confidence interval of 95% for the
genetic algorithms (GA and GA-Warm-Start ). Results reported for the Iterative Two-Stage MIP
Heuristic (ITS-MIP-H ), the ITS-MIP-H ran for a single iteration (ITS-MIP-H-One-It ), the Stage-1 MIP
model (S1-MIP-H ), the genetic algorithms (GA and GA-Warm-Start ), the Dynamic Programming
approaches with and without the gradient descent post-treatment (DP and DP+GD ), the Fuel-First
Heuristic (FF-H ), and the Max-Battery Heuristic (MB-H ).

Instance Approach Solving Time (s) Total Costs ($)

Mean Min Max

TB

ITS-MIP-H 8.47 ± 2.26 4,053.79
ITS-MIP-H-One-It 2.80 ± 0.67 4,273.82

S1-MIP-H 1.77 ± 0.37 4,638.25
GA-Warm-Start 192.08 ± 33.47 4,273.76 ± 54.25 4,221.96 4,343.96

GA 190.00 ± 32.02 4,571.74 ± 460.19 4,232.65 5,036.84
DP+GD 1.35 ± 0.45 4,691.55

DP 1.35 ± 0.45 4,691.55
MB-H 0.64 ± 0.45 5,018.40
FF-H 0.07 ± 0.02 5,050.80

OT

ITS-MIP-H 8.88 ± 2.61 5,698.82
ITS-MIP-H-One-It 3.50 ± 0.91 6,037.98

S1-MIP-H 1.75 ± 0.45 6,380.47
GA-Warm-Start 178.84 ± 29.56 6,069.29 ± 160.81 5,925.75 6,223.41

GA 172.84 ± 29.59 6,351.04 ± 313.95 6,090.42 6,593.51
DP+GD 4.70 ± 1.86 6,399.29

DP 1.44 ± 0.51 6,675.27
MB-H 0.78 ± 0.30 7,471.08
FF-H 0.08 ± 0.04 7,925.38

KT

ITS-MIP-H 17.85 ± 4.32 7,257.39
ITS-MIP-H-One-It 6.13 ± 1.22 7,276.22

S1-MIP-H 4.36 ± 1.13 7,760.52
GA-Warm-Start 205.04 ± 33.27 7,562.22 ± 90.32 7,491.41 7,652.06

GA 197.59 ± 33.63 7,753.63 ± 196.47 7,516.39 7,867.23
DP+GD 4.66 ± 1.38 7,886.30

DP 1.62 ± 0.74 8,085.75
MB-H 1.27 ± 0.81 8,454.27
FF-H 0.10 ± 0.06 9,082.64

ST

ITS-MIP-H 13.59 ± 3.36 9,464.36
ITS-MIP-H-One-It 8.71 ± 2.24 9,464.36

S1-MIP-H 2.36 ± 0.71 9,943.74
GA-Warm-Start 254.99 ± 40.33 9,626.34 ± 78.14 9,532.82 9,694.56

GA 249.36 ± 41.44 9,737.01 ± 246.42 9,584.15 9,999.04
DP+GD 3.37 ± 0.92 10,051.21

DP 1.74 ± 0.67 10,609.48
MB-H 1.86 ± 0.81 10,844.11
FF-H 0.10 ± 0.03 11,184.57

TV

ITS-MIP-H 19.24 ± 4.51 12,264.88
ITS-MIP-H-One-It 7.03 ± 1.62 12,386.53

S1-MIP-H 3.10 ± 0.63 12,882.24
GA-Warm-Start 322.62 ± 53.64 12,605.92 ± 42.12 12,583.10 12,654.47

GA 315.12 ± 47.48 12,874.55 ± 199.33 12,708.59 13,024.28
DP+GD 3.37 ± 1.10 12,943.05

DP 2.44 ± 1.15 13,111.35
MB-H 2.97 ± 1.01 13,449.69
FF-H 0.16 ± 0.11 13,931.27

VT

ITS-MIP-H 12.29 ± 3.25 8,770.51
ITS-MIP-H-One-It 4.08 ± 1.21 8,945.93

S1-MIP-H 1.55 ± 0.67 9,371.25
GA-Warm-Start 250.40 ± 30.76 9,407.06 ± 119.86 9,294.66 9,544.14

GA 241.74 ± 20.87 9,295.94 ± 416.15 8,909.14 9,666.08
DP+GD 4.06 ± 1.64 9,874.05

DP 1.59 ± 0.41 10,063.71
MB-H 1.56 ± 0.78 10,268.48
FF-H 0.08 ± 0.03 10,511.44

performs significantly worse than the other approaches with an average $1,333 (15.54%)
difference with ITS-MIP-H . FF-H is a heuristic that does not use electricity except when
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mandatory. This heuristic is a good comparison point to evaluate the potential benefits
of using hybrid electric aircraft. For all instances it has the highest cost, with an average
reduction of $1,696 (18.64%) compared with the ITS-MIP-H . This shows that considering a
hybrid electric engine for an aircraft could lead to reduction of 18% in the operating cost of
a company. Moreover, this reduction is smaller when using only the recommended speed,
$1,118 (11.95%). Thus, varying the speed allows to reduce further the operating costs by
6.69% compared with FF-H .

Figure 6. Average increase in total costs over the test instances of each approach in comparison with
the ITS-MIP-H approach.

Figure 7. Average percentage increase in total costs over the test instances of each approach in
comparison with the ITS-MIP-H approach.

For the GA-Warm-Start and GA , we compare by computing an average over the 20 runs
to obtain an estimate of the performance of the algorithms on average. We observe that
both approaches yield higher total costs for all instances in comparison with the ITS-MIP-H
with an average augmentation of $480 (6.46%) compared with GA and $321 (4.17%) in
comparison with GA-Warm-Start . Moreover, the size of the confidence interval for GA
is much larger than GA-Warm-Start , suggesting that injecting solutions of all non-MIP
solutions helps to obtain a better solution more frequently. Except for VT, usage of the warm
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start allows to obtain better solutions, both in the best case and on average. The solutions
obtained without warm start are similar to the solutions obtained without optimizing
speed (DP+GD and S1-MIP-H ). Compared to the best model that does not optimize speed
(S1-MIP-H ), GA-Warm-Start reduces total costs on average by $239 (3.56%), while GA
reduces total costs by $65 (0.83%).

4.2. Solving Time

Figure 8 presents the average solving time of all approaches over the test instances.
All approaches, except genetic algorithms, solve all instances in less than 20 seconds. ITS-
MIP-H has the highest solving time of these approaches, with an average of 13.4 seconds
to compute its solution. It is on average 5.64 times slower than S1-MIP-H , showing that
considering the speed makes the problem significantly harder to solve. A single iteration of
the iterative two-stage MIP heuristic on average doubles the solving time, suggesting that
the Stage-2 MIP model has a similar complexity than the Stage-1 MIP model. Finally, genetic
algorithms have, by far, the longest solving time. The maximal number of generations has
been reached on all instances, suggesting that the genetic algorithms did not converge,
assuming that the genetic algorithms have converged when the best solution has not
changed after 40 consecutive iterations.

Figure 8. Semi log plot of the average solving time (sec) of each approach over the test instances.

4.3. Genetic Algorithms until Convergence

As a complementary experiment, the genetic algorithms (GA and GA-Warm-Start )
were run until convergence on a single run to compare the returned solution after the
limited number of generations and the converged solution. The behavior is expected to
be similar for all runs. Figures 9 and 10 present a convergence plot of each algorithm for
each instance. The dashed orange line represents the solution obtained after the generation
limit of 105 generations (representing 15 000 individuals). We observe that the number of
generations before convergence varies significantly between instances (from 300 to over
800 generations), while GA-Warm-Start reduces the number of generations needed for half
of the instances (KT, OT, and VT). Figure 11 presents the solving time of the two genetic
algorithms for each instance needed to reach convergence in comparison with the solving
time after reaching the maximal number of generations. Figure 12 presents the reduction in
total costs obtained by running the genetic algorithms until convergence for each instance.
The solving time increases on average to approximately 1,000 seconds per instance for both
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genetic algorithms, with total costs reduced by $192 for GA and $118 for GA-Warm-Start
compared to the value from Table 5. For all instances, the converged solution always
has higher total costs than the ITS-MIP-H , meaning that the ITS-MIP-H is still the best
approach in terms of solving time and total costs.

Figure 9. Convergence plot of the GA approach for each instance. The dashed orange line represents
the best solution obtained at the generation limit (15 000 individuals, which represents 105 genera-
tions). The Y axis has been cropped, since the first generations have high value best individuals.

Figure 10. Convergence plot of the GA-Warm-Start approach for each instance. The dashed orange
line represents the best solution obtained at the generation limit (15 000 individuals, which represents
105 generations).
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Figure 11. Solving time (sec) of the genetic algorithms with and without warm start for each instance
at generation limit (15 000 individuals) and after convergence (40 consecutive generations without
improvements).

Figure 12. Difference in total costs between the solution of each genetic algorithm between the
solution obtained after convergence (40 consecutive generations without improvements) and the
solution obtained at generation limit (15 000 individuals) for each instance.

4.4. Genetic Algorithm with MIP Warm Start

We also explored the potential of using the MIP solutions (S1-MIP-H , ITS-MIP-H-One-
It , and ITS-MIP-H ) as warm start solutions for the genetic algorithm. Figure 13 presents the
difference in total costs between the genetic algorithm using MIP solutions as warm start
and the ITS-MIP-H solution. On average, the genetic algorithm improves all solutions with
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an average reduction of $4.56 in comparison to the ITS-MIP-H with a maximum of $12.53
for TB and a minimum of $0.37 for KT. Thus, at best, it is able to improve the solutions by
removing approximation errors from the linearization of the energy consumption functions,
but these improvements are marginal, and the genetic algorithm does not seem to be able
to further improve the solutions returned by the ITS-MIP-H .

Figure 13. Difference in total costs between the solution of the genetic algorithm that uses MIP
solutions as warm start and the solution obtained by ITS-MIP-H for each instance.

5. Conclusions
In this paper, we present the Soft Fixed Route Hybrid Electric Aircraft Charging

Problem with Variable Speed (S-FRHACP-VS), a generalization of the S-FRHACP where
flight speed decisions are considered. We showed that considering flight speed decisions
makes the problem significantly harder to solve with known Mixed-Integer Programming
approaches. We thus propose two new heuristics to solve it: 1) an iterative variable-based
fixation heuristic (Iterative Two-Stage MIP Heuristic), and 2) genetic algorithms using other
solutions (state of the art solution for previously published similar problems) as warm
start. We compare our proposed models with previously published approaches to solve
similar problems on the same benchmark proposed by Deschênes et al. [14] consisting of ten
realistic instances representing real potential flights in Canada and France. These instances
are published as a benchmark for this problem.

For all instances, the Iterative Two-Stage MIP Heuristic (ITS-MIP-H ) performs better than
all other approaches, including genetic algorithms. We showed that considering variable
speed allows to reduce the average total cost by $578 in comparison to the best approach
from the literature that does not optimize speed. Moreover, considering hybrid electric
aircraft instead of a fuel-only aircraft allows to reduce total costs on average by $1,696 per
flight compared to an approach that does not use the electric battery. However, the iterative
process of the ITS-MIP-H does not guarantee convergence to a global optimum. Moreover,
the results are highly dependent on the choice of hyperparameters for the size of the grid
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used to linearize the energy consumption functions. In this paper, these hyperparameters
are chosen using the energy consumption function of OpenAP [18], specialized for fuel
consumption prediction and is not highly nonlinear. In the future, once real-world data
will become available, advanced highly nonlinear machine learning models, such as neural
networks, could be developed to more accurately predict the energy consumption. As
a result, higher grid size might be necessary to approximate these functions and lead to
significantly higher solving time.

In contrast, genetic algorithms do not suffer from this problem as they do not rely on
approximation of the energy consumption functions. Moreover, they are easier to imple-
ment than the MIP models, thus, in practice, they could be interesting options for aircraft
operators that do not have the resources to buy a CPLEX license and implement the Itera-
tive Two-Stage MIP Heuristic. Implementing the linearizations for the charging function
and energy consumption functions can indeed be tricky in comparison with using simple
genetic algorithm known frameworks. However, on average, the genetic algorithms are
outperformed by the ITS-MIP-H on total costs ($321) and solving time. Table 6 summarizes
the key differences between the ITS-MIP-H and GA-Warm-Start , highlighting the advan-
tages and disadvantages of each approach.

Table 6. Comparison of ITS-MIP-H vs. Genetic Algorithm for different criteria, mainly the total costs,
solving time, ease of implementation, and the need for function approximation.

Criterion ITS-MIP-H GA (Warm Start) Remarks

Total Costs Best overall Slightly higher costs GA still competitive (avg +$321)
Solving Time 13 sec 230–320 sec GA slower by 18–25×
Ease of Implementation Complex (MIP, function linearization) Simple (known frameworks) GA is user-friendly and flexible
Function Approximation Required (grid sampling approximations) Not needed GA supports black-box modeling

Injecting previous solutions as starting solutions generally helps improve the solution
returned by the genetic algorithm by yielding better results with smaller variation between
runs than without the warm start. In comparison with the best approach that does not
optimize speed in the literature, the best genetic algorithm reduces total costs by $239 on
average, suggesting that this algorithm is still interesting in practice.

These results provide new insights into the integration of hybrid electric aircraft within
transportation networks, contributing to advancements in aircraft routing optimization,
energy-efficient operations, and sustainable aviation policy development. For future work,
generalizing this problem to a fleet of hybrid electric aircraft could be explored, as well
as problem-specific mutations and crossovers to further enhance the performance of the
genetic algorithm. Moreover, the gene encoding of the genetic algorithm could be used
to explore other approaches such as gradient-descent based algorithms and blackbox
optimization techniques.
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