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ABSTRACT

Planning, controlling and coordinating search and rescue operations is complex and time is crucial for survivors
who must be found quickly. The search planning phase is especially important when the location of the incident is
unknown. We propose, implement, solve, and evaluate mathematical models for the multiple rectangular search
area problem. The objective is to define optimal or near-optimal feasible search areas for the available search
and rescue units that maximize the probability of success. We compare our new model to an existing model on
problem instances of realistic size. Our results show that we are able to generate, in a reasonable time, near optimal
operationally feasible plans for searches conducted in vast open spaces. In an operational context, this research can
increase the chances of finding survivors. Ultimately, as our models get implemented in the Canadian Coast Guard
search planning tool, this can translate into more lives being saved.
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INTRODUCTION

The act of searching is an important part of many humanitarian operations such as Search and Rescue (SAR)
and mine counter measures, and of many surveillance operations for the purpose of protecting individuals, the
environment, resources or infrastructures. Search and Rescue Units (SRU) including aircraft and vessels, teams of
searchers, autonomous unmanned vehicles, may search for survivors, land or underwater mines, environmental
spills, illicit activities, or abnormal behaviors. But how and where to search? The answer lies in good and efficient
search planning that ensures the best use of scarce and constrained search resources. Search planning includes the
definition of search areas and/or search paths in a way that maximizes the chances of an operation’s success, often
in degraded and rapidly changing conditions, in the presence of uncertainty on the whereabouts, the detectability,
and on the conditions of the survivors, the threats, or the search objects.

In response to a distress incident, after having established plausible hypotheses regarding what might have happened
and where, a SAR mission coordinator (SMC) must deal with the logistics of the search operations by allocating the
available resources to search the established area of interest. The need for specific decision support systems that
can assist a SMC in both the scenario and hypotheses building phase and the resource allocation phase has long
been identified in Canada and elsewhere (Abi-Zeid and Frost 2005; Abi-Zeid, Nilo, Schvartz, et al. 2010; Aronica
et al. 2010; Kratzke et al. 2010; Stone, Keller, et al. 2014; Małyszko and Wielgosz 2016; Bellantuono et al. 2016).
Although both phases are of equal importance, we focus our research on resource allocation that mainly involves
optimal search planning using search theory.
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Search theory was one of the earliest Operations Research disciplines studied in the United States to address
detection search problems (Stone, Royset, et al. 2016). As a matter of fact, it has been known, since the Second
World War, that significant gains in search effectiveness are possible through the use of search theory. Frost and
Stone 2001 presents many examples where search plans based on search theory did much better than less scientific
methods. This was also demonstrated by Abi-Zeid and Frost 2005 where the use of a planning approach based on
search theory was an improvement, in terms of the probability of success, over manual search planning methods. In
addition, Ferguson 2008 reported that statistics have shown a significant increase in the number of lives preserved
as a result of applying search theory concepts while more recently, Stone, Keller, et al. 2014 described how the
application of search theory has helped locate the wreckage of AF 447. Search theory is also used in the area of
autonomous searching by robots in structured environments, and by unmanned air vehicles for outdoor searching of
large areas (Lau et al. 2008; Sato and Royset 2010; Kriheli et al. 2016; Venkatesan 2016; Bernardini et al. 2017).

A frequent practice in SAR response is to allocate search aircraft flying at the same altitudes to non-overlapping
rectangular areas. This particular formulation of the search problem is known in the scientific literature as the
Multiple Rectangular Search Areas (MRSA) problem (Discenza 1978; Abi-Zeid, Nilo, and Lamontagne 2011)
where a grid of cells is superimposed over the search environment. A solution to the MRSA problem, also called a
search plan, consists then of assigning SRUs to rectangles. A search plan is optimal if it maximizes the probability
of finding lost search object(s), e.g., persons in water and/or missing vessels.

Very few papers have addressed the MRSA problem, a challenging optimization problem when many SRUs
are present, when the area of interest is large, and when a fine grid with a small cell size is required. The
literature contains various approaches including mixed-integer linear programming (MILP) (Discenza 1978) and
constraint programming (CP) (Abi-Zeid, Nilo, and Lamontagne 2011). Discenza 1978 applied a heuristic to manage
complexity by eliminating rows in the constraint matrix in order to obtain a matrix with the integral property (all
the extreme points of the constraint polyhedron are integer valued). However, this reduces the set of feasible search
plans and the optimal solution could be discarded by the reduction process. Furthermore, it does not take into
account operational constraints. Richardson and Discenza 1980 proposed algorithms for the MRSA problem that
could be applied to a maximum of five search units with cell sizes of 360 square Nautical Miles (NM2). Abi-Zeid,
Nilo, and Lamontagne 2011 designed and applied algorithms based on CP to obtain operationally feasible plans and
used filtering heuristics to remove non-promising rectangles from the search space before using the CP solver. Their
cell size of 25 NM2 was more realistic.

In this paper, we revisit and reevaluate the performance of the MILP model proposed by (Discenza 1978) where
rectangles are explicitly enumerated (MILP-Ex) and compare it against our proposed (MILP-Im) formulation based
on an implicit definition of the rectangular search areas, implemented in two variants, with and without a startup
heuristic. The work presented in this paper has served as a basis to obtain an ongoing contract to develop a search
planning methodology to be integrated in an operational search planning system used in response to maritime SAR
incidents in Canada.

This paper is structured as follows. We present search theory elements and the MRSA problem in the Background
section. In the Methodology section we describe the (MILP) formulations. The following sections contain the
experiments, results and discussion as well as the conclusion.

BACKGROUND – SEARCH THEORY AND THE MRSA PROBLEM

Broadly speaking, available search effort is the quantification of the resources available for searching. In SAR
operations, this is normally the available on-scene endurance of a SRU. Search effort is allocated to subareas of
the search environment in order to maximize a figure of merit, such as the global probability of finding the search
object(s), also called the probability of success (POS), subject to operational and physical constraints. In the MRSA
problem formulation we consider, the allocated search effort, tracked individually for each SRU, is measured in
distance units. Since a constant search speed is assumed for each SRU, this is equivalent to on-scene endurance.
The MRSA problem normally deals with K SRUs. To each SRU k ∈ {1, . . . ,K} corresponds a total effort Ek , in
distance units, to be deployed over the search environment which is discretized by a grid consisting of cells.

Let R be the set of all rectangular search areas over a search grid of M rows and N columns for a total of

|R | = M(M + 1)N(N + 1)
4

(1)

possible rectangular search areas. A search plan assigns each SRU to a single rectangular search area for a total of
O

(
(|R|)K

)
possible search plans (feasible or not).
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Figure 1. An illustration of the concept of lateral range curve

Given a fixed amount of effort Ek , many factors can influence the performance of SRU k in rectangle r . In search
theory, all these factors reduce to a single conditional probability of detecting a specific object type over a specific
area under specific conditions given that the object is in the area searched.

In order to derive the conditional probability of detection, we introduce two core concepts: the lateral range curve
and the sweep width (detectability index). The efficiency of a sensor can be characterized by a lateral range curve:
Suppose that a sensor is traveling along a straight line (track) at a constant speed. The lateral range curve plrc(x)
gives the probability that a search object is detected along a search track as a function of the distance x at its closest
point of approach. It is not a probability density function nor is it a cumulative density function. The underlying
hypothesis is that the sensor’s (searcher) track is infinitely long, in both directions (Figure 1). The area under the
lateral range curve is called the sweep width. The larger the sweep width, the more efficient the sensor. The sweep
width is defined as the integral of plrc(x) over x on the interval [−∞,∞],

∫ ∞
−∞plrc(x) dx.

A probability of containment POCi j , also called probability of whereabouts, is assumed to be known a priori for all
cells (i, j) of the grid. This is the probability that the search object is in cell (i, j). The probability of containment of
a rectangle r ∈ R is the sum of the cell probabilities that it contains:

rpoc(r) =
∑
(i, j)∈r

POCi j (2)

An exponential detection function, that yields a lower bound on the probability of detection, is often assumed in
optimization algorithms (Stone, Royset, et al. 2016). It is a function of the amount of effort e deployed in rectangle r
and of the sweep width W of a sensor-search object combination under precise environmental conditions as follows:

rpod(e, r) = 1 − exp
(
−W · e
|r | · A

)
(3)

where A is the area of a single cell and |r | is the number of cells in rectangle r. A constant sweep width of W is
assumed during the search, a realistic assumption for maritime SAR. It can be seen, from Eq. (3), that the detection
probability increases with W. The same is true for the amount of effort e. It can also be seen that the probability of
detection function follows the law of diminishing returns. The conditional probability of detection, as described
above, does not take into account the probability of whereabouts. However, the probability of success, defined
below, considers both probabilities.

The probability of success of a search unit inside a rectangular search area r is the product of probability of the
search object being located there (probability of containment) and that a detection occurs (conditional probability of
detection). That is, given a rectangle r ∈ R and a SRU k, we have

rpos(Ek, r) = rpoc(r) · rpod(Ek, r) (4)

where Ek is the effort deployed by SRU k in rectangle r .

Let A be the set of all possible assignments of a SRU to a rectangular search area. The overall probability of
success of the search plan s ∈ AK with K non-overlapping rectangles is the sum of the success probabilities local to
each rectangular area. The objective of the MRSA problem is to maximize the probability of success of a search
plan consisting of a set of SRU-rectangle assignments over the search grid as defined by Eq. (5).

max
{r1,...,rK }∈AK

K∑
k=1

rpos(Ek, rk) (5)

subject to non-overlapping constraints. The formulation of this problem first appeared in (Discenza 1978).
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Operational and Physical Constraints

In practice, SARmission coordinators aim at achieving an area coverage factor of around 1. This is the dimensionless
ratio of the area effectively searched to the physical size of the area searched. Given a total amount of effort Ek for
SRU k, we define the coverage factor of k in rectangle r as:

cov(r, k) = W · Ek

|r | · A (6)

This is a measure of how thoroughly a search area is covered independently of any prior knowledge on the object’s
whereabouts. When a SRU follows a parallel-track search pattern, further constraints on the spacing of the parallel
tracks can be added. Recalling that the search effort deployed by a SRU k, Ek , is the total track length in distance
units and that the area of a rectangle r is |r | · A, we define the track spacing of SRU k in rectangle r as:

tracks(r, k) = |r | · A
Ek

(7)

By constraining the track spacing to be larger than some lower bound, we ensure that the turning radius is big
enough for the search pattern to be feasible. These supplementary constraints, not found in (Discenza 1978), can be
added to further restrict the set of feasible search plans AK (Abi-Zeid, Nilo, Schvartz, et al. 2010).

METHODOLOGY – SOLVING THE MRSA PROBLEM FOR SAR RESPONSE

In this section, we present two MILP formulations of the MRSA problem. The first formulation, MILP-Ex, requires
an explicit enumeration of all the feasible rectangles in the search grid and is attributed to Discenza 1978. The
second formulation, MILP-Im, is novel. It is based on the idea of using constraints to implicitly model rectangles
and then letting the solver perform the enumeration of the rectangles under the assumption of a constant sweep
width. Furthermore, we describe a myopic heuristic algorithm that can be used to provide a startup solution to the
(MILP-Im) model.

MILP with Explicit Enumeration of Rectangular Search Areas (MILP-Ex)

To build this model, we first compute the probability of success rpos(Ek, r) obtained by a SRU k when it is assigned
to rectangle r , for all rectangles r ∈ R and SRUs k ∈ {1, . . . ,K} . We then define a set of binary variables to encode
the assignment of SRU k to a given rectangle r as follows:

• RECTk
r equals 1 if SRU k is assigned to rectangle r in the search plan and to 0 otherwise.

This leads us to the following MILP:

max
RECT

∑
(r,k)∈A

rpos(Ek, r) · RECTk
r (8)

subject to Constraints (9) to (10) where RECTk
r is a binary variable. Each cell of the grid is constrained to belong

to a single assignment:∑
(r,k)∈A

RECTk
r · [(i, j) ∈ r] ≤ 1 ∀(i, j) ∈ C (9)

where [(i, j) ∈ r] equals 1 if cell (i, j) is in rectangle r and 0 otherwise. Constraint (10) forces each SRU k to be
assigned to a single rectangle:∑
r ∈Ak

RECTk
r ≤ 1 ∀k ∈ {1, . . . ,K} (10)

Ak is the set of all rectangles such that rectangle r is assigned to SRU k in A:

Ak = {r | (r, k) ∈ A} (11)

The total number of feasible assignments inAk can be reduced by applying the operational constraints from Eq. (6)
and Eq. (7) leading to a simpler MILP.

CoRe Paper – Open Track
Proceedings of the 14th ISCRAM Conference – Albi, France, May 2017
Tina Comes, Frédérick Bénaben, Chihab Hanachi, Matthieu Lauras, eds.



M. Morin et al. Decision Support for SAR Response Planning

MILP with Implicit Enumeration of the Rectangular Search Areas (MILP-Im)

We first describe the variables and the constraints needed to create k non-overlapping rectangles. We then add the
constraints required to compute the objective function.

Constructing Non-Overlapping Rectangles

We construct k non-overlapping rectangles using Constraints 12 to 28. Consider the following variables encoding
the membership of a cell to a rectangle, to a row, and to a column:

• Xk
i j ∈ {0, 1} is equal to 1 if the cell (i, j) belongs to rectangle k and to 0 otherwise

• ROWk
i ∈ {0, 1} is equal to 1 if row i belongs to rectangle k and to 0 otherwise

• COLk
j ∈ {0, 1} is equal to 1 if column j belongs to rectangle k and to 0 otherwise

The following constraints ensure that a given cell (i, j) belongs to rectangle k if and only if row i and column j
belong to rectangle k:

Xk
i j ≥ ROWk

i + COLk
j − 1 ∀k ∈ {1, . . . ,K} , i ∈ {1, . . . ,M} , j ∈ {1, . . . ,N} (12)

Xk
i j ≤ ROWk

i ∀k ∈ {1, . . . ,K} , i ∈ {1, . . . ,M} , j ∈ {1, . . . ,N} (13)

Xk
i j ≤ COLk

j ∀k ∈ {1, . . . ,K} , i ∈ {1, . . . ,M} , j ∈ {1, . . . ,N} (14)

Note that given a SRU k and a 4 by 5 search grid, and based on the above constraints, the following

Xk =

©«
0 0 0 0 0
0 1 1 1 0
0 1 1 0 1
0 0 0 0 0

ª®®®¬ (15)

would be invalid. However, although they do not define rectangles, the following

Xk =

©«
0 0 0 0 0
0 1 1 0 1
0 1 1 0 1
0 0 0 0 0

ª®®®¬ (16)

and

Xk =

©«
0 0 0 0 0
0 1 1 1 0
0 0 0 0 0
0 1 1 1 0

ª®®®¬ (17)

are valid. To avoid such situations, we introduce variables specifying the boundaries of a rectangle as follows:

• ROW
k

i ∈ {0, 1} is equal to 1 if the rectangle begins at a row i′ with i′ ≤ i and to 0 otherwise

• ROWk
i ∈ {0, 1} is equal to 1 if the rectangle ends at a row i′ with i′ ≥ i and to 0 otherwise

• COL
k

j ∈ {0, 1} is equal to 1 if the rectangle begins at a column j ′ with j ′ ≤ j and to 0 otherwise

• COLk
j ∈ {0, 1} is equal to 1 if the rectangle ends at a column j ′ with j ′ ≥ j and to 0 otherwise
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We then add Constraints (18) and (19) to avoid skipping rows, and Constraints (20) and (21) to avoid skipping
columns:

ROW
k

i ≤ ROW
k

i+1 ∀k ∈ {1, . . . ,K} , i ∈ {1, . . . ,M − 1} (18)

ROWk
i ≥ ROWk

i+1 ∀k ∈ {1, . . . ,K} , i ∈ {1, . . . ,M − 1} (19)

COL
k

j ≤ COL
k

j+1 ∀k ∈ {1, . . . ,K} , j ∈ {1, . . . ,N − 1} (20)

COLk
j ≥ COLk

j+1 ∀k ∈ {1, . . . ,K} , j ∈ {1, . . . ,N − 1} (21)

Let i and i correspond to the rows where rectangle k begins and ends. The following constraints state that row i
belongs to a rectangle k iff i ≤ i ≤ i:

ROWk
i ≥ ROW

k

i + ROWk
i − 1 ∀k ∈ {1, . . . ,K} , i ∈ {1, . . . ,M} (22)

ROW
k

i ≥ ROWk
i ∀k ∈ {1, . . . ,K} , i ∈ {1, . . . ,M} (23)

ROWk
i ≥ ROWk

i ∀k ∈ {1, . . . ,K} , r ∈ {1, . . . ,M} (24)

The following constraints are the same as above, but for columns.

COLk
j ≥ COL

k

j + COLk
j − 1 ∀k ∈ {1, . . . ,K} , j ∈ {1, . . . ,N} (25)

COL
k

j ≥ COLk
j ∀k ∈ {1, . . . ,K} , j ∈ {1, . . . ,N} (26)

COLk
j ≥ COLk

j ∀k ∈ {1, . . . ,K} , j ∈ {1, . . . ,N} (27)

Finally, we need a set of k non-overlapping rectangles as enforced by Constraint (28):∑
k∈{1,...,K}

Xk
i j ≤ 1 ∀i ∈ {1, . . . ,M} , j ∈ {1, . . . ,N} (28)

The Objective function of MILP-Im

The objective function of the MILP-Im model is built on the assumption that the sweep width is constant across
the search grid. This assumption holds for maritime SAR when the environmental conditions (e.g., weather, crew
fatigue) are constant during the search operations. Instead of enumerating, as with the MILP-Ex model, all the
feasible SRU-rectangle assignments to compute their probability of success, we leave this task to the solver. We
still need to compute the probability of detection prior to the solving process. However, since the sweep width
is assumed constant, we only need to store it for all possible rectangle sizes in number of cells for each SRU.
Therefore, instead of generating O (|R| · K) = O

(
M2N2K

)
assignments and probability of success values, we store

and generate O (MNK) variables. Using POSki j ∈ [0.0, 1.0] , the probability of success in cell (i, j) of search grid C
for SRU k, we get the following objective function:

max
POS

K∑
k=1

∑
(i, j)∈C

POSki j (29)

In order to compute the value of the POS variables, we define the following binary variables:

• Yk
a equals 1 if SRU k is assigned to a rectangle of a cells and to 0 otherwise.
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We also add two supplementary binary variables sets to help in encoding the linear constraints of the Y variables as
follows:

• Uk
a equals 1 if SRU k is assigned to a rectangle with less than (or with exactly) a cells and to 0 otherwise.

• Lk
a equals 1 if SRU k is assigned to a rectangle with more than (or with exactly) a cells and to 0 otherwise.

Next, we add Constraints (30) to (33) where M̂ is a sufficiently large number, and where Rareas is the set of possible
rectangle sizes a:

a −
∑
(i, j)∈C

Xk
i j ≤ M̂

(
1 − Uk

a

)
∀k ∈ {1, . . . ,K} , a ∈ Rareas (30)

∑
(i, j)∈C

Xk
i j − a ≤ M̂

(
1 − Lk

a

)
∀k ∈ {1, . . . ,K} , a ∈ Rareas (31)

Uk
a + Lk

a = 2Yk
a ∀k ∈ {1, . . . ,K} , a ∈ Rareas (32)∑

a∈Rareas

Yk
a = 1 ∀k ∈ {1, . . . ,K} (33)

We constrain the value of the POS variables using the indicator variables of a rectangle size by Constraint (34):

POSki j − POCi j · pod(
1
a
Ek, (i, j)) ≤ M̂

(
1 − Yk

a

)
∀k ∈ {1, . . . ,K} , a ∈ Rareas, (i, j) ∈ C (34)

Furthermore, Constraint (35) forces the probability of success of a SRU k in a cell (i, j) to be null if k is not located
in (i, j):

POSki j ≤ Xk
i j ∀k ∈ {1, . . . ,K} , (i, j) ∈ C (35)

Finally, the set Rareas is restricted using operational constraints described in Eq. (6) and Eq. (7).

The MILP-Im with a Myopic Heuristic Based on the Probability of Success (MILP-ImH)

In order to jump-start the MILP-Im, we propose a simple myopic heuristic for the MRSA problem that first consists
of enumerating all the rectangles and computing the probability of success of each SRU-rectangle assignment.
Second, the SRU-rectangle assignment with the highest POS is chosen as part of the search plan. This heuristic can
provide a good starting solution for the MILP-Im and is computed in polynomial time. We call the implementation
of MILP-Im with this heuristic the MILP-ImH model.

EXPERIMENTS

Since time is of the utmost importance when lives are at risk following a SAR incident, it is crucial that any decision
support for operational search planning yield good search plans in a short time period. We therefore conducted
experiments to evaluate and compare performances in terms of solution quality and execution time using realistic
search areas. We conducted experiments using the two models presented above, i.e., the model with enumerated
rectangles (Discenza 1978) with additional operational constraints and our novel formulation with an implicit
enumeration of the rectangles. In total, we compared the performance of three variants of the models (MILP-Ex,
MILP-Im, andMILP-ImH) in terms of the objective function value (probability of success) attainedwithin 15minutes,
and of the time required to obtain that solution. The experimental framework was developed in C++ and built upon
the IBM ILOG CPLEX solver version 12.6.1. The comparison was conducted on the following four grid instances:

• grid A: 13 by 17 cells, a total area of 5,525 NM2 (18,950 km2);

• grid B: 7 by 95 cells, a total area of 16,625 NM2 (57,022 km2);

• grid C: 30 by 30 cells, a total area of 22,500 NM2 (77,173 km2); and

• grid D: 47 by 49 cells, a total area of 57,575 NM2 (197,476 km2).
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Figure 2. The whereabouts of a search object on a grid of 7 by 95 cells (grid B)

Figure 3. The whereabouts of a search object on a grid of 47 by 49 cells (grid D)

Each of the grids has a different distribution of the whereabouts of the search object (probability of containment).
As an illustration, we present on Figures 2 and 3, the probability of containment of grids B and D respectively. A
darker color cell has a higher probability of containment. For each grid, we generated two problem instances, one
with 4 SRUs, and one with 5 SRUs. We applied the coverage constraint to reduce the solution space by enforcing a
coverage such that .5 ≤ cov(r, k) ≤ 2.5, for all rectangles r and SRUs k. We also included track spacing constraints
such that .5 NM ≤ tracks(r, k) ≤ 2.5 NM for all rectangles r and SRUs k to guarantee feasible search plans. It
should be noted that the above constraints are realistic operational constraints.

Results and Discussion

The optimal value of the probability of success depends on the problem instance. To facilitate the comparison
across instances of different sizes (both in terms of the number of SRUs involved and in terms the total number of
cells in the grids), of different probabilities of containment and of different sweep widths, we present the percentage
of improvement achieved by each incumbent solution. For each problem instance, the highest known objective
value corresponds to a 100 % improvement. Figures 4 to 7 present the percentage of the best objective achieved
versus the preparation and the solving time in seconds. The preparation time includes the time required to generate
the model and to load it into memory. For the MILP-ImH, this also includes the time required to run the myopic
heuristic that provides a starting solution. We chose to include the preparation time in the comparison since SAR
operations are time critical. A decision support system based on a MILP solver for SAR planning needs to prepare
the model first before solving it. In such a practical context, it is therefore important to identify the models that are
more time-consuming to prepare.

By looking at the instances in an increasing order of complexity (from Figures 4 to 7), we notice that the MILP-Ex
model scales poorly in comparison to the MILP-Im model. It is true, however, that the MILP-Ex model enables the
solver to find high quality solutions much faster than the MILP-Im model on sufficiently small problem instances,
e.g., on the instances of grid A. For the larger instances, i.e., the ones of grids C and D, the MILP-Ex model does not
fit into memory which justifies the need for an alternative model as the size of the problem increases. The MILP-Im
model consumes less memory and less time in the preparation phase. It thus has the advantage of allowing the
solver to quickly start its search for solutions, which is critical for SAR response management since an SMC might
need to stop the solver earlier to task the SRUs, or to try multiple scenarios which involves generating different
MILP models. In an operational SAR setting, it is generally agreed that a first executable search plan should be
found within 3 minutes. One problem that remains when using the MILP-Im model alone is that the first few
solutions found by the solver might be low quality solutions, i.e., a low probability of success. By using a heuristic,
we can provide a good starting point for the solver which is exactly what is done when using the MILP-ImH model.

Figure 8 shows the search plans obtained with 5 SRUs on grid B. Each rectangle corresponds to an area assigned to
a SRU. The search plan of Figure 8a is the one returned by the myopic heuristic (the first solution of MILP-ImH).
The search plans of Figures 8b, 8c and 8d are the best search plans found within 15 minutes (900 seconds) when
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Figure 4. Grid A: 13 by 17 cells with 4 SRUs (left) and 5 SRUs (right)
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Figure 5. Grid B: 7 by 95 cells with 4 SRUs (left) and 5 SRUs (right)
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Figure 6. Grid C: 30 by 30 cells with 4 SRUs (left) and 5 SRUs (right)
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Figure 7. Grid D: 47 by 49 cells with 4 SRUs (left) and 5 SRUs (right)

(a) Myopic heuristic search plan,
96 % of improvement after 1 second

(b) MILP-Ex search plan,
100 % of improvement after 896 seconds (including preparation time)

(c) MILP-Im search plan,
98 % of improvement after 684 seconds (including preparation time)

(d) MILP-ImH search plan,
99 % of improvement 377 seconds (including preparation time)

Sru 1
Sru 2
Sru 3
Sru 4
Sru 5

Figure 8. Grid B: proposed search plans with 5 SRUs on a grid of 7 by 95 cells

using the MILP-Ex model, the MILP-Im model and the MILP-ImH model respectively. The distribution of the
whereabouts of the object in this particular instance has two important centers of mass. The MILP-Ex model found
the optimal solution after almost 15 minutes. We note that the solution of the MILP-Im model is close, qualitatively,
to this particular optimal solution. Moreover, on this problem instance, the myopic heuristic (the first solution of
MILP-ImH) allowed the solver to obtain a high quality solution faster when using the MILP-ImH model. This
particular solution was generated at least 8 minutes (480 seconds) earlier than the optimal solution and its objective
value lies within 1 % of the optimal.

Figure 9 shows the search plans obtained with 5 SRUs on grid D. The search plan of Figure 9a is the one returned
by the myopic heuristic (the first solution of MILP-ImH). The search plans of Figures 9b and 9c are the best search
plans found within 15 minutes (900 seconds) by the MILP-Im model and the MILP-ImH model respectively. Note
that the MILP-Ex model did not produce any search plan on that problem instance before the 15 minutes time limit.
Following a close examination of these search plans, we see that the search plan proposed by the MILP-ImH model
closely resembles the solution of the myopic heuristic (the first solution of MILP-ImH). Nonetheless, the search
plan of the MILP-ImH model is still an improvement over the search plan proposed by the myopic heuristic. One
particularity of this problem instance is the distribution of the whereabouts which has a circular shape centered on
the last known position of the search object. The objective value of the best search plan found within 15 minutes,
obtained after 324 seconds by MILP-ImH model corresponds to an improvement of 100 % since it is the best known
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(a)Myopic heuristic search plan,
99 % of improvement after
23 seconds

(b) MILP-Im search plan,
98 % of improvement after
990 seconds (including prepara-
tion time)

(c) MILP-ImH search plan,
100 % of improvement after
324 seconds (including prepara-
tion time)
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Sru 3
Sru 4
Sru 5

Figure 9. Grid D: proposed search plans with 5 SRUs on a grid of 47 by 49 cells

solution. Although the MILP-Im model achieved only an improvement of 98 % within 15 minutes, that particular
solution was found after approximately 15 minutes (990 seconds). That is, the MILP-Im model found a solution
within 2 % of the best-known solution after more than twice the time required (324 seconds) by the MILP-ImH
model to find the best-known solution (100 %).

CONCLUSION

In this paper, we have presented a novel model based on mixed-integer linear programming to solve the search
planning problem of allocating multiple search resources in response to a Search and Rescue incident. The
algorithms developed are meant to be implemented in a decision support system for search mission coordinators
who must plan and coordinate SAR response when time is a critical factor. Our model proposes search plans that
assign search aircraft to non-overlapping rectangular search areas in such a way to maximize the probability of
success while taking into account operational constraints. We compared two versions of our model, with and
without a startup heuristic, to an older existing model proposed by Discenza 1978, using problem instances of
realistic size. We showed that we are able to generate, in a reasonable time, operationally feasible plans for searches
conducted in open and vast spaces. One particularly interesting result is the ability of our myopic heuristic to
quickly generate quite a good search plan as a first solution, albeit not an optimal one. This is valuable since it
quickly provides the search mission coordinator with an initial plan that could be improved upon while resources
are being tasked or other preparatory activities are conducted. The work presented here served as a basis for an
ongoing contract to implement search planning optimization in a decision support tool. More experiments with
more cases are planned to thoroughly evaluate performances and make final recommendations. Ultimately, as our
models get implemented in the Canadian Coast Guard operational decision support tool, we can expect an increase
in the chances of finding survivors more quickly and in more lives being saved.
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