
Dynamic Programming for the Fixed Route Electric Vehicle Charging

Problem with NonLinear Energy Management

Anthony Deschênes1, Jonathan Gaudreault1, Claude-Guy Quimper1

Abstract— The Fixed Route electric Vehicle Charging
Problem with NonLinear Energy Management (FRVCP-
NLEM) consists of finding the optimal charging and vehicle
speed decisions given a fixed route for an electric vehicle. The
objective is to minimize the total route duration including
charging duration. The problem takes into consideration the
non-linearity of the charging and energy consumption func-
tions. We propose a new dynamic programming model to
solve this problem that uses Akima interpolation to take into
consideration the continuous state space over the state of
charge. Experimental results show that the proposed model
solves optimally all instances in less than 0.2 seconds, outper-
forming the current state of the art model by several orders
of magnitude. The complexity of the proposed model has a
pseudo-linear increase with the number of charging stations
on the fixed route, meaning that it is easily scalable.

I. Introduction

The number of electric vehicles (EV) has been signif-
icantly increasing in the recent years [1]. Governments
see electric vehicles as a way to reduce their greenhouse
emission [2] and increase subventions and tax reductions
in order to facilitate their penetration [3]. As a result,
popularity of electric vehicles is increasing in both urban
and rural regions [4]. However, the adoption of electric
vehicles leads to new challenges [5] such as range anxiety.
It is related to the incertitude of the range of an EV
under cold temperatures [6] and the fear of running out
of energy. It is therefore a necessity to develop efficient
solutions in order to facilitate EV usage. One difficulty
that quickly arises for EV users is how to plan a long
trip. The user needs to decide where to stop, for how
long and driving speed along the road. Minimizing total
time is complex since the time needed to charge an
electric vehicle and its energy consumption functions are
nonlinear [7]. Moreover, the number of charging stations
is still limited [8] and a decision to charge or not at a
charging station may result in running out of energy or
unnecessary charging time if the wrong decision is made.
This problem is called the Fixed Route electric Vehicle
Charging Problem with NonLinear Energy Management
(FRVCP-NLEM) [9].

We propose a new method based on dynamic program-
ming (DP) to solve the FRVCP-NLEM. In Section II
we present preliminary concepts. Section III presents
the proposed dynamic programming model. Section IV

1CRISI Research Consortium for Industry 4.0
System Engineering, Université Laval, Québec,
Canada anthony.deschenes.1@ulaval.ca,
jonathan.gaudreault@ift.ulaval.ca, claude-
guy.quimper@ift.ulaval.ca

presents the dataset and the experiments to compare
the proposed model with the state of the art for this
specific problem. Section IV-C presents the results of our
experiments.

II. The Fixed Route electric Vehicle Charging
Problem with NonLinear Energy Management

(FRVCP-NLEM)

The Fixed Route electric Vehicle Charging Problem
with NonLinear Energy Management has first been intro-
duced by [9]. It consists of finding the optimal charging
and driving speed decisions in order to minimize total
route duration given a fixed route for an electric vehicle.
It takes into consideration speed limits and charging
detour energy and time costs. It is a variant of the
FRVCP introduced by Montoya et al. [10] that adds
driving speed decisions on each segment of the fixed
route.

FRVCP-NLEM takes into consideration the non-
linearity of energy consumption functions as well as the
non-linearity of the charging functions. Each charging
station close to the fixed route implies to make a detour
that has a cost in time and energy. These costs change
depending on the distance of the charging station from
the fixed route and the speeds driven on the segments.
Each charging stations have a unique charging function
that is more or less efficient depending on the type of the
charging station (fast charger, etc.).

The FRVCP is a subproblem of a more general problem
called the electric vehicle routing problem with nonlinear
charging time (EVRP-NL) [11]. FRVCP is NP-Hard [10]
and since the FRVCP-NLEM is a general case of FRVCP,
FRVCP-NLEM is also NP-Hard.

Given a route with n charging stations, the objective is
to go from an origin (r0) to a destination (rn). The route
is thus split in n+1 segments. For each of these segment
we need to decide if we want to charge at the charging
station associated with the segment or not. Moreover,
driving speed decisions are also needed. Figure 1 presents
a given segment s ∈ {1, · · · , n} where cs is a charging
station. Charging stations are either on the fixed route or
in the vicinity of the fixed route. rs is a decision node for
each charging station where a decision to charge or not
at the next charging station must be taken. The pattern
presented in Figure 1 is then repeated for each charging
stations from the origin to the destination. We make the
assumption that the time needed to travel a segment is
deterministic and that the factors that affect the time

required to travel the segment are known prior to the
departure. It is a common assumption in the literature [7]
[9] [10].

... rs−1 rs ...

...

cs

∆Trs−1,rs(v)

∆Trs−1,cs(v) ∆Tcs,rs(v)

Fig. 1. Graph representation of a segment s of an instance of the
FRVCP-NLEM [9]

Froger et al. [7] propose multiple methods to solve
the FRVCP such as exact labelling algorithm and MIP
models. Lee et al. [12] use branch and price to solve the
EVRP-NL. These methods have not yet been extended
to the FRVCP-NLEM. The use of dynamic programming
to solve this problem is new in the literature. Velimirovic
et al. [13] show that dynamic programming has a poten-
tial to solve the EVRP. Rama et al. [14] use dynamic
programming in order to find energy optimal routes.
Dynamic programming has also been used by Pourazarm
et al. [15] to find time optimal route in electric vehicles.
They do not, however, allow to vary the speed on the
different segments.

The FRVCP-NLEM can be solved using a Mixed-
Integer Programming model (MIP) proposed by [9]. It
uses multiple linear approximations in order to approx-
imate the charging and energy consumption functions.
The number of linear functions used can be considered
as hyperparameters. The MIP model is able to solve to
optimality routes with less than 24 charging stations.
The charging and energy consumption functions must
be convex and monotonically increasing in order for the
model to find the optimal solution. Some charging and
energy consumption functions follow these prerequisites,
but some functions such as empirical functions learned
using, for example neural networks trained from empiri-
cal data, cannot ensure these properties [16].

We therefore propose a new model based on dynamic
programming to solve the FRVCP-NLEM to optimality
that does not require prerequisites for these functions.
It also does not require to approximate these functions,
but instead require discretization of the state of charge
and vehicle speed. Having a pseudo-polynomial com-
putational time, this approach is expected to compute
solutions much faster than the MIP model.

III. Proposed Dynamic Programming Model

Charging stations are indexed from the origin to the
destination. We define S = {0, . . . , n} as the set of
indexes for the segments of the fixed route. Let s ∈ S be
the segment from rs−1 to rs (see Figure 1). The vehicle

can either pass by charging at station cs, if a charge
decision is taken, or go directly to rs.

The problem has a number of parameters defined by
the user. Note that we use the term state of charge to
represent a percentage of the usable battery (from 0%
to 100%):

• p0 is the initial state of charge at origin.
• pmin arrival

s is the minimal acceptable arrival state of
charge at charging station cs.

• pmax charge
cs is the maximal authorized final state of

charge when charging at charging station cs.
• vmin is the minimum driving speed as a ratio of the

recommended driving speed. This ratio is used to
express the minimum driving speed on a segment
with respect to a recommended driving speed. As
an example, a value of 0.9 represents driving at
90 km/h on a highway with a recommended speed
of 100 km/h (the recommended speed is provided by
the web service used to obtain the fixed route and
takes into consideration speed limitations, projected
traffic conditions, presence of intersections, merging
roadways, etc.). Note that the ratio is fixed on a
given segment, but the actual speed can vary. Thus
once the ratio is chosen, one can compute the actual
speed profile on a given segment with any desired
level of granularity.

• vmax is the maximum driving speed as a ratio of
the recommended driving speed. This ratio is used
to express the maximum driving speed on a segment
with respect to a recommended driving speed.

It also requires three functions to be defined:

• Dcs(p1, p2) = Charging function that returns the
time to charge from a state of charge p1 to p2 at
charging station cs.

• ∆Pa,b(v) = Energy consumption function that re-
turns the decrease of state of charge when driving
from point a to point b with a given speed ratio v.

• ∆Ta,b(v) = Time required to travel a specific seg-
ment from point a to point b with a given speed
ratio v.

A. Sampling of the state spaces

In order to use dynamic programming, we need to
discretize both the state of charge and the driving speed.
As such, the number of points to discretize the state of
charge (k) and the driving speed (m) are two hyperpa-
rameters for the model.

For a given driving speed decision, we consider m
distinct speed ratios v ∈ V ranging uniformly from vmin

to vmax. In the same way, we discretize the state of charge
using k points in K = {1, . . . , k}. We first compute Pmin

as

and Pmax
as

for each vertex where we need to consider the
state of charge and then discretize uniformly between
these two values. The objective is to determine what
is the minimal and maximal possible arrival states of

charge at a given node as. For example, if the node is rs,
intuitively the minimal arrival state of charge is the min-
imal departure state of charge of the previous point (rs−1

which is stored in Pmin
rs−1

) minus the maximal consumption
on the segment between rs−1 and rs. We must also
ensure that the arrival state of charge is always greater
or equal to the minimal authorized state of charge. The
same intuition applies for defining the maximum state
of charge. The base cases of these equations are trivial.
The minimum departure state of charge at the origin is
the initial state of charge. The maximal departure state
of charge is the maximum charge at the origin (or the
initial state of charge if it is not possible to charge at the
origin).

Pmin
as

=

p0 if s = 0 (1a)

max(pmin arrival
s , (1b)

Pmin
rs−1
−max

v∈V
(∆Prs−1,as(v)) otherwise (1c)

Pmax
as

=

pmax charge
cs if s = 0 (2a)

max(pmax charge
cs −∆Pcs,rs(v), (2b)

Pmax
rs−1

−min
v∈V

(∆Prs−1,as
(v)) otherwise (2c)

B. Solving the FRVCP-NLEM

To solve the FRVCP-NLEM, we recursively compute
the values of a function Trs(p) (see Equation (3)) for each
point rs from the origin to the destination. This function
returns the answer to this crucial question: what is the
minimal time needed to go from the origin r0 to point
rs, while having a state of charge of p when leaving point
rs given that we know the answer to this question for the
previous point rs−1 and for all possible states of charge
for the previous point? It takes into account the fact that
we may (or not) have made the detour and charged at
charging station cs.

The dynamic programming model is built around
Equation (3). It defines how to compute the answer to
this question for a specific state of charge p for a point rs.
s represents a segment index on the fixed route with the
origin being s = 0. Answering this question for each point
rs and for each possible departure state of charge for
these points allows to compute the optimal solution from
the origin to the destination. For a specific state of charge
(p) and a given point rs, it is equivalent to sampling a
function Trs(p) which returns the answer. This function
is sampled for each value of state of charge defined using

krs ∈ K (with p = Pmin
rs + krs ·

Pmax
rs
−Pmin

rs

|K|). It is the
same as sampling k states of charge from the minimal
possible arrival state of charge to the maximal possible
arrival state of charge for point rs.

Case (3a) represents the initial condition of the prob-
lem which sets the value of the function to 0 if we want to
leave at the initial state of charge at the origin. Case (3b)
represents the case where the desired departure state of

charge (p) is higher than the initial state of charge. In
that case the only possibility is to charge at the origin
in order to leave the origin with a state of charge of p.
Case (3c) detects cases where it is impossible to reach
point rs while respecting the minimal authorized arrival
state of charge. This case detects infeasible routes. When
we are not at the origin, there is only two possibilities to
answer the question. The first is to reach point rs directly
without charging at the associated charging station. In
that case we need to evaluate all possible driving speed
decisions and choose the one with the minimal total
time (Case (3d)). The other possibility is to charge at
the charging station associated with point rs. In that
case we need to consider all possible discretized arrival
state of charge (pcs) to the charging station and the
different driving speed decisions. These states of charge
must be smaller than the desired departure state of
charge at the charging station. We finally choose the
desired arrival state of charge that has the minimal total
time (Case (3e)). Moreover, when charging at a charging
station, we need to consider the detours costs in time
and energy to reach the point rs after charging at the
associated charging station. The optimal solution is the
minimum of these two possibilities which decides if we
need to charge at the charging station or not. It is not
always possible to charge at the destination, in that
case we simply do not evaluate this possibility (which
correspond to not computing Case (3e)). The same logic
applies to prevent charge at the origin.

C. Interpolation over the state of charge

Since the energy consumption is a real number, it is
possible that we want to obtain the value of function
Trs(p′) for a p′ that is between two sampled states of
charge. To obtain an approximation of this value, we
use Akima interpolation [17] between the points sampled
by krs ∈ K. Akima interpolation smooths the second
derivative and, since the function can be non-continuous,
it allows for a better estimation of the function [18]. The
points used for the Akima interpolation are the following:

(p, Trs(p)) with p = Pmin
rs + krs ·

Pmax
rs
−Pmin

rs

|K| ∀krs ∈ K.

D. Constructing the optimal solution

The solution is constructed from the destination to
the origin. The optimal solution is the one for which

min
krk
∈K

Trk(p) with p = Pmin
rk

+ krk ·
Pmax

rk
−Pmin

rk

|K| where rk

represents the destination. Let p′ be the state of charge
that minimizes the time Trk , we check which case in
Equation (3) leads to the computation of Trk(p′). By
recursively computing back the function, one can retrieve
the decision to charge or not, the travelling speed ratio v,
and the amount of charging pcs (if any) that were taken
for each road segment.

Figure 2 presents a visual representation of the con-
structed solutions for different desired departure state of
charge at a given point rs that is not the destination

Trs(p) =

0 if p = p0 ∧ s = 0 (3a)

Dcs(p0, p) if p > p0 ∧ s = 0 (3b)

∞ if Pmax
s−1 −min

v∈V
(∆Prs−1,rs(v)) < pmin arrival

s (3c)

min
v∈V

(
Trs−1

(p + ∆Prs−1,rs(v)) + ∆Trs−1,rs(v), (3d)

min
pcs |pcs<p+∆Pcs,rs (v)

Trs−1
(pcs + ∆Prs−1,cs(v)) + (3e)

∆Trs−1,cs(v) + Dcs(pcs , p + ∆Pcs,rs(v)) +

∆Tcs,rs(v)
)

if s > 0

where pcs = Pmin
cs + kcs ·

Pmax
cs
−Pmin

cs

|K| (3f)

(since we can charge at the charging station) for a given
route. The continuous blue line over the points is the
Akima interpolation associated with the point rs. It is
an approximation of the value of the function Trs(p′) for
any state of charge p′ that is not sampled. The bars are
the constructed solution for each sampled departure state
of charge. They are ordered by charging station in the
following pattern (from bottom to top): origin (segment
0) route time, origin detour time, origin charge duration;
segment 1 route time, segment 1 detour time, segment
1 charge duration, etc. Each route time bar has a color
representing the average speed driven on the segment.
In this example the optimal solution reduces the speed
on some segment in order to arrive faster at destination
depending on the desired arrival state of charge at point
rs. In terms of charging decisions to reach this point,
Figure 2 can be reduced to essentially 4 different charging
scenarios depending on the desired departure state of
charge (charging at charging stations 3, 6 and 9; 5, 8
and 11; 3, 6, 9 and 12; 3, 6, 9 and 13).

Fig. 2. Example of constructed solutions for different desired
arrival state of charge at a given point rs.

E. Complexity analysis

The proposed dynamic programming model is a
pseudo-polynomial algorithm and thus proves that the
FRVCP-NLEM is weakly NP-Hard.

We assume that the energy consumption function
∆Pa,b(v) and the charging functions Dcs(p1, p2) take

constant time to compute. Given that Trs−1
(p) was al-

ready interpolated over p, computing a point on function
Trs(p) requires Θ(|V||K|) time. A sample of |K| points is
required for each segment s. Computing Akima interpo-
lation is done in linear time. Sampling and interpolating
the function Trs(p) for one segment thus takes Θ(|V||K|2)
time and for |S| segments it takes Θ(|S||V||K|2). This
represents the total running time complexity as comput-
ing and interpolating the function Trs(p) dominates the
construction of the solution2. The model has a pseudo-
linear increase with the number of segments, and thus
with the number of charging stations.

IV. Experiments

Experiments are done using a similar framework as
[9]. The main goal is to compare the MIP model from [9]
with the dynamic programming model we propose. We
compare the real route duration returned by each model,
which is the total route duration after removal of the
approximation errors induced by the hyperparameters.
Both models ensure that the real arrival state of charge at
charging stations is always greater or equal to the margin
imposed by the user.

A. Dataset

All routes are generated for a Nissan LEAF with a
battery capacity of 40 kWh. Our dataset contains 18
routes, each one duplicated to consider 7 different tem-
peratures (in °C) (−30,−20,−10, 0, 10, 20, 30). Table I
presents a summary of the routes. Note that it is almost
the same routes as from [9], but with a higher number
of charging stations. It is caused by a large number of
newly installed charging stations returned by the Open
Charge Map API [19].

B. Hyperparameters optimization

Since both models have their own hyperparameters
that impact the predicted and real total route duration,
we need to find values for these hyperparameters that

2It is possible to improve this complexity to
θ(max(|S||K|2, |S||K||V|)) if we consider that the optimal speed
multiplier from points rs−1 to rs is the same as for points rs−1 to
cs

TABLE I

Routes in the dataset

Route
ID

Type
Number
of CS

Distance
(km)

1 Urban 9 51
2 Urban 18 92
3 Urban 26 122
4 Long route 18 261
5 Long route 33 439
6 Long route 10 149
7 Long route 42 642
8 Long route 52 879

9

Mix of
long route
and
countryside

13 227

10 Countryside 12 333
11 Countryside 27 1007

12
Mix of
countryside
and highway

22 135

13 Highway 15 587
14 Highway 27 325
15 Highway 20 410

16
Extreme case
(really long)

96 2047

17
Extreme case
(loop)

46 546

18
Extreme case
(round trip)

54 960

allow to obtain good quality solutions. For this purpose,
we separated the dataset in a train and test set in order to
do a grid search on the train set to find good values for
hyperparameters (which affect discretization precision)
for each model.

It has been shown that the number of charging station
is a good indicator of the complexity of an instance [9].
The complexity analysis of the proposed algorithm (see
Section III-E) enforces this conclusion. Thus, for the
train set, we use the routes with the highest and lowest
number of charging stations. By doing so, we make sure
that the models have good hyperparameters for short and
long-range routes. We also included the route closest to
the average number of charging stations for all routes in
the dataset. Therefore, our train set consists of routes 1,
11 and 16.

For the MIP from [9], there are three hyperparame-
ters: (1) the number of linear approximations used to
approximate the charging functions, (2) the number of
linear approximations used to approximate the energy
consumption functions and (3) the relative gap of the
MIP model. The search space of 1. is defined over the
interval [2, 8] per increment of one. It has been shown
that it is important to consider the non-linearity of the
charging functions [7] [10] (thus removing 1 from the
search space). The search space of 2. is defined over the
interval [1, 8] per increment of one. The search space of
3. is defined by three values (0.01, 0.03 and 0.05). The
total number of combinations tested for the MIP model
is 168.

For the proposed dynamic programming model, there
are two hyperparameters: (1) the number of points used
to sample the state of charge (k) and (2) the number of
points used to sample the vehicle speed ratios (m). The
search space of 1. is defined over the interval [11, 101] per
increment of 10. The search space of 2. is defined over the
interval [2, 11] per increment of one. The interval starts
at 2 to ensure that we have at least the minimal and
maximal speed ratios considered for each segment. The
total number of combinations tested for the DP model is
100.

Increasing the values of the hyperparameters should
lead to a better solution, but also increases the compu-
tation time. A good value for an hyperparameter is thus
a compromise between computation time and real total
route duration. We use a grid search in order to compute
the performance of a set of combinations of the hyperpa-
rameters for each model in the train set. Each route of
the train set is tested at 7 different temperatures. A grid
search can cover the search space in a reasonable time [20]
and there is no need for more complex methods [21]. We
then compute a Pareto Front [22] to visualize all possible
compromise between solution quality and computation
time.

Figures 3 and 4 present the Pareto front for each of
the models. The label of each point represents the value
of each hyperparameters that yield to a given point (in
the order presented above). For both models, multiple
combinations yield acceptable total route duration. We
use the minimal distance from the ideal point algorithm
to determine which combination to use [23] for each
model.

For the MIP model, the best hyperparameters selected
are 3 for the number of linear approximations of the
charging functions, 4 for the number of linear approxima-
tions for the energy consumption functions and a relative
gap of 1% (0.01).

For the DP model, the best parameters found by the
grid search are 11 for the number of points used to sample
the state of charge and 11 for the number of points used
to sample the vehicle speed ratios for each segment.

Fig. 3. Pareto Front of the dynamic programming model for all
tested combinations of hyperparameters.

Fig. 4. Pareto Front of the MIP model for all tested combinations
of hyperparameters.

C. Results

Both models are run on a Intel(R) Core(TM) i7-8750H
CPU @ 2.20GHz, 2208 Mhz, 6 Cores with 8Gb of RAM.
Computation time limit is set to 10 seconds since we
want to use the model in a real-life context where the
user wants to have the solution within seconds. When the
MIP reaches the computation time limit of 10 seconds,
we take its best solution found as the returned solution.
As a results the solutions of the MIP when reaching the
10-seconds limit may not be optimal.

1) Computation time: Figure 5 presents the average
computation time over all temperatures of the MIP and
DP models with respect to the number of charging
stations on the fixed route. The error bars represent
the maximum and minimum computation time (for the
different temperatures). We observe that both models
optimally solve routes with fewer than 27 charging sta-
tions (the MIP model proves the optimality with the gap
and the DP model always return optimal solutions). For
these routes, the DP model has on average a significantly
faster computation time than the MIP (on average 16.1
times smaller). Moreover, we observe that the MIP model
takes more time to solve the 20 charging station instance
than the 26. This is because the density of the charging
stations can also have an impact on the hardness of an
instance for the MIP model (highly condensed charging
stations makes the problem harder to solve for the MIP
model). This is not the case for the DP model, since
its computational time is only affected by the number
of charging stations and the choice of hyperparameters
(see Section III-E). It makes the computational time
of the DP model more stable than the MIP model.
For routes with 27 charging stations or more, the MIP
model reaches the computation time limit of 10 seconds.
Deschênes et al. [9] show that for these instances the
computation time exceeds 300 seconds, which makes the
MIP unable to solve theses instances in a reasonable
time. In comparison, the DP model never exceeds 0.1
seconds of computation time for all test instances. The
DP model is thus several orders of magnitude faster than
the MIP model for large instances.

Fig. 5. Average computation for all temperatures with respect
to the number of charging station on each route for each model.
Computation time limit is set to 10 seconds and the error bars
represent the maximum and minimum computation time for each
instance.

2) Predicted route duration as returned by the model:
We also compare the quality of the predictions of both
models. Since the Akima interpolation presented in Sec-
tion III-C can not ensure that the DP model predictions
are always greater than the real route duration, we use
the difference test [24] to verify if it is the case. The
DP model predictions are on average 0.46 % ± 0.24
bigger than the real route duration. This represents a
prediction for a 500-minute route that is 2.3 minutes
bigger. The MIP model has predictions that are on
average 0.18 % ± 0.26 closer to the real route duration
than the DP model. Since 0 is in the interval, we can not
conclude that there is a significant difference.

3) Real route duration: We show in Section IV-C.1
that the DP model dominates the MIP model in compu-
tation time, but it also needs to have similar real route
duration. Since both models are tested on the same data,
we compute the difference test [24] with 95 % confidence
for the instances that did not reach the computation
time limit of 10 seconds and for the instances that
reached this limit. Results for the instances that did not
reach the computation time limit show that we can not
conclude on average a statistical difference between both
models (the difference is 0.14 % ± 0.20 in favor of the
MIP model). This is expected since both models proved
the optimality of their solutions. For the instances that
reached the time limit, results show that the DP model
has on average statistically smaller real route duration. It
is also expected since the solutions of the DP model are
optimal, but it is not always the case for the solutions
of the MIP model (due to the time limit). Real route
duration is on average 0.30 % ± 0.13 lower for the DP
model than for the MIP model. This represents a 90-
second difference on a 500-minute route. The maximal
difference is 1.87 % (a 9-minute difference on a 500-
minute route). We can conclude that both models yield
similar real route duration when the optimal solution is
proven by both models. For large instances the solutions
of the DP model has on average a smaller real route

duration than the MIP model.

V. Conclusion

We showed that the proposed dynamic programming
model solves the FRVCP-NLEM with a significantly
lower computation time than the current state of the art
for this specific problem (a MIP model). Experiments
show that the dynamic programming model solves all
instances (up to 96 charging stations) in less than 0.2
second. In comparison, the MIP model can only solve
instances of up to 27 charging stations in a reasonable
time and reaches the computation time limit of 10
seconds for all of the other instances. The MIP model
takes over 300 seconds to solve these instances. This
makes the DP model several orders of magnitude
faster than the MIP model. For the instances that did
not reach the computation time limit, the dynamic
programming model has on average a computation time
16.1 times smaller than the MIP model. The DP and
MIP models have a similar optimal real route duration
when optimality is proven, but the DP model has on
average a smaller real route duration for instances
when the MIP model did not prove the optimality of
the solutions. The dynamic programming model has
a pseudo-linear increase in computation time as the
number of charging stations increases, which makes it
more scalable than the MIP model. As for future work,
the dynamic programming model opens interesting
possibilities to consider the stochastic aspect of the
problem where, for example, segment duration can be
affected by prior uncertain traffic conditions. It would
also be interesting to see how this new model performs
for solving the EVRP-NL. Other possible extensions
include calculating a bound on the error as a function
of the number of discretization of the state of charge in
order to choose this hyperparameter more effectively.
Finally, the proposed algorithm can be generalized into
a path-finding algorithm that does not require a fixed
route.

References

[1] IEA. (2020) Global ev outlook 2020. [Online]. Available:
https://www.iea.org/reports/global-ev-outlook-2020

[2] W. Choi, E. Yoo, E. Seol, M. Kim, and H. H. Song, “Green-
house gas emissions of conventional and alternative vehicles:
Predictions based on energy policy analysis in south korea,”
Applied Energy, vol. 265, p. 114754, 2020.

[3] D. Hall, M. Moultak, and N. Lutsey, “Electric vehicle capitals
of the world,” ICCT White Paper, 2017.

[4] J. Kester, B. K. Sovacool, L. Noel, and G. Z. de Rubens,
“Rethinking the spatiality of nordic electric vehicles and their
popularity in urban environments: Moving beyond the city?”
Journal of Transport Geography, vol. 82, p. 102557, 2020.

[5] T. Capuder, D. M. Sprčić, D. Zoričić, and H. Pandžić, “Review
of challenges and assessment of electric vehicles integration
policy goals: Integrated risk analysis approach,” International
Journal of Electrical Power & Energy Systems, vol. 119, p.
105894, 2020.

[6] X. Hao, H. Wang, Z. Lin, and M. Ouyang, “Seasonal effects on
electric vehicle energy consumption and driving range: A case
study on personal, taxi, and ridesharing vehicles,” Journal of
Cleaner Production, vol. 249, p. 119403, 2020.

[7] A. Froger, J. E. Mendoza, O. Jabali, and G. Laporte, “Im-
proved formulations and algorithmic components for the elec-
tric vehicle routing problem with nonlinear charging func-
tions,” Computers & Operations Research, vol. 104, pp. 256–
294, 2019.

[8] J. Liu, G. Lin, S. Huang, Y. Zhou, Y. Li, and C. Rehtanz,
“Optimal logistics ev charging scheduling by considering the
limited number of chargers,” IEEE Transactions on Trans-
portation Electrification, 2020.

[9] A. Deschênes, J. Gaudreault, L.-P. Vignault, F. Bernard, and
C.-G. Quimper, “The fixed route electric vehicle charging
problem with nonlinear energy management and variable ve-
hicle speed,” in IEEE International Conference on Systems,
Man and Cybernetics 2020. IEEE, 2020, pp. 1451–1458.

[10] A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas,
“The electric vehicle routing problem with nonlinear charging
function,” Transportation Research Part B: Methodological,
vol. 103, pp. 87–110, 2017.

[11] C. Lee, “An exact algorithm for the electric-vehicle routing
problem with nonlinear charging time,” Journal of the Opera-
tional Research Society, pp. 1–24, 2020.

[12] ——,“An exact algorithm for the electric-vehicle routing prob-
lem with nonlinear charging time,” Journal of the Operational
Research Society, pp. 1–24, 2020.

[13] L. Z. Velimirovic, A. Janjic, P. Vranic, I. Petkovski, and J. D.
Velimirovic, “Dynamic electric vehicle routing problem,” 2021.

[14] N. Rama, H. Wang, J. Orlando, D. Robinette, and B. Chen,
“Route-optimized energy management of connected and au-
tomated multi-mode plug-in hybrid electric vehicle using dy-
namic programming,” Society of Automotive Engineers Tech-
nical Paper Series, vol. 1, 2019.

[15] S. Pourazarm, C. G. Cassandras, and A. Malikopoulos, “Op-
timal routing of electric vehicles in networks with charging
nodes: A dynamic programming approach,” in 2014 IEEE
International Electric Vehicle Conference (IEVC). IEEE,
2014, pp. 1–7.

[16] Y. Bengio, N. L. Roux, P. Vincent, O. Delalleau, and P. Mar-
cotte, “Convex neural networks,” in Advances in neural infor-
mation processing systems, 2006, pp. 123–130.

[17] H. Akima, “A new method of interpolation and smooth
curve fitting based on local procedures,” Journal of the ACM
(JACM), vol. 17, no. 4, pp. 589–602, 1970.

[18] H. Ozdemir, “Comparison of linear, cubic spline and akima
interpolation methods,” Hüseyin Özdemir.—2007, 2007.

[19] M. LLC. (1999) Open charge map api. [Online]. Available:
https://openchargemap.org/site/develop/api

[20] M. Feurer and F. Hutter, “Hyperparameter optimization,” in
Automated Machine Learning. Springer, Cham, 2019, pp.
3–33.

[21] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random
search, genetic algorithm: A big comparison for nas,” arXiv
preprint arXiv:1912.06059, 2019.

[22] T. Tušar and B. Filipič, “Visualization of pareto front approxi-
mations in evolutionary multiobjective optimization: A critical
review and the prosection method,” IEEE Transactions on
Evolutionary Computation, vol. 19, no. 2, pp. 225–245, 2014.

[23] D. de la Fuente, M. A. Vega-Rodŕıguez, and C. J. Pérez,
“Automatic selection of a single solution from the pareto front
to identify key players in social networks,” Knowledge-Based
Systems, vol. 160, pp. 228–236, 2018.

[24] M. F. Triola, Elementary statistics. Addison Wesley Publish-
ing Company, 1992.

