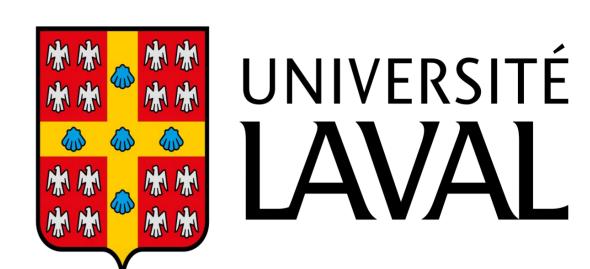
Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Nicolas Beldiceanu, Jovial Cheukam-Ngouonou, Rémi Douence, Ramiz Gindullin, Claude-Guy Quimper



ABSTRACT

To automate the discovery of conjectures on combinatorial objects, we introduce the concept of a map of sharp bounds on characteristics of combinatorial objects, that provides a set of interrelated sharp bounds for these combinatorial objects. We then describe a Bound Seeker, a CP-based system, that gradually acquires maps of conjectures. The system was tested for searching conjectures on bounds on characteristics of digraphs: it constructs sixteen maps involving 431 conjectures on sharp lower and upper-bounds on eight digraph characteristics.

PART I:

CONTEXT AND QUESTIONS

COMBINATORIAL OBJECTS AND THEIR CHARACTERISTICS

DIGRAPHS

$$a = 16$$

$$v = 4$$

$$c = 1$$

$$a = n$$

c = 2

a = number of arcs

v = number of vertices

c = number of connected components

FORESTS

$$f = 3$$

$$t = 1$$

$$\overline{p} = 3$$

$$v = 6$$

= number of leaves v = number of vertices = maximum depth t = number of trees

QUESTIONS

How to acquire from data representing instances of combinatorial objects:

- (1) Sharp bounds of characteristics?
- (2) Relations between sharp bounds?
- (3) And organise (1) and (2) into a map?

Illustrating the questions wrt digraphs

(1) Sharp bounds:

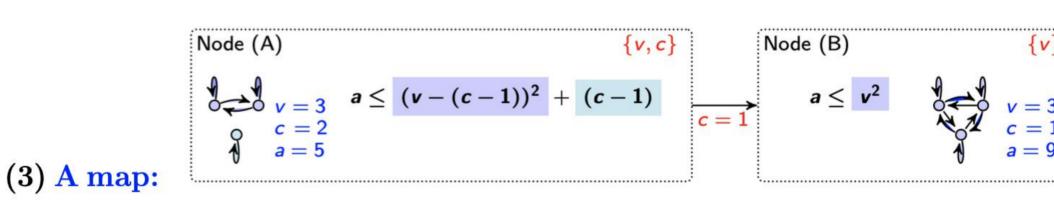
$$a \le (v - (c - 1))^2 + (c - 1)$$

$$v = 3$$

$$c = 2$$

$$a = 5$$

If $a = v^2$ then c = 1(2) Relation:



PART II:

DEFINITION OF A MAP OF CONJECTURES

Given a finite set of input characteristics \mathcal{P} and an output characteristic $o \notin \mathcal{P}$, a map of sharp upper bounds $\mathcal{M}_{\mathcal{P}}^{o \leq}$ is defined as a digraph where:

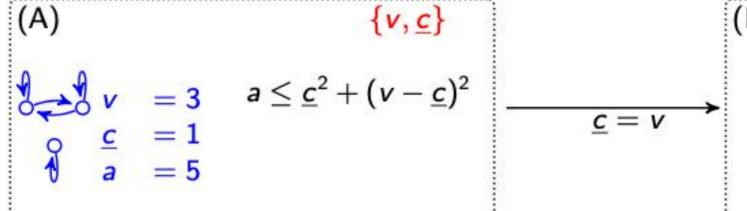
- Each node of the map is associated with a subset $P \subseteq \mathcal{P}$ of input characteristics and corresponds to a maximum conjecture of the form $o \le f(P)$, where f is a function of P.
 - This inequality is tight, i.e. there exist values that can be given to the parameters P in order to reach the equality.
- Each arc from conjecture $o \le f_1(P \cup \{q\})$ to conjecture $o \le f_2(P)$ corresponds to a projection from a subset $P \cup \{q\}$ of input characteristics to a subset P of input characteristics, by eliminating a characteristic

The equality q = g(P) is called a maximality conjecture.

ILLUSTRATING THE DEFINITION OF A MAP

 $o \le f_1(P \cup \{q\}) \to q = g(P) \to maximum conjecture 1 maximality conjecture m$

 $o \leq f_2(P)$ maximum conjecture 2 {v}



= upper bound of \boldsymbol{o} wrt $\boldsymbol{P} \cup \{\boldsymbol{q}\}$ = set of bounding characteristics

= bounded characteristic = upper bound of \boldsymbol{o} wrt \boldsymbol{P}

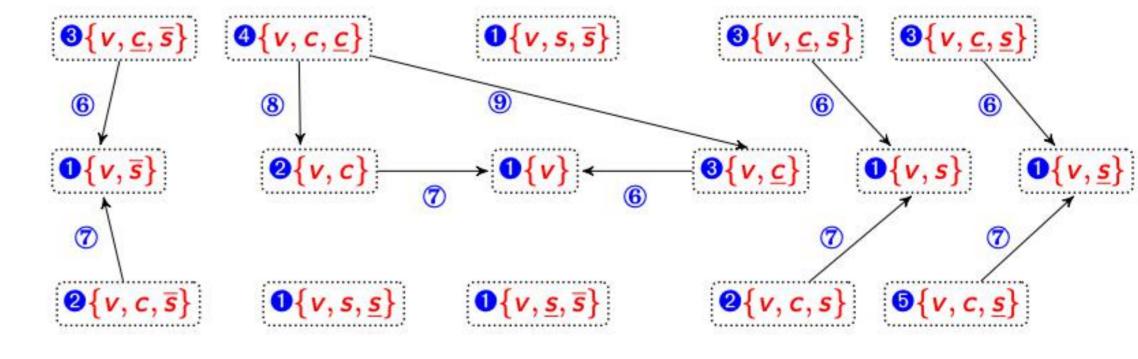
= linking characteristic

= a function of \boldsymbol{P}

PART III: RESULTS

Comparison between the Bound Seeker (BS) and the bounds of the Global constraints catalog (GCC)

Map of 16 sets of bounding characteristics used to bound the characteristic \overline{c}



Total Percentage Number of bounding characteristics Equivalent sharp bounds retrieved by BS 22 14 4 66,66% 6,66% Sharper bounds than the GCC found by BS 10% Generalised sharp bounds found by BS 5% Erroneous bounds found in the GCC by BS 11,66% Bounds in the GCC not retrieved by BS Total bounds of the GCC for each column 24 24 12 60

- \overline{c} : size of the largest connected component
- v : number of vertices
- c: number of connected components
- s : number of strongly connected components
- c: size of the smallest connected component
- **s**: size of the largest strongly connected component
- s : size of the smallest strongly connected component
- $\overline{c} \leq \underline{s} c \cdot \underline{s} + v$ $\underline{c} = v$ c = 18 $\underline{c} = (c = 1?v:1)$ $9 c = 1 + (v \neq \underline{c})$

 $\underline{\mathbf{0}} \quad \overline{\mathbf{c}} \leq \underline{\mathbf{c}} - \mathbf{c} \cdot \underline{\mathbf{c}} + \mathbf{v}$

 $\overline{c} \leq (v = \underline{c}?v:v - \underline{c})$

 $0 \overline{c} \leq v$

 $\overline{c} \leq v - c + 1$