
General Bounding Mechanism for Constraint
Programs

Minh Hoàng Hà1, Claude-Guy Quimper2, Louis-Martin Rousseau1

1 Department of Mathematics and Industrial Engineering and CIRRELT, École
Polytechnique de Montréal, C.P. 6079, Succursale Centre-ville, Montreal, QC,

Canada H3C 3A7
{minhhoang.ha, louis-martin.rousseau}@cirrelt.net

2 Département d’informatique et de génie logiciel and CIRRELT, Université Laval,
Quebec, Canada

claude-guy.quimper@ift.ulaval.ca

Abstract. Integer programming (IP) is one of the most successful ap-
proaches for combinatorial optimization problems. Many IP solvers make
use of the linear relaxation, which removes the integrality requirement on
the variables. The relaxed problem can then be solved using linear pro-
gramming (LP), a very efficient optimization paradigm. Constraint pro-
gramming (CP) can solve a much wider variety of problems, since it does
not require the problem to be expressed in terms of linear equations. The
cost of this versatility is that in CP there is no easy way to automatically
derive a good bound on the objective. This paper presents an approach
based on ideas from Lagrangian decomposition (LD) that establishes a
general bounding scheme for any CP. We provide an implementation
for optimization problems that can be formulated with knapsack and
regular constraints, and we give comparisons with pure CP approaches.
Our results clearly demonstrate the benefits of our approach on these
problems.

Keywords: Constraint Programming, Automatic Bounding, Lagrangian
Decomposition, Knapsack Constraint, Regular Constraint.

1 Introduction

Constraint Programming (CP) is an efficient tool for complex decision prob-
lems arising in industry, such as vehicle routing, scheduling, and resource alloca-
tion. CP solvers essentially solve satisfiability problems, that is, they determine
whether or not there exists a solution to a given model. When applied to opti-
mization problems, most CP solvers solve a sequence of satisfiability problems,
requiring at each step that the solution found improves on the solution found
at the previous step. The search stops when no feasible solution can be found,
proving that the previous solution was indeed optimal. The ability to compute
bounds on the objective function (the optimization criterion) is crucial. It al-
lows faster termination of the final subproblem (by proving infeasibility more

quickly), and it speeds up the solution of all the subproblems (because filtering
and pruning become possible when a good bound on the objective is known).
In all cases where CP has successfully solved optimization problems, the mod-
eler had to implement good bounding mechanisms. The lack of a good general-
purpose bounding scheme is one of the main drawbacks of CP in comparison
with integer programming (IP).

In CP, the constraints are independent, and information is communicated
solely through the domain store, the set of possible remaining values for each
variable. During the search, each constraint looks at the domain store, determines
whether a solution still exists, and filters out pairs of variables and values that
no longer lead to feasible solutions. This decoupling of the problem in terms of
the independent constraints allows us to use a simple and efficient combinatorial
algorithm for each constraint. A similar concept is used in linear programming
(LP): Lagrangian decomposition (LD) relaxes the link between difficult sets of
constraints and introduces in the objective a penalty vector that acts as the glue
linking the remaining relatively simple subproblems. In CP, we observe that
there is no such glue for the constraints (or subproblems), making any default
bound computation very weak. If we look at CP through LD glasses, we see that
the relaxed constraints are actually a set of implicit constraints stating that
any given variable should have the same value in all the different constraints in
which it appears. Therefore, to apply LD techniques to a CP model, we must
penalize that different constraints assume the same variable can take different
values during search. Our goal is to develop a general bounding mechanism for
CP that is compatible with every CP model and transparent to the user.

This paper is organized as follows. The next section reviews related work on
decomposition techniques and CP, and Section 3 presents our general bounding
approach. Section 4 evaluates the method on two optimization problems: a) the
knapsack problem and b) the simple shift scheduling problem that can be mod-
eled as a combination of many regular constraints. Finally, Section 5 summarizes
our conclusions.

2 Related Work

We present here some background on LD and the global CP constraints investi-
gated in this paper.

2.1 Lagrangian Decomposition

Decomposition techniques are an efficient approach for large-scale optimization
problems. One of the most popular techniques is Lagrangian relaxation (LR),
a natural approach that exploits the problem structure. It relaxes the “compli-
cated” constraints and penalizes the constraint violation in the objective func-
tion. This simplifies the solution procedure since the resulting problem is easier
to solve.

Several authors have used LR coupled with CP to solve optimization prob-
lems. Sellmann and Fahle [20] propose an algorithm for the automatic recording
problem. They introduce two linear substructures, and they dualize the first and
propagate the second. At convergence, they use the optimal dual information to
propagate the first substructure. Ouaja and Richards [15] embed LR and CP
into a branch-and-bound algorithm for the traffic placement problem. At each
node of the search tree, CP is used to find a solution if one exists and to prove
infeasibility otherwise, and LD indicates how close the solution is to optimality.
Benoist et al. [2] propose hybrid algorithms combining LR and CP for the trav-
eling tournament problem, which includes round-robin assignment and travel
optimization. They show that LR provides not only good bounds to limit the
search but also information to guide new solutions or efficient branching. Sell-
mann [19] investigates the theoretical foundations of CP-based LR and proves
that suboptimal Lagrangian multipliers can have stronger filtering abilities than
optimal ones.

A drawback of LR is that the problem loses its original structure since the
complicated constraints are removed from the constraint set and penalized in
the objective function. Moreover, the penalized constraints must generally be
linear. This seriously restricts the application of LR in the context of CP where
most global constraints have a nonlinear structure. For example, it is not easy
to dualize some popular global constraints such as the all-different, global car-
dinality, and regular constraints. To overcome this restriction, Fontaine et al.
[8] generalize LR to arbitrary high-level models using the notion of satisfiability
(violation) degree. In this method, a satisfiability degree (or violation degree)
is defined for each hard constraint and penalized in the objective function in-
stead of in the constraint itself. The results show that LR coupled with CP can
efficiently solve some classes of graph coloring problems.

Another way to avoid the penalization of nonlinear hard constraints is to
use LD. This was first introduced by Guignard and Kim [10]; it is also called
variable splitting. It creates “copies” of a set of variables responsible for con-
necting important substructures in the model, using one copy per substructure
and dualizing the equality of a variable and its copy. Since the substructures of
the original problem are retained, LD provides bounds that are always at least
as tight as those from LR. The method is particularly useful if there are no ap-
parent complicating constraints or the complicating constraints have nonlinear
forms.

The research on integrating LD into CP is limited. To the best of our knowl-
edge, only Cronholm and Ajili [5] have studied this. They propose a hybrid
algorithm for the multicast network design problem. Their approach enables the
propagation of all the substructures at every dual iteration and also provides
strong cost-based filtering. We continue their theme with our attempt to use LD
to construct an automatic bounding mechanism, thus making CP tools more ef-
ficient for optimization problems. To do this, we consider each global constraint
in the CP model as a substructure, and we connect them through LD to pro-

vide valid bounds. These are used to prune the nodes in the search tree. We
investigate two global constraints: knapsack and regular constraints.

2.2 Knapsack and Regular Constraints

In this subsection, we discuss knapsack and regular constraints and formulate
the related optimization problems.

Knapsack Constraint Knapsack constraints are probably the most commonly
used constraints for problems in mixed integer programming and CP. These
linear constraints have the form wx ≤W where W is scalar, x = [x1, x2, ..., xn] is
a vector of n binary variables, and w = [w1, w2, ..., wn] is a vector of n coefficients.

Most CP solvers filter knapsack constraints in a straightforward manner: the
domain reduction is based on interval arithmetic and simple bounding argu-
ments. This filtering is fast and effective but requires an important branching
in practice. Another knapsack filtering has been proposed by Trick [22], who
uses a dynamic programming structure to represent the constraint and achieves
hyper-arc consistency, thus determining infeasibility before all the variables are
set. The filtering is based on a layered directed graph where the rows correspond
to W values (0 through |W |), the columns represent variable indexes (0 through
n), and the arcs represent variable-value pairs. This graph has the property that
any path from (0, 0) to the nodes of the last layer corresponds to a feasible
solution to the knapsack constraint.

The filtering can reduce the branching when dealing with the satisfiability
version of the knapsack problem. This version, the market split problem, has no
objective function (see Trick [22] for more information). An effective implemen-
tation is essential to reduce the computational time. In the next sections, we
show that integrating the filtering proposed by Trick [22] with LD reduces both
the branching and the computational time for optimization problems.

Fahle and Sellmann [7] introduce an optimization version of the knapsack
constraint. Given a lower bound B ∈ N and an vector of n coefficients p =
[p1, p2, ..., pn], the constraint enforces not only wx ≤ W but also px ≥ B. Since
achieving generalized arc consistency for this constraint is NP-hard, Fahle and
Sellmann [7] introduce the notion of relaxed consistency for optimization con-
straints, and they use bounds based on LP relaxations for polynomial-time do-
main filtering. Using bounds with guaranteed accuracy, Sellmann [18] exploits
an existing approximation algorithm to provide an approximate consistency. Ka-
triel et al. [11] develop an efficient incremental version of the previous algorithm.
Malitsky et al. [13] generalize the method of [11] to provide a filtering algorithm
for a more general constraint, the bounded knapsack constraint, in which the
variables are integer.

The knapsack constraint is the main component of the class of knapsack
problems, which has many variants (see Kellerer et al. [12] for more details).
The simplest is the 0/1 knapsack problem. Given a set of n items, where each
item i has a weight wi and a value pi, we must determine which items to include

in the knapsack so that the total weight is less than or equal to a given limit W
and the total value is maximized. In this paper, we focus on the multidimensional
knapsack problem (MKP), which is as follows:

Maximize

n∑
i=1

pixi (1)

subject to

n∑
i=1

wijxi ≤ Cj j = 1, . . . ,m (2)

xi ∈ {0, 1} (3)

Regular Constraint The regular global constraint is generally specified by
using a (nondeterministic) finite automaton π, which is defined as a 5-tuple
π = (Q,A, τ, q0, F) where:

– Q is the finite set of states;
– A is the alphabet;
– τ : Q×A×Q is the transition table;
– q0 ∈ Q is the initial state;
– F ⊆ Q is a set of final states.

The constraint regular([X1, . . . , Xn], π) holds if the sequence of values of
the variables X1, . . . , Xn is a member of the regular language recognized by a
deterministic finite automaton π. The recognition is confirmed if there exists a
sequence of states qi0 , . . . , qin such that qi0 = q0, (qik , Xi, qik+1

) is a transition
in τ , and qin ∈ F is a final state.

Pesant [16] introduced a filtering algorithm for the regular constraint. It
constructs a layered graph similar to that proposed for the knapsack constraint
above, except that its rows correspond to states of the automaton. This approach
was later extended to the optimization constraints Soft-regular [23], Cost-
regular [6], and Multicost-regular [14] to enforce bounds on the global
cost of the assignment. The underlying solution methods compute the shortest
and longest paths in an acyclic graph.

The regular global constraint is useful in modeling complex work regula-
tions in the shift scheduling problem (SSP), since the deterministic finite au-
tomaton can specify the rules that regulate transitions in the sequence of ac-
tivities [6, 17, 4, 3]. The problem consists in scheduling a sequence of activities
(work, break, lunch, and rest activities) for a set of employees. We will investigate
a version of the SSP in which only one employee is considered and the work reg-
ulations are so complex that modeling them requires many regular constraints.
Let W be a set of work activities, T a set of periods, Π a set of deterministic fi-
nite automata expressing work regulations, and pij the profit for the assignment
of activity i ∈ W at period j ∈ T . We must assign one and only one activity
for each period such that the transition of the activities over the periods satis-
fies the work regulations defined by the automata in Π and the total profit is
maximized. To state the model for the SSP in CP, we use the element constraint

Element(Index, Table, Value), which holds if Value is equal to the Index
of the Table, i.e., value = Table[Index], to represent the assignment. Let
Xj be the variable representing the activity assigned to period j. The problem
is then:

Maximize
∑
j∈T

Cj (4)

subject to regular(X,πi) ∀πi ∈ Π (5)

element(Xj , pij , Cj) ∀i ∈W, j ∈ T (6)

Xj ∈W ∀j ∈ T (7)

Cj ∈ R,min
i∈W

pij ≤ Cj ≤ max
i∈W

pij ∀j ∈ T (8)

where constraints (6) ensure that Cj is equal to pij if and only if Xj = i. This
specifies the profit of each assignment.

3 Proposed Approach

3.1 Lagrangian Decomposition

We first recall the LD approach. Consider the problem of computing max{z =
c>x|C1(x) ∧ C2(x)}, where x is a set of variables, c is a set of coefficients, and
C1(x) and C2(x) are two arbitrary constraints. One can obtain a relaxation, i.e.,
an upper bound on the solution, as follows:

max
{
z = c>x

C1(x) ∧ C2(x)
}

= max
{
c>x

C1(x) ∧ C2(y) ∧ x = y
}

= max
{
c>x + u>(x− y)

C1(x) ∧ C2(y) ∧ x = y
}

≤ max
{
c>x + u>(x− y)

C1(x) ∧ C2(y)
}

= max
{

(c> + u>)x
C1(x)

}
+ max

{
−u>y

C2(y)
}

In LD, a set of variables x is duplicated by introducing an identical set of
variables y, and the difference (x− y) is added to the objective function with a
violation penalty cost u ≥ 0, where u is the vector of Lagrangian multipliers. The
original problem is then relaxed to two subproblems: one with C1 and the other
with C2. The two subproblems can be solved separately. Solving the resulting
programs with a given parameter u provides a valid upper bound on the original
objective function. The non-negative multipliers u that give the best bound
can be found by solving the Lagrangian dual. The decomposition can easily be
generalized to m constraints:

max

{
z = c

>
x
 m∧

i=1

Ci(x)

}
= max

{
c
>
x
1
 m∧

i=1

Ci(x
i
)

m∧
i=2

x
i
= x

1

}

= max

{
c
>
x
1
+

m∑
i=2

u(i)
>
(x

1 − x
i
)
 m∧

i=1

Ci(x
i
)

m∧
i=2

x
i
= x

1

}

≤ max

{
c
>
x
1
+

m∑
i=2

u(i)
>
(x

1 − x
i
)
 m∧

i=1

Ci(x
i
)

}

= max

{(
c
>

+
m∑

i=2

u(i)
>
)

x
1
C1(x

1
)

}
+

m∑
i=2

max
{
−u(i)>x

i
Ci(x

i
)
}

This decomposition works well for numeric variables, i.e., variables whose
domains contain scalars. In CP, we often encounter domains that contain non-
numeric values. For instance, the regular constraint described in Section 2.2
applies to variables whose domains are sets of characters. In most applications,
it makes no sense to multiply these characters with a Lagrangian multiplier. In
this situation, we do not apply the LD method to the original variables Xi but
instead to a set of binary variables xi,v ∈ {0, 1} where xi,v = 1 ⇐⇒ Xi = v.
Rather than having a Lagrangian multiplier for each variable Xi, we instead
have a multiplier for each binary variable xi,v.

Finding the optimal multipliers is the main challenge in optimizing LD since
it is nondifferentiable. There are several approaches; the most common is the
subgradient method (see Shor et al. [21]). Starting from an arbitrary value of
the multipliers u0, it solves subproblems iteratively for different values of u.
These are updated as follows:

uk+1 = uk + tk(yk − xk) (9)

where the index k corresponds to the iteration number, y is a copy of variable
x, and tk is the step size. The step size is computed using the distance between
the objective value of the preceding iteration, Zk−1, and the estimated optimum
Z∗:

tk =
λ(Zk−1 − Z∗)
‖yk−1 − xk−1‖2

0 ≤ λ ≤ 2. (10)

Here, λ is a scaling factor used to control the convergence; it is normally between
0 and 2.

Our approach integrates an automatic bounding mechanism into the branch-
and-bound algorithm of CP. The idea is that, at each node of the search tree,
we use LD to yield valid bounds. The approach divides the problem into many
subproblems; each subproblem has one global constraint and an objective func-
tion involving Lagrangian multipliers. For each subproblem, the solver must find
the assignment that satisfies the global constraint while optimizing a linear ob-
jective function. It is generally possible to adapt the filtering algorithm of the
global constraints to obtain an optimal support. If a constraint takes as pa-
rameter a cost for each pair for variable/value and it constrains the cumulative

cost of the assignments to be bounded, then this constraint is compatible with
the bounding mechanism we propose. Soft constraints such as Cost-GCC and
Cost-Regular [23] can therefore be used.

3.2 The Knapsack Constraint

For the MKP, the subproblems are 0/1 knapsack problems. They can be solved
via dynamic programming, which runs in pseudo-polynomial timeO(nW), where
n is the number of items and W is the size of the knapsack. We use the algorithm
by Trick [22] to filter the constraint, and we adapt it to compute the bound. Trick
constructs an acyclic graph with n + 1 layers where Lj contains the nodes of
layer j for 0 ≤ j ≤ n. Each node is labeled with a pair of integers: the layer
and the accumulated weight. At layer 0, we have a single node L0 = {(0, 0)}.
At layer j, we have Lj = {(j, k) | 1 ∈ dom(Xj) ∧ (j − 1, k − wj) ∈ Lj−1 ∨ 0 ∈
dom(Xj)∧ (j−1, k) ∈ Lj−1}. There is an edge labeled with value 1 between the
nodes (j − 1, k − wj) and (j, k) whenever these nodes exist and an edge labeled
with value 0 between the nodes (j − 1, k) and (j, k) whenever these nodes exist.
Trick’s algorithm filters the graph by removing all the nodes and edges that do
not lie on a path connecting the node (0, 0) to a node (n, k) for 0 ≤ k ≤ C. After
the graph has been filtered, if no edges labeled with the value 1 remain between
layer j − 1 and layer j, this value is removed from the domain of xj . Similarly,
if no edges labeled with the value 0 remain between layer j − 1 and layer j, this
value is removed from the domain of xj .

We augment this algorithm by computing costs. We assign to each edge
connecting node (j − 1, k − wj) to node (j, k) a cost of cj +

∑m
l=2 u(l, j) for the

graph representing the first constraint (i = 1), where cj is the value of item j
and m is the number of constraints; and a cost of −u(i, j) where i ≥ 2 is the
index of the constraint for the graph representing the remaining constraints. We
use dynamic programming to compute for each node (j, k) the cost of the longest
path connecting the source node (0, 0) to the node (j, k):

M [j, k] =

0 if k = j = 0

−∞ if k > j = 0

max(M [j − 1, k],M [j − 1, k − wj] + addedCost) otherwise

where addedCost is equal to cj +
∑m

l=2 u(l, j) if i = 1 and −u(i, j) if i > 1.
The optimal bound for this constraint is given by max0≤j≤W M [n, j]. In-

deed, any path in the filtered graph connecting the source node (0, 0) to a
node (n, k) for 0 ≤ k ≤ C corresponds to a valid assignment. The expres-
sion max0≤j≤W M [n, j] returns the largest cost of such a path and therefore the
maximum cost associated with a solution of the knapsack constraint.

3.3 The Regular Constraint

We proceed similarly with the regular constraint. Pesant [16] presents an algo-
rithm also based on a layered graph. The set Lj contains the nodes at layer

j for 0 ≤ j ≤ n. Each node is labeled with an integer representing the layer
and a state of the automaton. The first layer contains a single node, and we
have L0 = {(0, q0)}. The other layers, for 1 ≤ j ≤ n, contain the nodes
Lj = {(j, q2) | (j − 1, q1) ∈ Lj−1 ∧ a ∈ dom(Xj) ∧ (q1, a, q2) ∈ τ}. An edge
is a triplet (n1, n2, a) where n1 and n2 are two nodes and a ∈ A is a label. Two
nodes can be connected to each other with multiple edges having distinct labels.
The set of edges is denoted E. There is an edge connecting node (j−1, q1) to node
(j, q2) with label a whenever these nodes exist and (q1, a, q2) ∈ τ ∧ a ∈ dom(Xj)
holds. As with Trick’s algorithm, Pesant filters the graph by removing all nodes
and edges that do not lie on a path connecting the source node (0, q0) to a node
(n, q) where q ∈ F is a final state. If no edges with label a connecting a node in
Lj−1 to a node in Lj remain, the value a is pruned from the domain dom(Xj).

This filtering algorithm can be augmented by associating a cost with each
edge. We assume that there is a Lagrangian multiplier u(i, j, a) for each binary
variable xja representing the assignment of variable Xj to character a ∈ A.
Here, i ≥ 1 represents the index of the constraint. An edge (q1, a, q2) has a cost of
paj+

∑m
l=2 u(l, j, a) in the graph induced by the first constraint (i = 1), and a cost

of −u(i, j, a) in the graph induced by the remaining constraints (i > 1). Using
dynamic programming, we can compute the cost of the longest path connecting
node (0, q0) to a node (j, q):

R[j, q] =

{
0 if j = 0

max((j−1,q1),(j,q),a)∈E(R[j − 1, q1] + addedCost) otherwise

where addedCost is equal to paj +
∑m

l=2 u(l, j, a) if i = 1 and −u(i, j, a) if i > 1.
Since every path from layer 0 to layer n in the graph corresponds to a valid

assignment for the regular constraint, the optimal bound for this constraint is
given by maxq∈F R[n, q], i.e., the greatest cost for a valid assignment.

3.4 The Subgradient Procedure

We use the subgradient procedure to solve the Lagrangian dual. The estimated
optimum Z∗ is set to the value of the best incumbent solution, and the scaling
factor λ is set to 2. The updating strategy halves λ when the objective function
does not improve in five iterations. At each node of the search tree, the number of
iterations for the subgradient procedure, which gives the best trade-off between
the running time and the number of nodes required in the search tree, is fixed
to 60 for the MKP in which the subproblem is solved by dynamic programming
and to 10 for all other cases. The subgradient procedure is terminated as soon
as the resulting Lagrangian bound is inferior to the value of the best incumbent
solution.

The initial multipliers u0 at the root node are fixed to 1. At the other nodes,
we use an inheritance mechanism, i.e., the value of u0 at a node is taken from
the multipliers of the parent node. This mechanism is better than always fixing
the initial multipliers to a given value. We have tested two strategies: we fix u0
either to the multipliers that give the best bound or to the last multipliers of the

parent node. The results show that the latter strategy generally performs better.
This is because the limited number of subgradient iterations at each node is not
sufficient to provide tight bounds for the overall problem. Therefore, the more
iterations performed at early nodes, the better the multipliers expected at later
nodes.

4 Computational Results

This section reports some experimental results. The goal is not to present state-
of-the-art results for specific problems but to show that LD could make CP tools
more efficient for optimization problems. The algorithms are built around CP
Optimizer 12.6 with depth-first search. All the other parameters of the solver
are set to their default values. The criteria used to evaluate the solutions are the
number of nodes in the search tree, the computational time, and the number of
instances successfully solved to optimality.

We investigate the behavior of the algorithms in two contexts: with and
without initial lower bounds. In case A, we provide the optimal solution to the
model by adding a constraint on the objective function, setting it to be at least
the value of the optimal solution; the goal is then to prove the optimality of
this value. In case B, we start the algorithms without an initial lower bound.
These two tests provide different insights, since the presence of different bound-
ing mechanisms will impact the search and branching decisions of the solver, with
unpredictable outcomes. However, once the solver has found the optimal solu-
tion, it must always perform a last search to demonstrate optimality. A better
bounding mechanism will always contribute to this phase of the overall search.

4.1 Results for MKP

The experiments in this subsection analyze the performance of LD with two
MKP solution methods: i) direct CP using only sum constraints, and ii) the
approach of Trick [22]. For i) the Lagrangian subproblems are solved by dynamic
programming, and for ii) they are solved using the filtering graph of Trick [22].

We selected two groups of small and medium MKP instances from the OR-
Library [1] for the test: Weing (8 problems, each with 2 constraints) and Weish
(30 problems, each with 5 constraints). We limited the computational time to
one hour.

Table 1 reports the results for case B and Table 2 reports the results for
case A. The instances not included in Table 1 could not be solved by any of
the algorithms; a dash indicates that the algorithm could not solve the instance
within the time limit.

As can be seen in Table 2, the LD approach processes much fewer nodes per
seconds, but the extra effort invested in bounding significantly decreases the size
of the search tree and the time to find the optimal solution, especially for the
larger instances. The most efficient method is CP + LD: it can solve 30 instances.
However, it generally requires more time to solve the small instances. Moreover,

it is quite time-consuming compared with the original method on a few instances,
e.g., Weish6, Weish7, Weish8, and Weing15. The Trick + LD approach improves
on Trick for all the criteria, even for the small instances. This is because solving
the Lagrangian subproblems based on the information available from the filtering
algorithm is computationally less costly. Moreover, the propagation performed
at each node of the search tree is limited for the direct CP formulation, and the
computation of the Lagrangian bound significantly increases this. On the other
hand, the Trick method relies on a filtering algorithm for which the complexity is
linear in the size of the underlying graph. In this case, the additional computation
for the LD bounds has less impact.

Instance
#

Vars
CP CP + LD Trick Trick + LD

Nodes Time Nodes
Time

Nodes Time Nodes
Time

Nodes Time Nodes
Time

Nodes Time Nodes
Time

Weing1 28 4424 1.19 3718 860 3.95 218 4424 6.19 715 1100 6.00 183
Weing2 28 5572 1.29 4319 744 3.07 242 5572 11.94 467 744 4.30 173
Weing3 28 8650 0.55 16k 270 0.97 278 8650 15.34 564 280 1.53 183
Weing4 28 4106 1.08 3802 538 2.62 205 4106 19.72 208 538 4.14 130
Weing5 28 13k 0.58 22k 262 1.00 262 12k 21.13 615 262 1.53 171
Weing6 28 9150 1.14 8026 876 3.59 244 9150 20.50 446 1012 4.83 210
Weing7 105 - - - 32k 3410.04 9 - - - - - -
Weing8 105 - - - 19k 147.98 128 - - - 19k 655.46 29
Weish1 30 35k 1.78 20k 1320 37.31 35 35k 910.82 38 1286 59.90 21
Weish2 30 40k 1.64 24k 1280 27.14 47 40k 2481.72 16 1384 57.47 24
Weish3 30 11k 0.83 13k 674 8.47 80 11k 669.01 16 760 24.35 31
Weish4 30 2342 0.80 2927 856 11.91 72 2342 186.47 13 826 29.68 28
Weish5 30 1614 0.90 1793 728 9.19 79 1614 149.78 11 644 23.74 27
Weish6 40 1.2M 12.56 96k 4286 369.13 12 - - - 3368 320.92 10
Weish7 40 901k 15.12 60k 3888 290.79 13 - - - 3482 352.67 10
Weish8 40 1.1M 19.74 56k 4004 256.00 16 - - - 3464 392.57 9
Weish9 40 144k 3.12 46k 2426 46.78 52 - - - 2212 191.83 12
Weish10 50 28M 589.20 48k 4486 264.40 17 - - - 3969 734.65 5
Weish11 50 6M 95.84 63k 3764 159.05 24 - - - 3764 595.38 6
Weish12 50 21M 355.78 59k 4738 307.37 15 - - - 3728 651.90 6
Weish13 50 20M 338.07 59k 4208 250.62 17 - - - 4374 908.53 5
Weish14 60 - - - 8424 645.04 13 - - - 8856 2472.92 4
Weish15 60 35M 720.98 49k 13k 1363.17 10 - - - 12k 3482.11 3
Weish16 60 - - - 14k 1216.45 12 - - - 13k 3324.81 4
Weish17 60 - - - 14k 1600.78 9 - - - - - -
Weish18 70 - - - - - - - - - - - -
Weish19 70 - - - 7750 667.02 12 - - - 8907 3174.07 3
Weish20 70 - - - 18k 2610.74 7 - - - - - -
Weish21 70 - - - 15k 1642.16 9 - - - - - -
Weish22 80 - - - 15k 2905.41 5 - - - - - -
Weish23 80 - - - 12k 2002.74 6 - - - - - -

Table 1. Results for MKP without initial lower bound

Table 2 presents the results for case A. Here, the Lagrangian approaches
are even more efficient. The algorithms with LD can successfully solve all 38
instances, and the search tree is relatively small. The computational time of CP

+ LD is still worse than that of CP on a few small instances, but the difference
has decreased significantly. The main reason for this is that the optimal solutions
used to compute the step size make the subgradient procedure more stable and
cause it to converge more quickly. This observation suggests that adding good
lower bounds as soon as possible in the solution process will improve the method.

We computed at the root of the search tree the bound that the LD provides
as well as the bound returned by CPLEX using a linear relaxation (LP) and the
bound that CPLEX computes when the integer variables are not relaxed and
all cuts are added (ILP). Due to lack of space, we do not report the bounds for

Instance
#

Vars
CP CP + LD Trick Trick + LD

Nodes Time Nodes
Time

Nodes Time Nodes
Time

Nodes Time Nodes
Time

Nodes Time Nodes
Time

Weing1 28 3408 0.21 16k 24 0.62 39 3408 5.25 649 24 0.78 31
Weing2 28 5070 0.21 24k 30 0.48 63 5070 16.36 310 30 0.74 41
Weing3 28 7004 0.55 13k 32 0.32 100 7004 11.78 595 34 0.42 81
Weing4 28 2344 0.14 17k 16 0.37 43 2344 10.45 224 16 0.81 20
Weing5 28 18k 0.33 55k 26 0.32 81 18k 35.30 510 26 0.56 46
Weing6 28 8038 0.22 37k 30 0.44 68 8038 27.62 291 30 0.80 38
Weing7 105 - - - 134 4 - - - 134 174.03 1
Weing8 105 - - - 168 3.54 47 - - - 520 40.95 13
Weish1 30 11k 0.27 41k 54 2.85 19 11k 447.18 25 70 5.72 12
Weish2 30 23k 0.43 53k 66 1.98 33 23k 1679.54 14 62 9.15 7
Weish3 30 8394 0.23 36k 38 2.80 14 8394 476.57 18 46 5.59 8
Weish4 30 632 0.14 4514 34 1.26 27 632 57.19 11 38 4.64 8
Weish5 30 556 0.12 4633 34 0.87 39 556 55.93 10 36 5.67 6
Weish6 40 861k 12.92 67k 56 5.54 10 - - - 72 16.58 4
Weish7 40 456k 7.07 64k 60 8.40 7 - - - 72 17.40 4
Weish8 40 707k 10.38 68k 60 9.05 7 - - - 54 19.52 3
Weish9 40 74k 1.26 59k 48 2.28 21 - - - 74 18.18 4
Weish10 50 8.6M 132.92 65k 134 29.53 5 - - - 192 51.11 4
Weish11 50 1.4M 22.75 62k 86 10.50 8 - - - 82 28.44 3
Weish12 50 9M 135.70 66k 114 24.92 5 - - - 122 38.23 3
Weish13 50 4.1M 60.90 67k 120 17.84 7 - - - 112 35.23 3
Weish14 60 - - - 104 27.97 4 - - - 330 123.89 3
Weish15 60 9.7M 173.65 56k 92 28.20 3 - - - 146 68.70 2
Weish16 60 - - - 128 37.95 3 - - - 450 192.18 2
Weish17 60 156M 3537.25 44k 90 34.36 3 - - - 176 115.41 1.5
Weish18 70 - - - 200 87.97 2 - - - 142 116.60 1.2
Weish19 70 - - - 200 86.98 2 - - - 320 228.97 1.4
Weish20 70 - - - 174 65.84 3 - - - 596 340.87 1.7
Weish21 70 - - - 134 48.17 3 - - - 354 225.53 1.6
Weish22 80 - - - 150 87.39 2 - - - 1068 1083.83 1.0
Weish23 80 - - - 158 83.39 1.9 - - - 177 350.55 0.5
Weish24 80 - - - 146 84.90 1.7 - - - 154 194.55 0.8
Weish25 80 - - - 238 117.47 2 - - - 586 539.24 1.1
Weish26 90 - - - 178 135.75 1.3 - - - 438 567.02 0.8
Weish27 90 - - - 152 94.48 1.6 - - - 258 356.33 0.7
Weish28 90 - - - 152 96.71 1.6 - - - 266 344.16 0.8
Weish29 90 - - - 152 104.87 1.4 - - - 416 601.38 0.7
Weish30 90 - - - 152 126.96 1.2 - - - 138 372.65 0.4

Table 2. Results for MKP: proving optimality

each instance. In average, the bounds for LD, LP, and ILP are 1.03%, 0,79%,
and 0.22% greater than the optimal value. Even though LD does not provide
the best bound, it represents a significative improvement to CP whose bound is
very weak.

4.2 Results for SSP

To generate the regular constraints, we use the procedure proposed by Pesant
[16] to obtain random automata. The proportion of undefined transitions in τ
is set to 30% and the proportion of final states to 50%. To control the problem
size, we create instances with only 2 regular constraints and 50 periods. The
assignment profits are selected at random from integer values between 1 and
100. Each instance is then generated based on two parameters: the number of
activities (nva) and the number of states (nbs) in the automata. For each pair
(nva,nbs), we randomly generate three instances. The instances are labeled nbv-
nbs-i, where i is the instance number. Because SSP instances are more difficult
than MKP instances, the computational time is increased to 2 hours.

The experiment investigates the performance of LD when combined with the
method of Pesant [16] for the SSP. As for the MKP, we test two cases: case A
has initial lower bounds and case B does not. Tables 3 and 4 present the results,
which demonstrate the performance of our approach. The LD method clearly
improves the method of Pesant [16] for all three criteria. More precisely, for case
B, it can solve 6 additional instances, reducing the size of the search tree by a
factor of about 7 and the computational time by a factor of 1.5 on average. In
case A, it works even better, reducing the size of the search tree by a factor of
about 16 and the computational time by a factor of more than 4 on average.
This is because we can reuse the graph constructed by the filtering algorithm to
solve the Lagrangian subproblems.

Instance
Pesant Pesant + LD

Nodes Time Nodes
Time

Nodes Time Nodes
Time

10-20-01 2.2M 1232.72 1785 156k 346.92 450
10-20-02 - - - 298k 741.35 402
10-20-03 1.6M 783.29 2043 158k 332.15 476

10-80-01 256k 1325.80 193 84k 1020.53 82
10-80-02 788k 3307.39 238 238k 2834.86 84
10-80-03 847k 2344.55 361 246k 2176.73 113

20-20-01 - - - 828k 1856.10 446
20-20-02 - - - 1.3M 3404.56 382
20-20-03 2.1M 2427.72 865 164k 439.97 373

20-80-01 - - - 373k 3944.18 95
20-80-02 - - - 436k 5206.81 84
20-80-03 - - - 228k 2561.64 89

Table 3. Results for SSP without initial lower bound

Instance
Pesant Pesant + LD

Nodes Time Nodes
Time

Nodes Time Nodes
Time

10-20-01 87k 42.20 2062 2564 5.94 432
10-20-02 407k 342.43 1189 44k 108.30 406
10-20-03 71k 28.60 2483 4118 7.48 551

10-80-01 20k 118.97 168 4546 71.16 64
10-80-02 25k 81.39 307 5466 63.19 87
10-80-03 26k 85.67 303 4762 58.34 82

20-20-01 343k 176.38 1945 2651 13.41 198
20-20-02 372k 297.97 1248 10k 51.63 194
20-20-03 53k 44.28 1197 1353 7.43 182

20-80-01 105k 486.89 216 10k 147.63 68
20-80-02 216k 1648.28 131 13k 211.23 62
20-80-03 16k 128.74 124 5128 72.33 71

Table 4. Results for SSP: proving optimality

5 Conclusions and future work

We have introduced an automatic bounding mechanism based on the LD concept
to improve the performance of CP for optimization problems. We tested the
approach on two problems, the MKP and a synthesized version of the SSP.
These rely on two well-known global constraints: knapsack and regular.

Our next step will be to apply the approach to other global constraints to
solve real problems. One candidate is the global cardinality constraint, for which
the subproblems can be solved in polynomial time with the aid of a graph ob-
tained from the filtering algorithm. In addition, our approach could be improved
in several ways. First, we could use the information obtained from solving the
Lagrangian dual to design a strong cost-based filtering, as proposed by Cron-
holm and Ajili [5]. Second, by checking the feasibility of the solutions of the
Lagrangian subproblems we could find good solutions that help to limit the
search and improve the convergence of the subgradient method. Moreover, we
could use the solutions of the subproblems to guide the search by branching on
the variable with the largest difference between itself and its copies. Finally, as
reported by Guignard [9], the subgradient approach can have unpredictable con-
vergence behavior, so a more suitable algorithm could improve the performance
of our approach.

Acknowledgment

This work was financed with a Google Research Award. We would like to thank
Laurent Perron for his support.

References

[1] J.E Beasley. OR-library, 2012. http://people.brunel.ac.uk/~mastjjb/

jeb/info.html.
[2] Thierry Benoist, Franois Laburthe, and Benot Rottembourg. Lagrange re-

laxation and constraint programming collaborative schemes for travelling
tournament problems. In CP-AI-OR’2001, Wye College, pages 15–26, 2001.

[3] Nicolas Chapados, Marc Joliveau, Pierre L’Ecuyer, and Louis-Martin
Rousseau. Retail store scheduling for profit. European Journal of Op-
erational Research, 239(3):609–624, 2014. doi: 10.1016/j.ejor.2014.05.033.
URL http://dx.doi.org/10.1016/j.ejor.2014.05.033.

[4] Marie-Claude Côté, Bernard Gendron, Claude-Guy Quimper, and Louis-
Martin Rousseau. Formal languages for integer programming mod-
eling of shift scheduling problems. Constraints, 16(1):54–76, 2011.
doi: 10.1007/s10601-009-9083-2. URL http://dx.doi.org/10.1007/

s10601-009-9083-2.
[5] Wilhelm Cronholm and Farid Ajili. Strong cost-based filtering for Lagrange

decomposition applied to network design. In Principles and Practice of
Constraint Programming CP 2004, pages 726–730, 2004. URL http://

www.springerlink.com/index/ur3uvyqbp0216btd.pdf.
[6] Sophie Demassey, Gilles Pesant, and Louis-Martin Rousseau. A cost-

regular based hybrid column generation approach. Constraints, 11(4):315–
333, 2006. URL http://dblp.uni-trier.de/db/journals/constraints/

constraints11.html#DemasseyPR06.
[7] Torsten Fahle and Meinolf Sellmann. Cost based filtering for the constrained

knapsack problem. Annals of OR, 115(1–4):73–93, 2002. doi: 10.1023/A:
1021193019522. URL http://dx.doi.org/10.1023/A:1021193019522.

[8] Daniel Fontaine, Laurent D. Michel, and Pascal Van Hentenryck.
Constraint-based Lagrangian relaxation. In CP’14, pages 324–339, 2014.

[9] Monique Guignard. Lagrangean relaxation. Top, 11(2):151–200, 2003. ISSN
1134-5764. doi: 10.1007/BF02579036. URL http://dx.doi.org/10.1007/

BF02579036.
[10] Monique Guignard and Siwhan Kim. Lagrangean decomposition: A model

yielding stronger Lagrangean bounds. Mathematical Programming, 39(2):
215–228, 1987. ISSN 00255610. doi: 10.1007/BF02592954.

[11] Irit Katriel, Meinolf Sellmann, Eli Upfal, and Pascal Van Hentenryck. Prop-
agating knapsack constraints in sublinear time. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence, July 22–26,
2007, Vancouver, British Columbia, Canada, pages 231–236, 2007. URL
http://www.aaai.org/Library/AAAI/2007/aaai07-035.php.

[12] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
Berlin, Germany, 2004.

[13] Yuri Malitsky, Meinolf Sellmann, and Radoslaw Szymanek. Filtering
bounded knapsack constraints in expected sublinear time. In Proceed-
ings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11–15, 2010, 2010. URL http:

//www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1855.

[14] Julien Menana and Sophie Demassey. Sequencing and counting with
the multicost-regular constraint. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 5547 LNCS, pages 178–192, 2009. ISBN
3642019285. doi: 10.1007/978-3-642-01929-6\ 14.

[15] Wided Ouaja and Barry Richards. A hybrid multicommodity rout-
ing algorithm for traffic engineering. Networks, 43(3):125–140, 2004.
URL http://dblp.uni-trier.de/db/journals/networks/networks43.

html#OuajaR04.
[16] Gilles Pesant. A regular language membership constraint for finite se-

quences of variables. In Principles and Practice of Constraint Program-
ming CP 2004, pages 482–495, 2004. URL http://www.springerlink.

com/content/ed24kyhg561jjthj.
[17] Claude-Guy Quimper and Louis-Martin Rousseau. A large neighbour-

hood search approach to the multi-activity shift scheduling problem. J.
Heuristics, 16(3):373–392, 2010. doi: 10.1007/s10732-009-9106-6. URL
http://dx.doi.org/10.1007/s10732-009-9106-6.

[18] Meinolf Sellmann. Approximated consistency for knapsack constraints. In
Principles and Practice of Constraint Programming - CP 2003, 9th Inter-
national Conference, CP 2003, Kinsale, Ireland, September 29 - October 3,
2003, Proceedings, pages 679–693, 2003. doi: 10.1007/978-3-540-45193-8 46.
URL http://dx.doi.org/10.1007/978-3-540-45193-8_46.

[19] Meinolf Sellmann. Theoretical foundations of CP-based Lagrangian relax-
ation. In Mark Wallace, editor, CP, volume 3258 of Lecture Notes in Com-
puter Science, pages 634–647. Springer, 2004. ISBN 3-540-23241-9. URL
http://dblp.uni-trier.de/db/conf/cp/cp2004.html#Sellmann04.

[20] Meinolf Sellmann and Torsten Fahle. Constraint programming based La-
grangian relaxation for the automatic recording problem. In Annals of
Operations Research, volume 118, pages 17–33, 2003. ISBN 0254-5330. doi:
10.1023/A:1021845304798.

[21] N. Z. Shor, Krzysztof C. Kiwiel, and Andrzej Ruszcayǹski. Minimization
methods for non-differentiable functions. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985. ISBN 0-387-12763-1.

[22] Michael A. Trick. A dynamic programming approach for consistency and
propagation for knapsack constraints. Annals of OR, 118(1–4):73–84,
2003. URL http://dblp.uni-trier.de/db/journals/anor/anor118.

html#Trick03.
[23] Willem Jan van Hoeve, Gilles Pesant, and Louis-Martin Rousseau. On

global warming: Flow-based soft global constraints. J. Heuristics, 12(4–5):
347–373, 2006. doi: 10.1007/s10732-006-6550-4. URL http://dx.doi.org/

10.1007/s10732-006-6550-4.

