
Incremental Selection of
Most-Filtering Conjectures and

Proofs of the Selected Conjectures

J. Cheukam Ngouonou1,2,4, R. Gindullin1,2, C.-G. Quimper4,
N. Beldiceanu1,2 and R. Douence1,2,3

1IMT Atlantique, Nantes, France 2LS2N, Nantes, France
3INRIA, Nantes, France 4Université Laval, Québec, Canada

ramiz.gindullin@it.uu.se, nicolas.beldiceanu@imt-atlantique.fr,
jovial.cheukam-ngouonou.1@ulaval.ca, Remi.Douence@imt-atlantique.fr,

Claude-Guy.Quimper@ift.ulaval.ca

Abstract. We present an improved incremental selection algorithm of
the selection algorithm presented in [1] and prove all the selected con-
jectures.

1 Introduction

In Section 2, we describe an incremental algorithm for selecting the most-filtering
bound conjectures. This incremental algorithm and the speedup it offers were
mentioned in [1], but were not described for space reasons. In Section 3 and in
Section 4 we respectively prove the selected conjectures for the Partition and
the BinSeq constraints that were not proved in [1].

2 An Incremental Selection Algorithm

We present an incremental version of the selection algorithm described in [1].
Unlike our original algorithms, we do not post the candidate bound constraints
from scratch during each step of the dichotomic search; nor do we scan the set
of solutions from scratch when looking for the next candidate bound constraint
to select.

In the following, we assume that if a constraint fails while being posted, it
will be removed by the solver. Given the set of constraints already posted C, the
function Labeling(FeatVars,X ) returns a triplet (NBack ,Finished ,Sol), where
Sol is the first solution found that satisfies all the constraints of C by assigning
the variables of FeatVars and X from left to right, assuming that the variables
are fixed by scanning their domains by increasing values:

– NBack is the number of backtracks to find a solution or prove that there is
no solution,

– Finished is set to true if no solution could be found, and to false otherwise,

ar
X

iv
:2

51
1.

00
19

4v
1 

 [
cs

.A
I]

  3
1 

O
ct

 2
02

5

https://arxiv.org/abs/2511.00194v1


2 Cheukam Ngouonou et al.

– Sol is meaningless if no solution was found.

The main selection algorithm, Alg.(1), has the following arguments:

– Ctr the constraint associated with a combinatorial object, e.g. the Partition
or the BinSeq constraints.

– FeatVars the set of feature variables of constraint Ctr , e.g. variables P , M ,
M , M and S for Partition or variables N1 ,G , G, G, G, GS , D, D, D, DS
for BinSeq.

– X the array of variables [X1, X2, . . . , Xn] of constraints Ctr .
– Bounds the list of candidate bound constraints found by the Bound Seeker

for constraint Ctr .

From a set of candidate bound constraints Bounds, Alg. (1) returns a list of
selected constraints. Line 1 of Alg. (1) posts the constraint Ctr only once during
the whole selection process, calls Alg. (2) in line 2 to compute all solutions using
all candidate bound constraints, and finally selects in line 3 a subset of candidate
bound constraints that lead to the computation of each solution of the constraint
Ctr without increasing the number of backtracks.

Algorithm 1: Selection(Ctr ,FeatVars,X ,Bounds)

1 post constraint Ctr(FeatVars,X );
2 Sols ← ComputeAllSolutions(FeatVars,X ,Bounds);
3 return Select(Sols,FeatVars,X ,Bounds, {});

Alg. (2) and (3) compute all solutions of the feature variables FeatVars wrt
constraint Ctr in ascending lexicographic order on the FeatVars variables and
records each solution with the number of backtracks to find it. Since we will need
to calculate a specific solution later on in the selection process, independently
from the other solutions, we proceed as follows: to obtain the i-th solution wrt the
lexicographic order of FeatVars, we compute the smallest lexicographic solution
that is strictly greater than the (i − 1)-th solution already known. In lines 3–5
of Alg. (3) we post the constraint FeatVars >ℓex Sol stating that FeatVars is
lexicographically strictly greater than Sol before computing the next smallest
lexicographic solution. Finally, in line 3 of Alg. (2), we sort all solutions by
increasing number of backtracks, as the selection process will use this order to
reduce the time spent generating solutions.

Alg. 4 is a recursive selection algorithm that selects a subset of bound con-
straints that does not increase the number of backtracks to find each solution.
At each step of the recursion, Alg. 4 successively:

– Post the previously selected bound constraint PrevBound (lines 1–2), as all
previously selected bound constraints must be posted when searching for
the next bound constraint to select. Note that unlike the selection algorithm
described in [1], each selected bound constraint is only posted once during
the entire selection process.



Acquiring and Selecting Implied Constraints 3

Algorithm 2: ComputeAllSolutions(FeatVars,X ,Bounds)

1 ∀Bound ∈ Bounds : post bound constraint Bound on FeatVars;
2 Sols ← EnumerateAllSolutions(FeatVars,X );
3 SortedSols ← sort Sols by increasing number of backstracks;
4 remove all posted bound constraints;
5 return SortedSols;

Algorithm 3: EnumerateAllSolutions(FeatVars,X )

1 ISol ← 0; Sols ← ∅;
2 while true do
3 if ISol > 0 ∧ post constraint FeatVars >ℓex Sol fails then
4 return Sols ∪ {(ISol , 0, [])};
5 (NBack ,Finished ,Sol)← Labeling(FeatVars,X );
6 Sols ← Sols ∪ {(ISol ,NBack ,Sol)};
7 if ISol > 0 then remove lexicographic constraint that was posted;
8 if Finished then return Sols else ISol ← ISol + 1;

– Select the next bound constraint Selected ′ from the current set of candidate
bound constraints Bounds, and create the new reduced set of candidate
bound constraints Bounds ′ (line 3).

– If both, we could select a bound constraint and we still have some candidate
bound constraints (line 4), we recursively call Alg. 4 to select the next bound
constraints to keep (line 5).

Algorithm 4: Select(Sols,FeatVars,X ,Bounds,PrevBound)

1 if PrevBound ̸= ∅ then
2 post previous selected bound constraint PrevBound on FeatVars;

3 (Selected ′,Bounds ′)← SelectOne(true,Sols,Sols,FeatVars,X ,Bounds);
4 if Selected ′ ̸= ∅ ∧ Bounds ′ ̸= ∅ then
5 RestSelected ← Select(Sols,FeatVars,X ,Bounds ′,Selected ′);
6 return Selected ′ ∪ RestSelected ;
7 else return Selected ′ ;

Alg. 5 recursively selects the next bound constraint from the list of candidate
bound constraints Bounds. At each stage of the selection process, we incremen-
tally post a suffix of the list of candidate bound constraints Bounds, i.e. each
candidate bound constraint is only posted at most once during the search for
the next candidate.

– Lines 1–5 split the list of candidate bound constraints Bounds in a prefix
and suffix part in an uneven way where the suffix is smaller than the prefix
part. The current way to split Bounds was determined experimentally by



4 Cheukam Ngouonou et al.

testing different manners of partitioning on different examples. We prefer to
incrementally add a limited number of bound constraints so that we end up
in a situation where we do not have enough constraints and this increases the
number of backtracks needed to find a solution. Otherwise, adding too many
bound constraints would result in not increasing the number of backtracks,
which would have the effect of scanning all remaining solutions in Sols and
deleting the added constraints in order to post a smaller set of constraints.
As a result, the same solution from Sols would be generated several times,
which can be mitigated by limiting the number of constraints we added.

– Line 6 performs a dichotomic search on the suffix and prefix parts of the
candidate list to return a selected candidate Selected ′ and the remaining list
of candidate constraints Bounds ′.

– When we are at the top-level call of SelectOne, i.e. when SelectOne is called
in line 3 of Alg. (4), lines 7–8 of Alg. (5) remove any bound constraints
posted within the call to Alg. (6) on line 6 of Alg. (4) to prepare for the next
call to SelectOne from Select.

Algorithm 5: SelectOne(Top,Sols,AllSols,FeatVars,X ,Bounds)

1 Len ← |Bounds|;
2 if Len > 200 then Mid ← Len − 100 else if Len < 3 then Mid ← ⌊Len+1

2
⌋

3 else Mid ← ⌊ 2·Len+2
3
⌋;

4 Prefix ← first Mid elements of Bounds;
5 Suffix ← last Len −Mid elements of Bounds;
6 (Selected ′,Bounds ′)←Dicho(Sols,AllSols,FeatVars,X ,Len,Prefix ,Suffix );
7 if Top then
8 remove all bound constraints posted from the current call to Dicho;

9 return (Selected ′,Bounds ′);

Alg. (6) performs a dichotomic search wrt the suffix and prefix parts of the
candidate list.

– Line 1 posts all candidate bound constraints from Suffix .
– For each solution Sols, line 2 computes the number of backtracks to ob-

tain the next solution, and stops when the number of backtracks increases
i.e. MissingBound = true, or when the list of solutions is fully explored
i.e. MissingBound = false. The set Sols ′ corresponds to the set Sols ′ from
which we removed all the solutions leading to the same number of backtracks.

– 1. If the number of backtracks increases and we can still add several bound
constraints to the constraints to keep (see line 3), we continue the di-
chotomic search by using the bound constraints of the Prefix to select
the next bound to keep (see lines 4–5).

2. If we can only add one bound constraint (see line 7), we return that
bound constraint if the number of backtracks increases (see then part
in line 8); otherwise we do not select a bound constraint (see else part
in line 8).



Acquiring and Selecting Implied Constraints 5

3. Otherwise, since adding all bound constraints of Suffix (see line 1) was
sufficient to avoid increasing the number of backtracks when searching
for all solutions, we look for the next candidate bound constraint to
select in the suffix (see line 10).

Algorithm 6: Dicho(Sols,AllSols,FeatVars,X ,Len,Prefix ,Suffix )

1 ∀Bound ∈ Suffix : post bound constraint Bound on FeatVars;
2 (Sols ′,MissingBound)← Enumerate(Sols,AllSols,FeatVars,X );
3 if MissingBound ∧ Len > 1 then
4 (Selected ′,Bounds)←SelectOne(false,Sols ′,AllSols,FeatVars,X ,Prefix );
5 return (Selected ′,Bounds ∪ Suffix );
6 remove all bound constraints posted on line 1;
7 if Len = 1 then
8 if MissingBound then return(Prefix , ∅) else return(∅,Prefix )
9 else

10 return SelectOne(false,Sols,AllSols,FeatVars,X ,Suffix )

Alg. 7 iteratively computes the next solution of each solution in Sols, consid-
ering the current set of posted bound constraints, until backtracking increases
wrt the number of backtracks obtained using all bound constraints, or until no
more solutions exist. The next solution of the ISol -th solution Sol of the set Sols
is the smallest lexicographic solution strictly greater than Sol (see lines 1–4).
If the current solution Sol does not increase the number of backtracks (line 7),
it is removed from the list of solutions Sols to be checked (line 8), and the al-
gorithm continues to check the remaining solutions Sols ′ (line 10); otherwise, if
backtracking increases, the check is terminated (line 12).

Algorithm 7: Enumerate(Sols,AllSols,FeatVars,X )

1 let (ISol ,−,Sol) be the first element of Sols; JSol ← ISol + 1;
2 let (JSol ,NBack ,−) be the JSol-th element of AllSols; Finished ← false;
3 if ISol > 0 ∧ post constraint FeatVars >ℓex Sol fails then
4 NBack ← 0; Finished ← true;

5 if ¬Finished then (Back ,Finished ,−)← Labeling(FeatVars,X );
6 if ISol > 0 then remove lexicographic constraint that was posted;
7 if Back = NBack then
8 Sols ′ ← Sols − {(I,Bi, Si)};
9 if Sols ′ ̸= ∅ then

10 return Enumerate(Sols ′,AllSols,FeatVars,X );
11 else return (Sols ′, false) ;
12 else return (Sols,true) ;



6 Cheukam Ngouonou et al.

3 Proofs for the Conjectures of the Partition Constraint

We borrow the definition of the Partition constraint from [1].

Definition 1. Partition([X1, X2, . . . , Xn], P,M,M,M,S) is satisfied iff

P = |{X1, X2, . . . , Xn}| S =
∑
j∈X

|{i | Xi = j}|2 (1)

M = min
j∈X

|{i | Xi = j}| M = max
j∈X

|{i | Xi = j}| M = M −M (2)

We prove the following three selected conjectures, which were found by the
Bound Seeker.

– An upper bound on S and two distinct upper bounds on M :

S ≤ MID2 + SM · RR + SMIN (3)

with:

MID =

{
M + (R mod M) if M > 0

M otherwise
(4) R = n− P ·M (5)

RR =


⌊

R
M

⌋
if M > 0

0 otherwise
(6)

SM = M
2 −M2 (7)

SMIN = M2 · (P − 1) (8)

– Two distinct upper bounds on M :

M ≤ n− P ·M (9)

M ≤ min(P ·M − n,M − 1) (10)

We provide the proofs of correctness for three selected bounds (3), (9),
and (10).

To prove the conjecture (3), we first prove the five following lemmas.

Lemma 1. If there exist at least two partitions whose sizes are strictly between
M and M , in other words, if their sizes are M + r1 and M + r2 such that
1 ≤ r1 ≤ r2 < M , then S is not maximal.

Proof. We have

(M + r1 − 1)2 + (M + r2 + 1)2 = (M + r1)
2+

(M + r2)
2 + 2(r2 − r1) + 2 > (M + r1)

2+

(M + r2)
2 (11)



Acquiring and Selecting Implied Constraints 7

Let Oi (with i ∈ [1 : P ]) be the sizes of the P partitions of n elements. It means
that we have n =

∑P
i Oi and S =

∑P
i O2

i . The two terms of (11) appear in
the computation of S. In other words, it is possible to remove one element from
partition 1 and add it to partition 2 to obtain a larger sum of squares without
affecting the other terms in the computation of S, since the value of

∑P
i Oi = n

remains unchanged. This proves S is not maximal. □

Lemma 2. Let omin and omax be the number of partitions that have respectively
the size of M and M . If (R mod M > 0), then there is at least one partition
whose size is strictly between M and M .

Proof. By contradiction, suppose that R mod M > 0 and all partitions are either
of size M or M . By definition of R we have:

R =

P∑
i=1

(Oi −M) =

omax∑
i=1

(M −M)+

omin∑
i=1

(M −M) = omax ·M (12)

which contradicts that R mod M > 0. So R mod M > 0 implies that there exists
a partition whose size is strictly between M and M . □

Lemma 3. Let omin and omax be the number of partitions that have respectively
the size of M and M . If S is maximal and M > 0 ∧ (R mod M > 0), then only
one partition whose size is strictly between M and M exists, and its size is equal
to M +R mod M .

Proof. According to Lemma 1, as S is maximal, there is at most one partition
whose size is strictly between M and M and according to Lemma 2, as R mod
M > 0 there is at least one partition whose size is strictly between M and M .
So there is only one partition whose size is strictly between M and M . So let OP

be the size of that partition and Oi, ∀i ∈ [1 : P − 1] the sizes of the remaining
partitions. Let also r∗ = OP −M .

Then we have 0 < r∗ < M because M < OP < M . So, by definition, we have

R =

P∑
i=1

(Oi −M) =

omax∑
i=1

(M −M)+

omax+omin∑
i=omax+1

(M −M) + r∗ =

omax ·M + r∗ with r∗ < M (13)

According to the definition of Euclidean division, the relation (13) is equiv-
alent to r∗ = R mod M . So OP = M +R mod M . □



8 Cheukam Ngouonou et al.

Lemma 4. Let omin and omax be the number of partitions that have respectively
the size of M and M . If S is maximal and M > 0∧ (R mod M = 0), then there
is no partition whose size is strictly between M and M .

Proof. By contradiction, suppose that S is maximal, M > 0 ∧ (R mod M = 0)
and there are k (k ≥ 1) partitions whose size is strictly between M and M and
are denoted by Ii, ∀i ∈ [1 : k]. Then, by definition

R =

omax∑
i=1

(M −M) +

k∑
i=1

(Ii −M) = omax ·M +

k∑
i=1

(Ii −M) (14)

with Ii −M < M, ∀i ∈ [1 : k] (15)

Because R mod M = 0, we have R =

⌊
R

M

⌋
·M . So according to (14), ∀i ∈

[1 : k] with Ii −M < M , we have

omax ·M +

k∑
i=1

(Ii −M) =

⌊
R

M

⌋
·M (16)

So according to (16), M is a divisor of
∑k

i=1(Ii − M). Which implies that
k ≥ 2, because of (15). And according to Lemma 1, k ≥ 2 implies that S is not
maximal. Which is a contradiction. □

Lemma 5. Let omin and omax be the number of partitions that have respectively
the size of M and M .

Then
⌊
R

M

⌋
(resp. P −

⌈
R

M

⌉
) is a tight upper bound of omax (resp. omin).

Proof. We upper bound the values of omax by using the definition of n. We have:

n = M · omax +

P−omax∑
i=1

oi ≥ M · omax+

(P − omax ) ·M ≥ (M −M) · omax + P ·M (17)

=⇒ omax ≤ n− P ·M
M −M

(18)

And by definition, R = n− P ·M and M = M −M . So:

omax ≤ R

M
(19)



Acquiring and Selecting Implied Constraints 9

Symmetrically, we upper bound omin :

n = M · omin +

P−omin∑
i=1

oi ≤ M · omin+

M · (P − omin) = −(M −M) · omin +M · P (20)

=⇒ omin ≤ M · P − n

M −M
=

(M +M) · P − n

M
=

P +
−(n−M · P )

M
= P − R

M
(21)

Since omax , omin ∈ N, we have

omax ≤
⌊
R

M

⌋
and omin ≤ P −

⌈
R

M

⌉
(22)

Finally, according to Lemmas 3 and 4, when S is maximal, we have R = omax ·
M + R mod M and at most one partition exists whose size is strictly between
M and M . Which means that if S is maximal, we have:

omax =

⌊
R

M

⌋
(23)

=⇒ omin = P − omax − α = P −
⌊
R

M

⌋
− α (24)

with α = 0 if R mod M = 0 and α = 1 if not. (25)

=⇒ omin = P −
⌊
R

M

⌋
− α = P −

⌈
R

M

⌉
(26)

□

3.1 Conjecture (3)

Proof (Conjecture (3)).

– When M = M − M = 0. The sizes of the partitions are all the same.
Then, according to equations (5) to (8) we have MID = M,SM = RR =
0,SMIN = M2 · (P − 1). By substituting these MID ,SM ,RR and SMIN in
(3), we obtain

S ≤ M2 + 0 +M2 · (P − 1) = M2 · P (27)

which is consistent with the definition of S because, as the sizes of the P
partitions are all the same, they are equal to M . Which means that S =
M2 · P .



10 Cheukam Ngouonou et al.

– When M > 0 ∧ (R mod M > 0). Let omin and omax be the number of
partitions that have respectively the size of M and M .
According to Lemmas 3 and 5, the maximal value S∗ of S is

S∗ = M
2 · omax +M2 · omin + (M +R mod M)2 (28)

with omax =

⌊
R

M

⌋
and omin = P −

⌊
R

M

⌋
− 1

So because R mod M > 0, we have according to equations (5) to (8), MID =

M + R mod M,SM = M
2 − M2,RR =

⌊
R

M

⌋
,SMIN = M2 · (P − 1).

By substituting these MID ,SM ,RR and SMIN in (3), we obtain S ≤ S∗

according to (28), which is consistent.
– When M > 0 ∧ (R mod M = 0). Let omin and omax be the number of

partitions that have respectively the size of M and M .
According to Lemmas 4 and 5, the maximal value S∗ of S is

S∗ = M
2 · omax +M2 · omin (29)

with omax =

⌊
R

M

⌋
and omin = P −

⌊
R

M

⌋
So because R mod M = 0, we have according to equations (5) to (8), MID =

M,SM = M
2 − M2,RR =

⌊
R

M

⌋
,SMIN = M2 · (P − 1). By substituting

these MID ,SM ,RR and SMIN in (3), we obtain S ≤ S∗ according to (29),
which is consistent. □

3.2 Conjecture (9)

Proof (Conjecture (9)).

– If P = 1, then M = M = n. Thus M = 0 and n − P · M = n − M = 0.
Which implies that M ≤ n− P ·M .

– If P ≥ 2, then the number of values is equal to the size of the largest partition
plus the size of the smallest partition plus the size of all the other partitions.

n = M +M +

P−2∑
i=1

Oi (30)

As M is the size of the smallest partition, we have Oi ≥ M .

n ≥ M +M +

P−2∑
i=1

M = M + (P − 1) ·M (31)

n− P ·M ≥ M −M (32)

Using the definition M = M −M we obtain n− P ·M ≥ M .



Acquiring and Selecting Implied Constraints 11

– Tightness of the conjecture (9): We can construct for every possible value of
n, P and M the set of partitions so that n − P · M = M , by setting only
one of the partitions to size M = n − (P − 1) · M and the rest to size M .
Because, in that case, we have:

n = M + (P − 1) ·M (33)

n− P ·M = M + (P − 1) ·M − P ·M = M −M = M (34)

□

3.3 Conjecture (10)

Proof (Conjecture (10)).

– If P = 1, then M = M = n. Thus M = 0 and P ·M−n = M−n = 0. Which
implies that M ≤ P ·M − n. And because M ≥ 1, we also have M = 0 and
0 ≤ M − 1. Which implies that M ≤ M − 1. Since two quantities bound M ,
the smallest of them bounds M . Hence M ≤ min(P ·M − n,M − 1).

– If P ≥ 2, then we first show M ≤ P ·M − n.

n = M +M +

P−2∑
i=1

Oi (35)

n ≤ M +M +

P−2∑
i=1

M = (P − 1)M +M (36)

M −M ≤ P ·M − n (37)

M ≤ P ·M − n (38)

The largest range one can obtain is when one element is alone in a partition
and the remaining n−1 elements are together in the 2nd partition. We have
M ≤ M − 1. Since M is bounded by two quantities, it is bounded by the
smallest one, hence M ≤ min(P ·M − n,M − 1).

– Tightness of the conjecture (10):
For the case P = 1, we have M = M = n. Thus M = 0 and P · M −
n = M − n = 0. Which implies that M = P · M − n = 0. So we have
0 = min(P ·M −n,M −1). Which implies that M = min(P ·M −n,M −1).
So, the bound is tight.
For the case of P ≥ 2, we can construct for every possible value of n, P and
M the set of partitions with P ·M −n = M or M −1 = M , either by setting
only one of the partitions to size M = n − (P − 1) ·M and the rest to size
M if n > (P − 1) ·M or either by setting one of the partitions to size 1 if
n ≤ (P − 1) ·M . Because we have:

• If n > (P − 1) · M , then n = M + (P − 1) · M . Which implies that
P ·M − n = P ·M −M − (P − 1) ·M . So P ·M − n = M −M = M .



12 Cheukam Ngouonou et al.

• If n ≤ (P−1)·M , we have P > 2 because if P = 2, it implies that n ≤ M .
This implies that n = M , meaning that P = 1, which is inconsistent
with P = 2. So to reach the tightness, we set one partition to size M
and another to size 1. And because P > 2 in this case, we can set the

remaining P − 2 partitions to size
⌊
n−M − 1

P − 2

⌋
and size

⌈
n−M − 1

P − 2

⌉
.

Indeed, we have 1 ≤
⌊
n−M − 1

P − 2

⌋
< M . Because first, n−M − 1 is the

remaining number of elements to partition into P − 2 non-empty sets.

So P − 2 ≤ n −M − 1, which leads to 1 ≤
⌊
n−M − 1

P − 2

⌋
. And second,

we also have n ≤ (P − 1) ·M equivalent to

n−M − 1 ≤ (P − 1) ·M −M − 1 (39)

n−M − 1

P − 2
≤ (P − 2) ·M − 1

P − 2
≤ M − 1

P − 2
< M (40)

⇒
⌊
n−M − 1

P − 2

⌋
< M (41)

□

4 Proofs for the Conjectures of the BinSeq Constraint

We borrow the definition of the BinSeq constraint from [1].

Definition 2. The BinSeq([X1, X2, . . . , Xn],N1 ,G , G,G,G,GS , D,D,D, DS )
constraint is satisfied iff

• X1, X2, . . . , Xn is a sequence of 0/1,
• N1 is the number of values 1 in the sequence,
• G is the number of stretches of 1s,
• G (resp. G) is the length of the smallest (resp. longest) stretch of 1s,
• G is the difference between the lengths of the longest and the smallest stretch,
• GS is the sum of the squared lengths of the stretches of 1s,
• D (resp. D) is the length of the smallest (resp. longest) inter-distance of 0s,
• D is the difference D −D,
• DS is the sum of the squared lengths of the inter-distances of 0s.

When there is no stretch, G=G=0; when there is no inter-distance, D=D=0.

4.1 Conjecture (42)

We prove the selected conjecture (42), which was found by the Bound Seeker.

N1 ≤ min(G ·G,n −G + 1) (42)



Acquiring and Selecting Implied Constraints 13

Proof (Conjecture (42)). Let gi (with i ∈ [1 : G ]) be the number of 1 in the i-th
stretch of 1s. We have

N1 =

G∑
i=1

gi ≤ G ·G (43)

If G = 0 then no stretch of 1s appears in the binary sequence. Which means
that N1 = 0 = min(0,n −G + 1) = min(G ·G,n −G + 1).

If G ≥ 1 then there are G−1 inter-distances of 0s of lengths at least equal to
1. This means that N1 ≤ n − (G − 1). Also, thanks to (43) we have N1 ≤ G ·G.
So N1 ≤ min(G ·G,n −G + 1). □

4.2 Conjecture (44)

We prove the selected conjecture (44), which was found by the Bound Seeker.

G ≥
⌊

n

n −N1 + 1

⌋
(44)

Proof (Conjecture (44)). Because G is the number of stretches of 1s, then G−1
is the number of inter-distances of 0s. So the minimum number of 0s in the
binary sequence is G − 1. Therefore we have

n ≥ N1 +G − 1 ⇐⇒ n −N1 + 1 ≥ G (45)

If G > 0, thanks to (43), we have G ≥ N1

G
which leads to

n −N1 + 1 ≥ G ≥ N1

G
=⇒ G ≥ N1

n −N1 + 1
(46)

And because G is an integer, we have G ≥
⌈

N1

n −N1 + 1

⌉
. According to [2] for

the positive integers n and m with m ∈ N∗, we have⌈ n
m

⌉
=

⌊
n+m− 1

m

⌋
(47)

So according to (47)

G ≥
⌊
N1 + n −N1 + 1− 1

n −N1 + 1

⌋
=

⌊
n

n −N1 + 1

⌋
(48)

If G = 0, then N1 = 0. So we have

G = 0 =

⌊
n

n + 1

⌋
=

⌊
n

n −N1 + 1

⌋
(49)

□



14 Cheukam Ngouonou et al.

4.3 Conjecture (50)

We prove the selected conjecture (50), which was found by the Bound Seeker.

G ≤


n +G if G = n ·D

⌊
n −G−D −min(D, 1)− 1

min(D, 1) + 2

⌋
+G otherwise

(50)

Proof (Conjecture (50)). If G = n ·D, by definition G ≤ n. And as G ≥ 0, we
have G ≤ n +G.

Otherwise, if G ̸= n ·D, we consider the case when D = 0 and G ≥ 1 as well
as the case when D ≥ 1:

– In the case D = 0 and G ≥ 1, we have min(D, 1) = 0 and G > G. This
means that there are at least two stretches of 1 and an inter-distance of 0s
between them in the binary sequence. So the binary sequence has at least two
stretches of lengths G and G because G ≥ 1. This also means that it has an
inter-distance of length at least equal to 1, which means that G ≤ n−G−1.
Then we have

G ≤ n −G− 1 ⇐⇒ 2 ·G ≤ n −G+G− 1 (51)

⇐⇒ 2 ·G ≤ n −G− 1 (52)

=⇒ G ≤
⌊
n −G− 1

2

⌋
(53)

=⇒ G ≤
⌊
n −G− 1

2

⌋
+G (54)

⇐⇒ G ≤
⌊
n −G−D −min(D, 1)− 1

min(D, 1) + 2

⌋
+G (55)

– In the case D ≥ 1, the binary sequence has at least two inter-distances of
0s. This means that there are also at least three stretches of 1s. So we have

n −D −D − 2 ·G−G ≥ 0 (56)

n − (D +D)−D − 2 ·G−G ≥ 0 (57)

n −D − 2 ·D − 2 ·G−G ≥ 0 (58)

2 ·G ≤ n −D −G− 2 ·D (59)

As D ≥ 1, we have −2 ·D ≤ −2. So we have

2 ·G ≤ n −D −G− 2 ·D ≤ n −D −G− 2 (60)



Acquiring and Selecting Implied Constraints 15

This leads to 2 ·G ≤ n −D −G− 2, which leads to

3 ·G ≤ n −D −G+G− 2 ⇐⇒ 3 ·G ≤ n −D −G− 2 (61)

=⇒ G ≤
⌊
n −D −G− 2

3

⌋
(62)

=⇒ G ≤
⌊
n −D −G− 2

3

⌋
=

⌊
n −G−D −min(D, 1)− 1

min(D, 1) + 2

⌋
(63)

=⇒ G ≤
⌊
n −G−D −min(D, 1)− 1

min(D, 1) + 2

⌋
+G (64)

□

4.4 Conjecture (65)

We prove the selected conjecture (65), which was found by the Bound Seeker.

D ≤


0 if G ≤ 1

⌊
n −G+ 1−G

G − 1

⌋
if G > 1

(65)

Proof (Conjecture (65)). If G ≤ 1 then there is no inter-distance of 0s between
stretches of 1s. This means that D = 0.

If G > 1 then there is a stretch of 1s that has a size equal to G and there are
G − 1 stretches of 1s that have a size at least equal to 1. Let N0 be the number
of 0s, which are between stretches of 1s. So we have N0 ≤ n−G−(G−1). Let di
(with i ∈ [1 : G − 1]) be the number of 0s of the i-th inter-distance between
stretches of 1s. We have

N0 =

G−1∑
i=1

di ≥ (G − 1) ·D =⇒ D ≤ N0

G − 1
≤ n −G− (G − 1)

G − 1
(66)

=⇒ D ≤
⌊
n −G− (G − 1)

G − 1

⌋
(67)

□

4.5 Conjecture (68)

We prove the selected conjecture (68), which was found by the Bound Seeker.

D ≤ [G ≥ 2] · (n −G ·G−G + 2) (68)



16 Cheukam Ngouonou et al.

Proof (Conjecture (68)). If G ≤ 1 then there is no inter-distance of 0s between
stretches of 1s. This means that D = 0.

If G ≥ 2 then there are G stretches of 1s of lengths at least equal to G. There
is also an inter-distance of 0s of length D and there are G − 2 inter-distances of
0s of lengths at least equal to one. This means that D ≤ n −G ·G− (G − 2) =
n −G ·G−G + 2. □

4.6 Conjecture (69)

We prove the selected conjecture (69), which was found by the Bound Seeker.

GS ≥ G2 ·G (69)

Proof (Conjecture (69)).

GS =

G∑
i=1

g2i ≥ G2 ·G (70)

□

4.7 Conjecture (71)

We prove the selected conjecture (71), which was found by the Bound Seeker.

GS ≥ G · (G+ 1) ·min(G , 1) +G+G (71)

Proof (Conjecture (71)). If G = 0 then G = 0, which leads to GS = 0; hence,
the property holds.



Acquiring and Selecting Implied Constraints 17

If G ≥ 1, then G ≥ 1.

G ≥ 1 ⇐⇒ G− 1 ≥ 0 (72)

⇐⇒ G · (G− 1) ≥ 0 (73)

⇐⇒ G · (G− 1) +G ≥ 1 (74)

⇐⇒ −1 ≥ −G · (G− 1)−G (75)
Multipliying the inequality by 2, we have

−2 ≥ −2 ·G ·G+ 2 · (G−G) (76)

Adding G
2
+G2 +G on each part of the inequality, we obtain

G
2
+G2 +G − 2 ≥ G

2
+G2 − 2 ·G ·G+ 2 · (G−G) +G (77)

Replacing G
2
+G2 − 2 ·G ·G by (G−G)2, we obtain

G
2
+G2 +G − 2 ≥ (G−G)2 + 2 ·G+G (78)

Replacing G−G by G, we obtain

G
2
+G2 +G − 2 ≥ G

2
+ 2 ·G+G = G · (G+ 1) +G+G (79)

As G ≥ 1, we have min(G , 1) = 1. This leads to

G
2
+G2 +G − 2 ≥ G · (G+ 1) ·min(G , 1) +G+G (80)

Let gi (with i ∈ [1 : G ]) be the number of 1 in the i-th stretch of 1s. Note that
with gG−1 = G and gG = G, we have ∀i ∈ [1 : G − 2], gi ≥ 1, which leads to

G−2∑
i=1

g2i ≥
G−2∑
i=1

1 = G − 2 (81)

Adding G
2
+G2 on each part of the inequality, we obtain
G∑
i=1

g2i = G
2
+G2 +

G−2∑
i=1

g2i ≥ G
2
+G2 +G − 2 (82)

⇐⇒ GS =

G∑
i=1

g2i = G
2
+G2 +

G−2∑
i=1

g2i ≥ G
2
+G2 +G − 2 (83)

Finally, thanks to (80) and (83) we have

GS ≥ G
2
+G2 +G − 2 ≥ G · (G+ 1) ·min(G , 1) +G+G (84)

□

4.8 Conjecture (85)

We prove the selected conjecture (85), which was found by the Bound Seeker.

GS ≥ max(G
2
+ 1− [D = 0]− [G = 0], 0) (85)



18 Cheukam Ngouonou et al.

Proof (Conjecture (85)). If D = 0 ∧ G = 0, then GS = 0 = max(−1, 0) =

max(G
2
+ 1− [D = 0]− [G = 0], 0).

If D = 0∧G ≥ 1, then there is just one stretch of 1s in the binary sequence.
In that case GS = G

2
= G

2
+ 1 − [D = 0] − [G = 0] = max(G

2
+ 1 − [D =

0]− [G = 0], 0).

If D ≥ 1 ∧G ≥ 1, there are at least two stretches of 1s: one of length G and
another of length at least 1. Therefore, GS ≥ G

2
+1 = G

2
+1− [D = 0]− [G =

0] = max(G
2
+ 1− [D = 0]− [G = 0], 0). □

4.9 Conjecture (86)

We prove the selected conjecture (86), which was found by the Bound Seeker.

GS ≤

max(N1
2 +G − 1, 0) if G ≤ 1

max((N1 −G + 1)2 +G − 1, 0) otherwise
(86)

To prove this conjecture, we first prove the following Theorem 1.

Theorem 1 (maximisation of S =
∑P

i y2i ). Let y1, y2, · · · , yP be non-negative
integers whose sum is equal to n and which maximise S =

∑P
i=1 y

2
i . Then the

largest integer is equal to y1 = n− (P − 1) and the P − 1 remaining integers are
all equal to 1.

Proof. Let be the distribution of values among the integers yi with ∀i ∈ [1 : P ]
such that the maximum integer has the value n− (P − 1) and the other integers
are all equal to 1. So the sum of squares of the integers of this distribution is
equal to S0 = (n − (P − 1))2 + P − 1. We will now show that for any other
distribution of values among the integers yi, we have S ≤ S0:

Any distribution other than the one that gives S0 can be obtained by remov-
ing m occurrences of 1 from the largest value y1 of the distribution for S0, and
then distributing these m values to the other initially equal 1 values. So we have



Acquiring and Selecting Implied Constraints 19

∀i ∈ [2 : P ], ji ∈ N,

S = (y1 −m)2 +

P∑
i=2

(1 + ji)
2 with

P∑
i=2

ji = m < y1 (87)

S = y21 +m2 − 2 ·m · y1 +
P∑
i=2

(1 + j2i + 2 · ji) (88)

S = y21 +m2 − 2 ·m · y1 +
P∑
i=2

1 +

P∑
i=2

j2i + 2 ·
P∑
i=2

ji (89)

As
P∑
i=2

1 = P − 1 and
P∑
i=2

ji = m, we have :

S = y21 +m2 − 2 ·m · y1 + P − 1 + 2 ·m+

P∑
i=2

j2i (90)

After rearranging each term, we obtain :

S = y21 + P − 1 +m2 − 2 ·m · y1 + 2 ·m+

P∑
i=2

j2i (91)

As S0 = y21 + P − 1, we have :

S = S0 +

(
m2 − 2 ·m · y1 + 2 ·m+

P∑
i=2

j2i

)
(92)

We now show that the term in the parenthesis of (92) is negative. That means

m2 − 2 ·m · y1 + 2 ·m+

P∑
i=2

j2i ≤ 0 (93)

For that, we first express 2 ·m · y1 with m2 :

y1 = y1 −m+m ⇐⇒ 2 ·m · y1 = 2 ·m · (y1 −m+m)

⇐⇒ 2 ·m · y1 = 2 ·m · (y1 −m) + 2 ·m2 (94)

Then, according to (94), we replace 2 ·m · y1 by 2 ·m · (y1 −m) + 2 ·m2 in the
left term m2 − 2 ·m · y1 + 2 ·m+

∑P
i=2 j

2
i of the inequality (93). So we have

m2 − 2 ·m · y1 + 2 ·m+

P∑
i=2

j2i = 2 ·m− 2 ·m · (y1 −m)−m2 +

P∑
i=2

j2i (95)

Now we show that the two parts 2 ·m− 2 ·m · (y1 −m) and −m2 +
∑P

i=2 j
2
i of

(95) are negative:



20 Cheukam Ngouonou et al.

– For the first term, we have

m < y1 =⇒ y1 −m ≥ 1 (96)
=⇒ 2 ·m · (y1 −m) ≥ 2 ·m (97)

=⇒ 2 ·m− 2 ·m · (y1 −m) ≤ 0 (98)

– For the 2nd term, we have

m2 = (

P∑
i=2

ji) · (
P∑

k=2

jk) =

P∑
i=2

ji(

P∑
k=2

jk) =

P∑
i=2

ji(ji +

P∑
i̸=k

jk) (99)

m2 =

P∑
i=2

j2i +

P∑
i=2

P∑
i̸=k

ji · jk (100)

As
P∑
i=2

P∑
i̸=k

ji · jk ≥ 0 we have m2 ≥
P∑
i=2

j2i (101)

which leads to −m2 +

P∑
i=2

j2i ≤ 0 (102)

So thanks to 2 ·m− 2 ·m · (y1 −m) ≤ 0 and −m2 +
∑P

i=2 j
2
i ≤ 0, we have the

sum of the two previous terms, which give

2 ·m− 2 ·m · (y1 −m)−m2 +

P∑
i=2

j2i ≤ 0 (103)

And according to equality (95), we obtain the inequality (93) that we wanted to
prove. Then, according to that inequality, we have

S0 +

(
m2 − 2 ·m · y1 + 2 ·m+

P∑
i=2

j2i

)
≤ S0 (104)

So thanks to equality (92) we finally have

S ≤ S0 (105)

□

Proof (Conjecture (86)). If G = 0, then N1 = 0. This means that GS = 0 =
max(N1

2 +G − 1, 0).
If G = 1, then the binary sequence has just one stretch of 1s. This means

that GS = N1
2 = max(N1

2 +G − 1, 0).
If G > 1, we have a binary sequence S′

0 where the length of the largest stretch
of 1s is N1 − (G − 1) and the length of the other G − 1 remaining stretches of 1s
is one. So according to Theorem 1, we identify N1 as n, G as P and the lengths
of the stretches as the integers yi, which lead to GS ≤ (N1 −G + 1)2 +G − 1.
And as (N1 −G + 1)2 +G − 1 ≥ 0, we have

(N1 −G + 1)2 +G − 1 = max((N1 −G + 1)2 +G − 1, 0) (106)

This finally leads to GS ≤ max((N1 −G + 1)2 +G − 1, 0). □



Acquiring and Selecting Implied Constraints 21

4.10 Conjecture (107)

We prove the selected conjecture (107), which was found by the Bound Seeker.

GS ≤


max(N1

2, 0) if D = 0 ∧min(N1 , 1) = 1

0 if D = 0 ∧min(N1 , 1) = 0

max((N1 − 2)2 + 2, 0) if D ≥ 1

(107)

Proof (Conjecture (107)). If D = 0∧min(N1 , 1) = 1, this means that G ≥ 1. So
the binary sequence has at least a stretch of 1s. In addition, as D = 0, the binary
sequence has inter-distances of 0s with the same length or no inter-distance of
0s. And when there is no inter-distance of 0s, we have G = 1 and GS = N1

2.
According to Theorem 1, by identifying n = N1 and G = P = 1, the maximum
value of the sum of squares of lengths of stretches of 1s that we can have in a
binary sequence is S0 = (N1 − (G − 1))2 + G − 1 = N1

2 where the number of
1s in the sequence is N1 . So that binary sequence has just one stretch of 1s of
length N1 . This means that GS = N1

2 = max(N1
2, 0).

If D = 0 ∧min(N1 , 1) = 1, then N1 = 0. So there are no stretches of 1s in
the binary sequence. This means that GS = 0.

If D ≥ 1, then there are at least two inter-distances of 0s. This means that
there are at least three stretches of 1s. According to Theorem 1, we have GS ≤
(N1 − (G − 1))2 + G − 1. Note that a binary sequence is a distribution of N1

values of 1 between G stretches of 1s. So when the number G of stretches of
1s decreases, it increases the lengths of these stretches and therefore the sum of
squares of lengths of stretches of 1s also increases. So (N1 − (G − 1))2 +G − 1
reaches his maximum value (N1 − 2)2 + 2 when G reaches his minimum value 3
and we clearly find the expression of the conjecture. □

4.11 Conjecture (108)

We prove the selected conjecture (108), which was found by the Bound Seeker.

DS ≥ D2 · (G − 1) (108)

Proof (Conjecture (108)). If there is no inter-distance of 0s, we have D = 0 and
DS = 0 = 02 · (G − 1) = D2 · (G − 1). So the conjecture holds.

Otherwise, if there is at least one inter-distance of 0s, let di (with i ∈ [1 :
G − 1]) be the number of 0s of the i-th inter-distance of 0s between stretches
of 1s.

DS =

G−1∑
i=1

d2i and ∀i ∈ [1 : G − 1], di ≥ D (109)

=⇒ DS ≥ D2 · (G − 1) (110)

□



22 Cheukam Ngouonou et al.

4.12 Conjecture (111)

We prove the selected conjecture (111), which was found by the Bound Seeker.

DS ≥

{
0 if G ≤ 1

max((D + 1)2 +G − 2, 0) otherwise
(111)

Proof (Conjecture (111)). If G ≤ 1, then there is no inter-distance of 0s between
stretches of 1s. So DS = 0.

If G ≥ 2, then there is at least one inter-distance of 0s between stretches of
1s, and we distinguish two cases:

– When G = 2, there is just one inter-distance. So D = D and D = 0.
The smallest value of DS is the square of the smallest length of that inter-
distance. And the smallest value of the inter-distance is 1. Then, we have

DS ≥ 12 = 1 = max(1, 0) = max((0 + 1)2 + 2− 2, 0) (112)

=⇒ DS ≥ max((0 + 1)2 + 2− 2, 0) = max((D + 1)2 +G − 2, 0) (113)

=⇒ DS ≥ max((D + 1)2 +G − 2, 0) (114)

So the conjecture holds for the case G = 2.
– When G > 2, we have at least two inter-distances: the largest and smallest

inter-distances with respective lengths D and D. Note that D = D+D and
that there are G − 1 inter-distances in the binary sequence. So we have

DS = D
2
+D2 +

G−3∑
i=1

d2i = (D +D)2 +D2 +

G−3∑
i=1

d2i (115)

So, for given values of G and D, the sum of squares DS of lengths of inter-
distances of 0s between stretches of 1s reaches its minimum value when the
lengths of the inter-distances are minimum. That is ∀i ∈ [1 : G − 3] , D =
di = 1. So we have

DS ≥ (D + 1)2 + 1 +

G−3∑
i=1

1 = (D + 1)2 +G − 2 (116)

And because (D + 1)2 +G − 2 ≥ 0, we have

DS ≥ (D + 1)2 +G − 2 = max((D + 1)2 +G − 2, 0) (117)

So finally we have

DS ≥ max((D + 1)2 +G − 2, 0) (118)

□



Acquiring and Selecting Implied Constraints 23

4.13 Conjecture (119)

We prove the selected conjecture (119), which was found by the Bound Seeker.

DS ≥ D
2

(119)

Proof (Conjecture (119)). If there is no inter-distance of 0s, we have D = 0 and
DS = 0 = 02 = D2. So the conjecture holds.

If there is at least one inter-distance of 0s, then we have

DS = D
2
+

G−2∑
i=1

d2i (120)

As
∑G−2

i=1 d2i ≥ 0, we have DS ≥ D
2
. □

4.14 Conjecture (121)

We prove the selected conjecture (121), which was found by the Bound Seeker.

DS ≤

{
0 if N1 ≤ 1

(n −N1 )
2 otherwise

(121)

Proof (Conjecture (121)). If N1 ≤ 1, then there is at most one stretch of 1s in
the binary sequence. This means that there is no inter-distance of 0s between
stretches of 1s. So DS = 0.

If N1 ≥ 2, then there are n −N1 0s to distribute among inter-distances of 0s
between stretches of 1s. And, according to (102), the distribution that gives the
maximum value of DS is when the binary sequence has just one inter-distance
of 0s of length n − N1 which is between two stretches of 1s. And because we
have N1 ≥ 2, it is possible to build two stretches of 1s. So we can conclude that
DS ≤ (n −N1 )

2. □

4.15 Conjecture (122)

We prove the selected conjecture (122), which was found by the Bound Seeker.

DS ≤

{
max((n −N1 − (G − 2))2 +G − 2, 0) if G ≥ 2

max(G − 2, 0) otherwise
(122)

Proof (Conjecture (122)). If G ≤ 1, then there is no inter-distance of 0s between
stretches of 1s in the binary sequence. So DS = 0 = max(G − 2, 0).

If G ≥ 2, then there are n − N1 values of 0 to distribute among G − 1
inter-distances of 0s between stretches of 1s in the binary sequence. According
to Theorem 1, the distribution that gives the maximum value of DS is the one
where the largest inter-distance of 0s has a length of n − N1 − (G − 2) and
the remaining G − 2 inter-distances of 0s have a length of 1. Which means that
DS ≤ (n −N1 − (G − 2))2 +G − 2. □



24 Cheukam Ngouonou et al.

4.16 Conjecture (123)

We prove the selected conjecture (123), which was found by the Bound Seeker.

G ≤


n if G = 1 ∧D = 0

min(G , 1) if G ̸= 1 ∧D = 0

n −D − (G − 2) ·D −G +min(G , 1) if G ̸= 1 ∧D ≥ 1

(123)

Proof (Conjecture (123)). If G = 1 ∧D = 0, then there is no inter-distance of
0s between stretches of 1s in the binary sequence. So the maximum value of G
is this case is n.

If G ̸= 1 ∧D = 0, then G = 0. In this case G = 0 = max(0, 1) = max(G , 1).
If G ̸= 1∧D ≥ 1, then G ≥ 2. Which means that min(G , 1) = 1. It also means

that there is a largest inter-distance of 0s of length D, and G−2 remaining inter-
distances of 0s of lengths equal, at least, to D which are all between stretches
of 1s. Also there are G − 1 stretches of 1s of lengths at least equal to 1, and the
largest stretch of 1 of length G. All this leads to

n = G+

G−1∑
i=1

gi +D +

G−2∑
i=1

di (124)

As gi ≥ 1 and di ≥ D, we have n ≥ G+ (G − 1) +D + (G − 2) ·D (125)

So G ≤ n −D − (G − 2) ·D − (G − 1) (126)

G ≤ n −D − (G − 2) ·D −G + 1 (127)

G ≤ n −D − (G − 2) ·D −G +min(G , 1) (128)

□

4.17 Conjecture (129)

We prove the selected conjecture (129), which was found by the Bound Seeker.

GS ≤


max(n2, 0) if G = 1 ∧D = 0

max((min(G , 1))2 +G − 1, 0) if G ̸= 1 ∧D = 0

max((n −D − (G − 2) ·D −G + 1)2 +G − 1, 0) if G ̸= 1 ∧D ≥ 1

(129)

Proof (Conjecture (129)). To get the maximum value of GS , we need to get the
maximum value of G. The proof of Conjecture (123) gives the maximum value
of G, and according to Theorem 1, Conjecture (129) is proved. □



Acquiring and Selecting Implied Constraints 25

References

1. Cheukam-Ngouonou, J., Gindullin, R., Quimper, C., Beldiceanu, N., Douence, R.:
Acquiring and selecting implied constraints with an application to the binseq and
partition global constraints. In: Tack, G. (ed.) Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research - 22nd International Confer-
ence, CPAIOR 2025, Melbourne, VIC, Australia, November 10-13, 2025, Proceed-
ings, Part II. Lecture Notes in Computer Science, vol. 15763, pp. 155–172. Springer
(2025)

2. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science, Ex 3.12 page 96. Addison-Wesley Longman Publishing Co.,
Inc., USA, 2nd edn. (1994)


	Incremental Selection of Most-Filtering Conjectures and Proofs of the Selected Conjectures

