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Introduction

• The MULTI-INTER-DISTANCE constraint is a new global constraint.

• It is useful to model scheduling problems.

• We present a filtering algorithm achieving bounds consistency.

• The filtering algorithm relies on the theory of the shortest paths 
in a graph.

• We experimented on the runway scheduling problem.
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MULTI-INTER-DISTANCE

• The constraint MULTI-INTER-DISTANCE([X1, ... Xn], m, p) is satisfied 
iff no more than m variables are assigned to values lying in a 
window of p consecutive values.
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MULTI-INTER-DISTANCE

• The MULTI-INTER-DISTANCE constraint encodes a scheduling 
problem where the variables Xi are the starting times of the task.

• Each task has a processing time p.

• There are m identical resources.
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MULTI-INTER-DISTANCE

• The MULTI-INTER-DISTANCE constraint encodes a scheduling 
problem where the variables Xi are the starting times of the task.

• Each task has a processing time p.

• There are m identical resources.

• This constraint encodes other constraints

• For m = 1 and p = 1, the MULTI-INTER-DISTANCE constraint 
encodes the ALL-DIFFERENT constraint.

• When m = 1, the constraint specializes into the
INTER-DISTANCE constraint.
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Consistencies

• Domain consistency is NP-Hard to enforce as it is for the 
Inter-Distance constraint.
[Artiouchine and Baptiste 2005]
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Consistencies

• Domain consistency is NP-Hard to enforce as it is for the 
Inter-Distance constraint.
[Artiouchine and Baptiste 2005]

• We show how to enforce bounds consistency in polynomial 
time.

• We assume that the domain of a variable Xi is an interval [li, ui).

• We want to shrink this interval to remove all values that are 
not involved in any solution.
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Test for Satisfiability
• The Multi-Inter-Distance constraint is satisfiable iff the following 

scheduling problem has a solution:

• Task i starts at or after time li but before time ui

• Task i is executed without preemption for p units of time

• Task i does not overload one of the m resources.

• This scheduling problem is solved in time O(n2 min(1, p/m)) 
[López-Ortiz & Quimper, 2011].

• We use this scheduling algorithm as a sub-routine in our filtering 
algorithm.
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X1 � [7, 9), X2 � [2, 4), X3 � [4, 7), X4 � [2, 7), X5 � [3, 5)

Multi-Inter-Distance([X1, . . . , X5],m = 2, p = 3)

Scheduling Graph
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Forward Edges

Connect two time points 
that are p units of time 
apart with an edge of 
weight m.
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Connect a time point with 
its predecessor with an 
edge of weight 0.
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Backward Edges

Connect an upper bound 
with a lower bound. The 
absolute value of the 
weight is the number of 
domains contained in the 
interval spanned by the 
edge.
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Theorem

The Multi-Inter-Distance 
constraint is satisfiable if 
and only if the scheduling 
graph has no negative 
cycles.

[Dürr & Hurand 2009]
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First Pruning Rule

• Consider a variable Xi and its domaine [li, ui).
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scheduling graph.
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First Pruning Rule

• Consider a variable Xi and its domaine [li, ui).

• Reducing the upper bound leads to a new problem... and a new 
scheduling graph.

• Definition: If the altered scheduling graph has a negative cycle, the 
interval [li, v) is a forbidden region.

• Theorem: The forbidden region is effective for all variables whose 
domain upper bound is greater than or equal to ui.

• Rule: Lower bounds in that forbidden region should be increased to v.
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Second Pruning Rule
• Consider a variable domain dom(Xi) = [li, ui)
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Second Pruning Rule
• Consider a variable domain dom(Xi) = [li, ui)

• Let u* be the smallest domain upper bound greater than li.

• If the altered scheduling graph        has no negative cycles, there 
exists a solution with Xi ∈ [li, u*).

• What is the smallest value in [li, u*) that has a support?

• Theorem: The smallest value that has a support in dom(Xi) is 
the largest value that is at distance 0 from li in     .

• Rule: Compute the shortest paths from li to all the other nodes. 
Set the new lower bound to the largest value that is at distance 0 
from li.
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Filtering Algorithm
We process the variables in non-decreasing order of upper bounds.

1. Let the interval [li, ui) be the domain of the variable Xi.

2. Let u* be the smallest domain upper bound greater than li.

3. If the altered scheduling graph       has a negative cycle, the interval 
[li, u*) is a forbidden region and we prune the domains accordingly. 
Go to 2.

4. If the altered scheduling graph has no negative cycles, let v be the 
largest value at distance 0 from li.

5. Set the lower bound of Xi to v.

6. Process next variable.

13

Gu�

i



Running Time Complexity

• Computing a shortest path: 

• Maximum number of shortest
path computations:

• Total running time complexity:
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O(n2 min(1,
p

m
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O(n3 min(1,
p

m
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Runway scheduling problem
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MID Multi-Inter-Distance

MVH Edge-Finder
[Mercier & Van Hentenryck]

OC Overload Checking

One runway
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Number of instances solved vs time

O(n3 min(1,
p

m
))

O(n2)

O(n log n)



Two or Three Runways
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Number of instances solved vs time

MID Multi-Inter-Distance

MVH Edge-Finder
[Mercier & Van Hentenryck]

OC Overload Checking
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Conclusion

• The Multi-Inter-Distance constraint is a new constraint that 
models certain scheduling problems.

• We showed how to enforce bounds consistency in polynomial 
time.

• The filtering algorithm relies on the properties of shortest paths 
in the scheduling graph.

• Experiments on the runway scheduling problem proved that a 
strong consistency is necessary to efficiently solve the problem.
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