

Disjunctive Scheduling with Setup Times: Optimizing a Food

Factory

Nicolas Blais 1, Alexis Remartini 1, Claude-Guy Quimper 1, Nadia Lehoux 1,
Jonathan Gaudreault 1

1 Université Laval, Québec, Canada
{nicolas.blais.7@ulaval.ca, alexis.remartini.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca,

nadia.lehoux@gmc.ulaval.ca, jonathan.gaudreault@ift.ulaval.ca}

Abstract. We propose a new approach to solve scheduling problems applied to a food factory. The goal
is to schedule the recipes in a way that minimizes the total setup time. Our model allows splitting a
recipe in two batches if necessary. It also considers other specific constraints like avoiding too long
setup on a day shift, having a maximum of tasks done during days shift, etc. A good heuristic based on
the idea of scheduling the most difficult tasks as soon as possible is presented.

Keywords: Scheduling, Constraint Programming, Minimizing Setup Times.

1. Introduction

The food industry is an environment with many standards to respect that can quickly become complex if
multiple products are made on the same production line. In some factories, planners must manage the
availability of the ingredients and of the production line in addition to the allergens of each product. They
have to take into account the setup time between all the products which depends largely on the allergens of
the products. The setup time, that includes the cleaning efforts, typically takes much longer between a
recipe that contains allergens and a recipe that does not because workers must conduct an allergen clean-
up for the entire production line which can involve many hours. This clean-up does not occur when passing
from an allergen-free product to a product with allergens.
The aim of this work is to schedule a set of tasks for a planning horizon over the weeks 5 to 8 with the
objective of minimizing the setup times. The first 4 weeks are not considered (frozen horizon) because
changes at this time generate conflicts for the schedule and the procurement of raw materials. The schedule
is recomputed weekly. The tasks are sequentially performed, i.e. we schedule on a single machine.
The following methodology was followed. First, an analysis of the problem was carried out to clearly
identify the problem. Then, the collaboration with the company made it possible to obtain data and
constitute a benchmark. We designed a model and improve the search strategy of a constraint solver to
obtain the best possible results on the instances. The solutions were presented to the company (validation
of the model) and modifications were made to satisfy the set of constraints that must be taken into account
by the planners. We reduce by 26%, in average, the setup time compared to what the human planners did.
In the literature, there are a few papers that use constraint programming applied to the food industry. Our
model contributes to the field by creating a set of constraints adapted to the branching strategy we propose.
This paper is organized as follows. Section 2 states the problem. Section 3 presents the literature
surrounding our problem. The model and the branching strategy are presented in Section 4. The
experimental results are presented in Section 5. Section 6 concludes the paper.

8th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2020, April 22-24, Austin, USA

2. Problem Description

The problem was observed in a world recognized granola bar and cookie factory that offers a wide range
of products, some of them being allergen-free. To help the planners manage such a complex product
portfolio, we develop an application which takes their production system's dynamics into account.
In our notation, we use capital letters to denote decision variables and sets and small letters for parameters
or constants. We consider a set of tasks T* that correspond to cookie recipes. Each task i ∈ T* has a due
date lcti called Latest Completion Times, release date esti called Earliest Starting Time which is computed
according to the availability and the preservability of the ingredients, and a processing time pi that is
proportional to the number of cookies to produce. A task i has a starting time Si which is unknown and
needs to be computed. The transition time (or setup time) between a task i to a task j is given by ti,j. This
time takes into account the cleaning time and the machine reconfiguration. All production lines are stopped
on the weekend and some are idle during the nights. These downtimes can be used to conduct a setup, but
the production itself is stopped. Let J be set of days in the scheduling horizon. For each day d ∈	 J, the
working shift starts at time shiftBegind and ends at time shiftEndd. There is only one shift per day.
There are two types of tasks: production orders and planned orders. The production orders are already
scheduled and cannot be moved. We therefore have esti + pi = lcti which leaves no freedom on the time the
task is scheduled: Si = esti. The planned orders need to be scheduled so the time window in which the task
must be scheduled is not tight: esti + pi < lcti. Moreover, planned orders can be executed in two segments
in order to have a better use of the production line i.e. avoiding having unused time before the end of the
shift. For instance, a task i can start on Monday, be stopped during the night and be resumed on Friday. At
the end of its execution on Friday, the task must be completed, i.e., the time spent on Monday and Friday
must sum up to the processing time pi. Nothing forces the two tasks to be adjacent in the schedule i.e., there
may be other tasks running between them. When a task is executed in two parts, the duration of each of its
part must be greater or equal to a threshold minDuration. Tasks cannot be separated into more than two
parts, because starting a new production can decline the productivity. Indeed, the first minutes of production
are often unstable. So, separating a task into too many parts increases the chances of not getting the right
amount of product in the allotted time.
There is a limit of maxTaskShift tasks that can be achieved during a workday (or shift) to avoid too many
setups during a day. Only setups with duration below a threshold maxSetup are permitted during a working
day in order to avoid idle workers and to maximize the use of daytime. A subset of tasks TM Ì T* requires
setups that can only be done on the weekend. Tasks in TM can be scheduled on Mondays (JM Ì J) or right
after another task in TM. All parameters and sets are summarized in Tables 1 and 2.

 Table 1: List of Sets. Table 2: List of Parameters.

3. Literature Review

Scheduling problems are numerous and varied. Allahverdi [12] presents a survey of scheduling problems
with setup times. The notation used (a|b|g) classifies our problem in the category 1|STsd|TST: 1 because
there is a single machine, STsd for sequence-dependent setups and TST for minimizing the sum of the setup
times. Few papers explore this problem [12].
The core of the studied problem has the same form as the Traveling Salesman Problem with Time Windows
(TSPTW) which was proved to be NP-Hard [8]. Indeed, tasks can be represented as cities and setup times
between tasks as distances between cities. The shortest Hamiltonian path provides an ordering of the tasks

Sets Definition
T* Set of all fictive tasks
TM Set of tasks that must be done on a

Monday
J Set of working days
JM Set of working days that are Mondays
T Set of task parts
T1 Set of the first parts of the tasks
T2 Set of the second parts of the tasks

Parameters Definition
ti,j Transition time from a task i to a task j
esti Earliest starting time of the task i
lcti Latest completion time of the task i
pi Processing time needed for the task i
shiftBegind Starting time of the working day d
shiftEndd Ending time of the working day d
minDuration Minimum duration of separated task
maxTaskShift Number maximum of tasks during a shift
maxSetup Maximum setup time allowed during day

8th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2020, April 22-24, Austin, USA

that minimizes the sum of the setup times. Several methods have been developed to solve this problem.
Ángel-Bello et al. [6] used Mixed Integer Programming MIP. Abdallah et al. [7] used a heuristic approach
(Family Splitting Algorithm) to find quality solutions. Fagerholt et al. [5] use dynamic programming.
Claassen et al. [3] uses a relax-and-fix heuristic. Hebrard and Grimes [4] use Constraint Programming
(CP) to solve job shop problems with setup times. Given the range of possible solving methods, it becomes
difficult to know which one is the best. Ku and Beck [1] compare MIP and CP methods. The results showed
that CP outperforms MIP on larger instances. As a result, using CP for our case becomes a natural choice.
Constraint programming is a technology originating from artificial intelligence that solves combinatorial
and optimization problems. It offers a large collection of constraints to model the problems: from simple
constraints such as linear constraints to more complex ones that entirely model the usage of a resource in a
scheduling problem. A constraint satisfaction problem is defined by a set of variables. Each variable Xi has
a domain denoted dom(Xi). Each constraint is posted on a subset of variables and restricts their possible
assignments. A solution is an assignment where each variable is given a value from its domain and each
constraint is satisfied. In a constraint optimization problem, one also aims at minimizing/maximizing an
objective function. Constraint solvers usually explore a search tree and perform a branch and bound to solve
optimization problems under constraints. At each node of the tree, filtering algorithms associated with each
constraint of the problem prune the branches that cannot lead to a solution.
Some constraints can be simple. For example, the ELEMENT constraint ensures that a variable X takes the
value at index I in an array of variables Y, i.e. X = Y[I]. However, what makes constraint programming so
efficient is the use of global constraints posted on many variables whose filtering algorithms significantly
prune the search space. For example, the DISJUNCTIVE([S1, …, Sn], [p1, …, pn]) constraint introduced in [9]
prevents any pair of tasks i and j with starting time variables Si and Sj and processing times pi and pj from
executing simultaneously: Si + pi ≤ Sj ∨ Sj + pj ≤ Si. This constraint uses filtering rules (e.g. time-tabling)
to remove inconsistent values from the domain of the starting time variables. Dejemeppe et al. [2] created
a variation of DISJUNCTIVE that takes into account setup times. The global constraint
WEIGHTEDCIRCUIT([N1, …, Nn], W) [15] accepts assignments that encodes a Hamiltonian cycle in a graph
with a total weight smaller than or equal to W. The nodes are labeled with integers from 1 to n. The node
next to node i in the cycle is Ni. The Global Cardinality Constraint [10] GLOBALCARDINALITY([X1, …, Xn],
[l1, …, lm], [u1, …, um]) ensures that the value v occurs between lv and uv times in the vector �⃑�. Finally,
meta constraints allow enforcing relations between constraints. For instance, in the constraints C1 ⟹	C2
and IFTHENELSE(C1, C2, C3), constraint C2 is satisfied whenever constraint C1 is satisfied and constraint C3
is satisfied whenever constraint C1 is violated.

4. Methods and model

4.1. Variables

We present a model that encodes our problem. The main decision variables are the starting time of a task Î
T denoted Si and the task that follows a task i in the schedule denoted Ni. All other variables are auxiliary,
which means their values are function of Si and Ni. Table 3 summarizes the variables and their domains.

Table 3: List of variables.

Variable Domain Definition
W [0, ∞) Sum of all transition times
Ni T \ {i} Task next to task i
PRi T \ {i} Task preceding task i
Si [esti, lcti] Starting time of the second part of task i
Pi1 [minDuration, pi] Processing time of the first part of task i
Pi2 [0, pi - minDuration] Processing time of the second part of task i
P̃i [0, pi + max

j∈T*
ti,j] Processing time, including the transition to task next to i

Di J Working day of the task i
Di’ J È {-1} Working day of the task i if p̃i > 0 and -1 otherwise
TNDi shiftBegin Starting time of the upcoming morning of the task i
POSi [1, maxTaskShift] Position of the task i in the shift

8th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2020, April 22-24, Austin, USA

Mi shiftBegin È {0} Starting time of the morning following task i if the maximum
number of tasks is reached and 0 otherwise.

Since the tasks are preemptive and can be executed in two parts, we declare a set of tasks T that contains
two tasks i1 and i2 for each task i in T*. These tasks represent the first part and the second part of task i. We
also have in T two virtual tasks, sentinel-begin and sentinel-end, that mark the beginning and the end of the
schedule. Each task i1, i2 in T has starting time variables Si1 and Si2 with domain dom(Si1) = dom(Si2) = [esti,
lcti]. They also have processing time variables Pi1and Pi2with domains dom(Pi1) = [minDuration, pi] and
dom(Pi2) = [0, pi – minDuration]. When Pi2 = 0, the task entirely executes in the first part. The next
variable Ni indicates which task follows task i and has for domain dom(Ni) = T \ {i}. The variable PRi
represents the task that precedes task i and has the same domain as Ni. The variable P̃i, for i in T, is duration
of the task part i plus the setup time that follows the task. The working day variable Di tells the day which
a task part is done with J as domain. Di’ is used to represent the working day of task i if Pi > 0 and -1
otherwise. The value -1 occurs when i is the second part of a task that is entirely executed in its first part.
The starting time of the upcoming morning of a task i TNDi can take any value in shiftBegin. The position
of a task i in a shift is denoted with POSi and has for domain dom(POSi) = [1, maxTaskShift]. Finally, the
variable Mi takes the value of the next morning of task i if the maximum number of tasks is reached and 0
otherwise. So, its domain is dom(Mi) = shiftBegin È {0}.

4.2. Main Constraints

We present the constraints of the model that is summarized below. The objective function (1) minimizes
the total setup time (W) i.e. the transition time ti,Ni of a task i with its successor Ni for all task i.

Minimize W =' ti,Ni

i∈T

. (1)

Pi1
+	Pi2

= pi. ∀ i ∈ T* (2)
Si1

+	Pi1
≤ Si2

. ∀ i ∈ T* (3)
Ni2
	≠	i1. ∀ i ∈ T* (4)

Pi1
= pi⟹ Ni1

= i2∧ Di1
= Di2

. ∀ i ∈ T* (5)
Pi1

= min ,pi, shiftEndDi1
- Si1

-. ∀ i ∈ T* (6)

 Si1+ pi	> shiftEndDi1
⟹ Si1

+	pi	> shiftEndDi1
+ minDuration	. ∀ i ∈ T1 (7)

P̃i=Pi+ti,Ni. ∀ i ∈ T (8)
DISJUNCTIVE(S, P/). (9)

WEIGHTEDCIRCUIT(N, t, W). (10)
Nsentinel-end=	sentinel-begin. ∀ i ∈ T (11)
Di ≥ d⇒ Si ≥ shiftBegind. ∀ i ∈ T,	∀ d ∈ J (12)
Di ≤ d ⇒ Si ≤ shiftEndd. ∀ i ∈ T,	∀ d ∈ J (13)

IFTHENELSE(Pi>0,	Di’ =		Di,	Di’ =		-1). ∀ i ∈ T (14)
GLOBALCARDINALITY(D’, maxTaskShift). (15)

ti,j	>	maxSetup	∧	Di =	Dj	⟹ Ni	≠	j. ∀ i, j ∈ T (16)
ti,j > (maxTaskShift - 1)maxSetup ∧ tj,i > (maxTaskShift - 1)maxSetup⟹ Di ≠ Dj. ∀ i, j ∈ T (17)

i=NPRi ∀ i ∈ T (18)
Di∉	JM ⟹ PRi∈	TM. ∀ i ∈ TM (19)

TNDi = ShiftBeginDi + 1 ∀ i ∈ T (20)
DNi=	Di ∧ PNi

	≠	0	⟹	POSNi	=	POSi	+	1. ∀ i ∈ T (21)
DNi= Di ∧ PNi

 = 0 ⟹ POSNi	= POSi. ∀ i ∈ T (22)
DNi≠ Di ⟹ POSNi	= 1. ∀ i ∈ T (23)

IfThenElse(POSi =	maxTaskShift	∧	pNi
≠0,	Mi=TNDi,	Mi=	0). ∀ i ∈ T (24)

Ni∈{T1}⋀	[(pNi
≥ 2	minDuration ∧ shiftEndDi- Si - Pi	≥ minDuration)	∨

 (pNi
< 2minDuration ∧ shiftEndDi- Si - Pi	≥	pNi

)]
 ⟹	SNi= max(Si	+	P̃i, Mi, estNi).

∀ i ∈ T (25)

8th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2020, April 22-24, Austin, USA

A task i in T* can be executed in two parts that are represented by two tasks i1 and i2 in T. Constraint (2)
makes sure that the sum of the durations of the parts in T is equal to the duration of the original task in T*.
Constraint (3) forces the first part to execute before the second. Constraint (4) is redundant and prevents
the first part to follow the second. In the situation where a task is executed in one part, the duration of the
first part is the duration of the original task: Pi = pi. In this case, we force the second part, with a null
duration, to succeed to the first part (5). If a task executes in two parts, (6) forces the first part to complete
at the end of the shift. In other words, only the end of a shift can justify not to fully execute a task.
Constraint (7) ensures that the time left to execute in the second part is longer than minDuration.
The variable P/ 6 gets the duration to execute a task part i Î T and to complete the setup after the task (8).
These durations are passed to the DISJUNCTIVE constraint (9) to ensure that starting time variables Si are set
in a way that no two tasks nor setups overlap. The constraint WEIGHTEDCIRCUIT (10) takes as input the next
variables Ni and the setup time matrix t and maps them to the variable, the sum of the transition times. In
order for the next variables to form a cycle, we force the sentinel task sentinel-begin to follow the task
sentinel-end (11). Constraints (12) and (13) force the execution of a task during a work shift. This encoding
with two constraints allows a stronger filtering between the variables Si and Di.
A specificity of the production lines limits the number of tasks during a day (maxTaskShift). Tasks with a
null processing time are not included in the total number of tasks. Constraint (14) sets the variable Di’ to
the working day if the processing time of a task i is greater than 0 and -1 otherwise. Constraint (15) prevents
any day (except -1) to occur more than maxTaskShift times in vector D’.
Setups longer than the parameter maxSetup during a working day are not permitted. Constraint (16) ensures
that a transition beyond that threshold leads to a task that is performed another day. Exploiting the triangle
inequality, Constraint (17) states the condition in which the transition time is simply too large to allow two
tasks executing on the same day, even if these two tasks execute first and last on that day.
Tasks in TM are either executed on a Monday or preceded by a task in TM. The variable PRi is the tasks that
precedes i. Constraint (18) maps the predecessor variables to the next variables. Using the predecessor
variable, Constraint (19) enforces that a task in TM is either done a Monday or after a task in TM.

4.3. Additional Constraints

The constraints that we presented so far fully encode the problem. However, constraint programming takes
its efficiency from its filtering algorithm and it is sometimes necessary to add additional constraints in order
to speed up the search process. These constraints are presented in this section. Note that these constraints
might eliminate some solutions that are known to be suboptimal.
The solver constructs a solution by choosing variables and assigning them a value. We add to the model
constraints whose filtering algorithm sets the value of the starting time variable SNi whenever the next
variable Ni is affected to a value. Before explaining these constraints, we declare two variables. The variable
TNDi (time of next day) is the time at which the upcoming shift starts. It is set by Constraint (20). The
variable POSi is the position of a task i in its shift.
The position of a task is determined by three cases. The first case occurs when a task i and its next task are
executed on the same day and the next task has a non-null processing time. In this situation, the
Constraint (21) is applied and the positions of the tasks are one apart. The second case occurs when a task
i and its next task are executed on the same day, but the next task has a null processing time. In such a case,
Constraint (22) makes both tasks have the same position. The third case occurs when a task and its next
task occurs on different days. In that case, Constraint (23) resets the position of the next task to one. When
the variable POSi is given the value maxTaskShift, the following tasks must be executed on the next day. If
this happens, Constraint (24) sets the variable Mi to the value of the next morning and 0 otherwise.

Ni∈{T1}⋀	[(pNi
≥ 2minDuration ∧ shiftEndDi- Si - Pi< minDuration)	∨	

 (pNi
< 2minDuration ∧ shiftEndDi- Si - Pi <	pNi

)]
 ⟹	SNi= max(TNDi, estNi).

∀ i ∈ T (26)

Ni∈{T2}⋀	[(pNi
= 0)∨(pNi

≥ minDuration ∧ shiftEndDi- Si - Pi ≥ pNi
)]		

 ⟹	SNi= max(Si	+	P̃i, Mi).
∀ i ∈ T (27)

Ni∈{T2}⋀	(pNi
≥ minDuration ∧ shiftEndDi- Si - Pi < pNi

)																						
 ⟹SNi= TNDi.

∀ i ∈ T (28)

8th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2020, April 22-24, Austin, USA

Now we have all what is needed in order to be able to set the starting time variable SNi when the next
variable Ni is set. There are four possible cases. Constraint (25) handles the first case when the task is a first
part. This constraint checks whether a task can be immediately executed after another task before the end
of the day shift. If so, the task starts after the preceding task, the next morning if the day is full, or at its
earliest starting time (whichever comes first). For a task with a processing time greater than or equal to
twice minDuration, we need to have a minimum of minDuration time before the night to start it. For the
task with duration less than twice minDuration, we need to have enough time to execute the task entirely
to be in this condition.
The second case is applied only for the first part of a task and is handled by (26). This constraint manages
the case when the next task must start on the upcoming morning (TNDi) or at its earliest starting time.
Except for the fact that it is only applied to the first part of the task, this constraint manages the opposite
case of the Constraint (25). If there is not enough time before the end of the day shift, the task must be done
in the upcoming morning. If the processing time of the next task (pNi) is greater than twice the minDuration
and there is less than minDuration time before the night, or if a task has less than twice minDuration and
there is less than the processing time pNi before the end of the working day, this case is applied.
The third case is only applied to the second part of a task and is handled by (27). This constraint manages
the case when a second part of a task must start directly after the previous task or start the next day if the
current day is full. It happens when the first part executes completely, and the second part has a null
processing time. The task must start directly after the first part. It should be noted that in that case, Mi will
always be zero. It also happens there is enough time before the end of the working day to finish the task.
Finally, the last case is also applied to the second part of the task and is modelled with Constraint (28). It
manages the case when there is not enough time to complete the task before the end of the working day.
The task must therefore start in the beginning of the upcoming morning TNDi.

4.4. Search Strategy

Constraint Programming is an exact method that guarantees an optimal solution, given sufficient time. A
branching heuristic can help speeding up the search process. We design search heuristic called opportunity
cost heuristic that analyses the domains of the next variables N, the starting time variables S, and the
transition matrix t, and that branches on the next variables N. We recall that filtering algorithms keep
removing values from the domains during the search process and that the heuristic makes a choice according
to the current domains rather than the initial domains stated in Table 3. The heuristic’s principle relies on
the preference to schedule now the tasks that will be harder to schedule later. Branching on the variables N
is a strategic choice. If branching on Ni = v1 leads to a failure, the solver branches on Ni = v2 which is a
significantly different solution. If the heuristic was branching on the starting time variables, say Si = 1, upon
a failure, the solver would try another value such as Si = 2. However, starting the task i one minute later is
not significantly different. Let i be the current task (initially the task sentinel-begin). The heuristic finds
which task v should be assigned to Ni. After the branching Ni = v is performed, v becomes the new current
task. The heuristic chooses the task v with the smallest value in the domain of its starting time S and breaks
ties by selecting the task that is more difficult to schedule later. This is conducted based on these rules:

1. Choose v that contains the smallest value in dom(Sv). If v is unique, choose v, else go to Step 2.
2. For each task v computed in Step 1, calculate the sum of the transition times of a task not yet

scheduled toward v. Go to Step 3.
3. Randomly choose the next task with probability proportional to the sums computed in Step 2.

Figure 1: Example of the use of the opportunity cost heuristic

We conduct a search with restarts, i.e. after exploring a given number of nodes in the search tree, the solver
restarts the search from the root node. Such a search strategy requires the heuristic to make some

B

D

2

1

A C1

B

D

2

1

A C1

B

D
C

1
1

Sum	:	2

B

C
D

1
2

Sum	:	3
Total	sum	:	5	

C D

Probability: 40% 60%
Sum	:			 32

Step	1 Step	3Step	2

8th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2020, April 22-24, Austin, USA

randomized decisions in order not to re-explore the same portion of the search, hence the randomization of
Step 3. Figure 1 shows an example of the use of the heuristic. In the first step, task A is already scheduled,
and we want to know what task should be executed afterwards. B is automatically eliminated because it
can start one unit of time after the others. In step 2, the setup of tasks not yet scheduled towards tasks C and
D is calculated. This result is useful in step 3 in order to make task D more likely to be chosen. Task D is
therefore more difficult to schedule because it has a chance to end up after task C causing a setup of 2 units.

5. Experimentation

The experiments were carried out in collaboration with a cookie factory. During the development of the
model, the company sent data that was used by their planners. Instances of the problem were solved with
the model and the solutions were returned to the planners. They analysed them and gave feedback to
improve the model. This has been repeated until the results were of good quality. For some of these
instances, we had the actual schedules used by the planners which allowed us to make a comparison
between the schedules made manually and those automatically generated by our model.
Branching heuristics: Prior to designing the opportunity cost heuristic described in Section 4.4, we tried
standard branching heuristics available in most constraint solvers. We used Smallest, a heuristic that selects
the starting time variable Si with the smallest value in its domain and assign it to its smallest value. Smallest
can be used in conjunction with two meta branching heuristics: Last Conflict [12] and Conflict Orde-
ring [13]. These meta branching heuristics apply the Smallest branching heuristic, but as the search explores
the search tree, the meta heuristics learn which variables are conflictual and start altering the original
Smallest heuristics in order to give more importance to these variables. These meta branching heuristics
were specially designed for scheduling problems. All these heuristics are already implemented in the solver
Choco 4.0.6. We also implemented and integrated the opportunity cost heuristic to that solver.
Search strategy: When the exploration of the search reaches a dead end, i.e. when the choices made so far
by the branching heuristics cannot lead to any solution, the search needs to reconsider the choices that were
made. Generally, a solver reconsiders the last choice that was made until all choices are exhausted. It then
reconsiders the previous last choice, and so on. This search strategy is called Depth First Search (DFS).
Another search strategy called Limited Discrepancy Search (LDS) has been effective in many industrial
cases [14]. This strategy explores the solution with zero reconsidered choice, then all solutions with exactly
one reconsidered choice, then all solutions with exactly two reconsidered choices, and so on. LDS requires
the branching heuristics to be deterministic, for that purpose, we replace Step 3 of the opportunity cost
heuristic with a deterministic choice: we select the task with the largest sum computed at Step 2.

Table 1: Comparison between the planners and computed schedule

Instances Human
Planners

Smallest
time Last conflict Conflict

ordering
Opportunity
cost heuristic

Opportunity cost
heuristic with LDS

1 1665 1135 1175 1145 1070 1070
2 2965 2160 2160 2185 2085 2045
3 1645 1390 - - 1305 -
4 1225 1260 1260 1290 1110 -
5 1655 1470 - 1555 1185 1105

The experiments were done on a MacBook Pro with a 2.6 GHz Intel Core i7 processor. We solve 5 industrial
instances counting from 45 to 65 tasks. Table 1 reports the best objective value (cumulative setup time in
minutes) obtained for each solving technique after a 15-minute cut-off as well as the objective value
obtained by the human planners. Our solutions have shorter setup times than what the human planners
obtained. The Last Conflict and Conflict Ordering fail to always return a solution within 15 minutes. With
that respect, the opportunity cost heuristic is a better solution than Smallest, Last Conflict, and Conflict
Ordering. Breaking the ties with the sum of the entering setups gives better results on the studied instances
and a solution is found for each instance. LDS sometimes gives better results than any branching heuristics
used with DFS. However, sometimes, it does not find a single solution which makes this heuristic unusable
for the case study. The reason for this performance is that the number of side constraints can regularly leads
to failures. Depth First Search (DFS) can quickly correct this error by making another branching, but LDS
tries to explore all solutions with fewer reconsidered choices rather than quickly fixing the solution.

8th International Conference on Information Systems, Logistics and Supply Chain
ILS Conference 2020, April 22-24, Austin, USA

Overall, our model with the opportunity cost branching heuristic and a DFS search strategy offers the best
performances. It makes it possible to find better solutions than the planners with a reduction of setup time
of 26%. Only the use of LDS allows better solutions, but it could not solve all instances. The difference in
the objective values between opportunity cost heuristic with DFS and with LDS was not significant.

6. Conclusion

In the food industry, setup times can affect the efficiency of a production line since it is not a value-added
activity. In addition, planners must take into account several constraints such as the availability of
ingredients and the production line. The goal of this work is to schedule a set of tasks on a single machine
for the weeks 5 to 8 of the upcoming horizon. This one is done weekly using constraint programming. The
model has been developed iteratively with the company.
The scientific contribution of this work is to use constraint programming to solve an industrial problem in
scheduling that minimizes setup times. Indeed, there is very few papers that use this method to solve applied
cases. Also, the model’s originality is to have created a set of constraints that aim to help the heuristic in
its branching. For the industrial contribution, we managed to solve complex cases by obtaining good results.
We obtain an improvement of 26% on average compared to what was done with the planners.

7. Acknowledgement

We thank Vincent Gingras who laid the basis of the model in the early stage of this project.

8. References

1. Ku, W.Y., Christopher Beck, J.: Mixed Integer Programming Models for Job Shop Scheduling: A Computational
Analysis. In : Computers & Operations 73, pp. 165--173 (2016)

2. Dejemeppe, C., Van Cauwelaert, S., Schaus, P.: The Unary Resource with Transition Times. In : Principles and
Practice of Constraint Programming, pp. 89--104 (2015)

3. Claassen, G.D.H., Gerdessen, J.C., Hendrix, E.M. and van der Vorst, J.G.: On production planning and scheduling
in food processing industry: Modelling non-triangular setups and product decay. In : Computers & Operations 76,
pp. 147--154 (2016)

4. Grimes, D., Hebrard, E.: Job shop scheduling with setup times and maximal time-lags: A simple constraint
programming approach. International Conference on Integration of Artificial Intelligence (AI) and Operations
Research (OR) Techniques in Constraint Programming, pp. 147--161 (2010)

5. Fagerholt K, Christiansen M.: A travelling salesman problem with allocation, time window and precedence
constraints - an application to ship scheduling. In: Int. Transactions in Operational Research, pp. 231-244 (2000)

6. Ángel-Bello F, Álvarez A, Pacheco J, Martínez I.: A single machine scheduling problem with availability constraints
and sequence-dependent setup costs. In: Applied Mathematical Modelling 35, pp. 2041--2050 (2011)

7. Abdallah KS, Jang J.: Scheduling a single machine with job family setup times to minimize total tardiness. In: 2017
International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 665--672 (2017)

8. Carlier J.: The one-machine sequencing problem. In: European Journal of Operational Research, pp. 42--47 (1982)
9. Benchimol P, Van Hoeve WJ, Régin JC, Rousseau LM, Rueher M. Improved filtering for weighted circuit

constraints. In: Constraints 17, no. 3, pp. 205--233 (2012)
10. Oplobedu A, Marcovitch J, Tourbier Y.: CHARME: Un langage industriel de programmation par contraintes,

illustré par une application chez Renault. In: Ninth International Workshop on Expert Systems and their
Applications: General Conference, pp. 55--70 (1989)

11. Allahverdi A.: The third comprehensive survey on scheduling problems with setup times/costs. In: European Journal
of Operational Research, pp. 345--378 (2015)

12. Lecoutre C, Saïs L, Tabary S, Vidal V.: Reasoning from last conflict(s) in constraint programming.In: Artificial
Intelligence, pp. 1592--1614 (2009)

13. Gay S, Hartert R, Lecoutre C, Schaus P.: Conflict ordering search for scheduling problems. In: International
conference on principles and practice of constraint programming, pp. 140--148 (2015)

14. Harvey WD, Ginsberg ML.: Limited discrepancy search. In: International Joint Conferences on Artificial
Intelligence, pp. 607--615 (1995)

15. Focacci F, Lodi A, Milano M.: Cost-based domain filtering. In: International conference on principles and practice
of constraint programming, pp. 189--203 (1999)

