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Abstract. The BALANCE constraint introduced by Beldiceanu ensures solutions
are balanced. This is useful when, for example, there is a requirement for solu-
tions to be fair. BALANCE bounds the difference B between the minimum and
maximum number of occurrences of the values assigned to the variables. We
show that achieving domain consistency on BALANCE is NP-hard. We therefore
introduce a variant, ALLBALANCE with a similar semantics that is only poly-
nomial to propagate. We consider various forms of ALLBALANCE and focus on
ATMOSTALLBALANCE which achieves what is usually the main goal, namely
constraining the upper bound on B. We provide a specialized propagation algo-
rithm, and a powerful decomposition both of which run in low polynomial time.
Experimental results demonstrate the promise of these new filtering methods.

1 Introduction

In many scheduling, rostering and related problems, we want to share tasks out as
equally as possible. For example, in the nurse rostering problems in [17, 5], we wish
for all nurses to have a similar workload. As a second example, in the Balanced Aca-
demic Curriculum Problem (prob030 in CSPLib.org), we want to assign time periods
to courses in a way which balances the academic load across periods. As a third exam-
ple, when scheduling viewing times on a satellite, we might want agents to be assigned
a similar number of observations. The BALANCE constraint introduced by Beldiceanu
in the Global Constraint Catalog7 [3] can be used to model situations like this where
we need to minimize the difference B in the number of times different values, which
typically represent different resources, are used.

Beldiceanu proposes an automaton based filtering algorithm for the BALANCE con-
straint that uses a counter for each value. This requires exponential space and time to
work. Alternatively, Beldiceanu proposes a decomposition that reorders the variables
and then computes the difference between the longest and the smallest sequences of
consecutive values. As we show, such a decomposition can hinder propagation. We

7 http://www.emn.fr/z-info/sdemasse/gccat



therefore revisit this global constraint. We prove that propagating the BALANCE con-
straint completely is intractable in general. We then introduce ALLBALANCE with a
similar semantics that is only polynomial to propagate. We consider various forms of
ALLBALANCE, focusing on ATMOSTALLBALANCE which constrains the upper bound
of B. This can be used when we desire solutions to be as balanced as possible and thus
want to minimizeB. We present a flow-based algorithm to maintain domain consistency
on ATMOSTALLBALANCE and compare it empirically to a decomposition augmented
with implied constraints. The results show that the implied constraints significantly
improve the performance of the decomposition, whilst the filtering algorithm in turn
further improves performance.

2 Background

A Constraint Network consists of a set of variables X , a domain D mapping each vari-
able X ∈ X to a finite set of values D(X), and a set of constraints C. An assignment σ
is a mapping from variables in X to values in their domains: for all Xi ∈ X we have
σ(Xi) ∈ D(Xi). We denote max(D(X)) by max(X) and min(D(X)) by min(X).
When σ is implied from the context, we write Xi = v instead of σ(Xi) = v and Xi

instead of σ(Xi). A constraint C is a relation on a set of variables. An assignment sat-
isfies C iff it is a tuple of this relation. We use capitals for variables and lower case
for values. Constraint solvers typically use backtracking search to explore the space of
partial assignments. At each assignment, propagation algorithms prune the search space
by enforcing local consistency properties like domain consistency. A constraint C on X
is domain consistent (DC) if and only if, for every Xi ∈ X and for every v ∈ D(Xi),
there is an assignment σ satisfying C such that σ(Xi) = v. Such an assignment is a
support. A CSP is DC iff all its constraints are DC. A constraint is disentailed iff there
is no possible support.

A decomposition of a constraint C is a reformulation of C into a conjunction of
constraints that is logically equivalent to C, potentially including extra variables. A de-
composition N1 is stronger than N2 if and only if propagation on N1 detects a superset
of the inconsistent values detected by N2 [4].

The domain of a variable Xi is an interval iff |D(Xi)| = max(Xi) − min(Xi) +
1. Let {X1, . . . , Xn} be a set of variables. We call occ(v) = |{i | Xi = v}| the
number of occurrences of the value v in this set. The constraint GCC is defined over the
variables [X1, . . . , Xn] and is parameterized by two sets of integers {l1, . . . , lm} and
{u1, . . . , um}. It ensures that we have ∀j ∈ [1, . . . ,m], lj ≤ occ(vj) ≤ uj . Achieving
DC on GCC is polynomial [13]. If the lower and upper bounds on the occurrences are
given by variables [O1, . . . , Om], DC on the variablesXi can be achieved with the same
computational complexity provided that the domains of the occurrences are intervals.

3 The Balance Constraint Family

BALANCE bounds the difference in the number of occurrences of values.



Definition 1 (BALANCE).

BALANCE([X1, . . . , Xn], B) ⇐⇒
B = max

v∈{X1,...,Xn}
occ(v)− min

v∈{X1,...,Xn}
occ(v)

Notice that only values occurring at least once are considered. Depending on the appli-
cation, this may or may not be desirable. For instance, if we want to select a subset of
resources and distribute tasks among them in a balanced way, then BALANCE is suited.
However, if resources are already selected, then such a solution might be imbalanced
as some resources may receive no tasks. Moreover, it is hard to know if a value will be
used for sure until all variables are set. As a consequence, filtering is weak. We there-
fore consider a variant, ALLBALANCE in which all values in a set V are considered
(without loss of generality, we shall assume that V = {1, . . . ,m}). We shall see that
achieving DC on BALANCE is NP-hard, while it is polynomial for ALLBALANCE.

Definition 2 (ALLBALANCE).

ALLBALANCE(V, [X1, . . . , Xn], B) ⇐⇒
B = max

v∈V
occ(v)−min

v∈V
occ(v) ∧ ∀i Xi ∈ V

We also consider the variants of BALANCE and ALLBALANCE whereB is only a lower
or an upper bound. By replacing “=” in Definition 1 and 2 by “≥” and “≤”, we define
the constraints ATMOSTBALANCE, ATLEASTBALANCE, ATMOSTALLBALANCE and
ATLEASTALLBALANCE. While ATMOSTBALANCE and ATMOSTALLBALANCE en-
sure that a solution is “balanced enough”, ATLEASTBALANCE and ATLEASTALLBALANCE
ensure that the solution is “somewhat unbalanced”. The first two constraints are useful
when we seek balanced solutions and want to minimizeB, whilst the last two are useful
when we cannot make B lower than a certain value or desire some level of imbalance.

Theorem 1. Enforcing DC on BALANCE takes polynomial time if the number of values
m is bounded.

Proof. We construct a REGULAR constraint [9] with states containing counters for ev-
ery value, i.e. a state is labeled with a tuple 〈cv1 , . . . , cvm〉 where cvi is the number
of times the value vi ∈ V was encountered. The unfolded automaton therefore has
O(nm) states. Enforcing DC then takes O(nm+1m) time. One can reduce the number
of counters by 1. Choose a value and delete its counter. After parsing the string, the
missing counter should have value n - sum of the other counters. Total complexity is
then O(nmm). ut

Theorem 2. Enforcing DC on BALANCE is NP-hard.

Proof. Reduction from 3-SAT to the problem of finding a support of BALANCE. Given
a formula ϕ with n atoms 1, . . . , n and m clauses, we build a BALANCE constraint
finding the balance B over a set of (n + 1)(m + 1) variables. Let lkj be the k-th literal



of the j-th clause of ϕ. We define the variables:

B = 0 (3.1)
D(X1,j) = {0} ∀j ∈ 1..m+ 1 (3.2)
D(X2,i) = {̄i, i} ∀i ∈ 1..n (3.3)

D(X3,j) = {l1j , l2j , l3j} ∀j ∈ 1..m (3.4)

D(X4,l) = {n̄, . . . , 1̄, 1, . . . , n} ∀l ∈ 1..(n− 1)m (3.5)

The domains of variables (3.1) and (3.2) force every value to occur 0 or m + 1 times.
The existence of a model of ϕ implies that there is a solution of BALANCE. Indeed
atom and clause variables (3.3,3.4) can be assigned using only the n literals appearing
in the model. The total number of occurrences of these n values on the variables X2,i

and X3,j is n + m. Thanks to the (n − 1)m filler variables (3.5), we can ensure that
each value of these n values occurs exactly m+ 1 times. Thus, 0 for B is consistent.

Now consider a solution of BALANCE. SinceB = 0, every value occursm+1 times
or never. Since each X2,i must take a value, either the value i or ī must occur at least
once, hence m+ 1 times. There are (n+ 1)(m+ 1) variables in total and we identified
n + 1 values (counting the value 0) that must occur m + 1 times each. Therefore, the
other values must not occur at all. The model which contains the literal i iff the value i
occurs m+ 1 times, and ī otherwise, is a model of ϕ. Indeed, for every clause cj ∈ ϕ,
since X3,j (3.4) must be assigned a value, it follows that the model above has at least
one literal from cj . ut

This proof also shows that ATMOSTBALANCE is NP-hard to propagate as it only re-
quires an upper bound on B. By comparison, it is easier to reason with ALLBALANCE,
ATLEASTALLBALANCE, ATLEASTBALANCE, and ATMOSTALLBALANCE. For the
first three constraints, we give complexity results in the form of an algorithm intended
only to prove polynomiality. For ATMOSTALLBALANCE, we will present a practical
filtering algorithm.

Theorem 3. Enforcing DC on ALLBALANCE, ATLEASTALLBALANCE and ATLEASTBALANCE
takes polynomial time.

Proof. Consider a restricted case of ALLBALANCE where the least (most) occurring
value is required to be vleast (vmost) and must occur exactly c times (c+ b times). DC
can be enforced using GCC with D(Ovleast

) = {c}, D(Ovmost
) = {c+b} and D(Ov) =

[c, c+b] for all values v 6∈ {vleast, vmost}. To filter ALLBALANCE, one can test whether
a value v ∈ D(Xi) has a support in one of the restricted cases where b ∈ D(B),
c ∈ [0, n− b], vleast ∈ [1,m], and vmost ∈ [1,m]. Since there are O(|D(B)|nm2) such
cases, the filtering can be done in polynomial time.

For ATLEASTBALANCE, we set the domain D(Ovleast
) = [1, c] to ensure that vleast

occurs at least once. We set D(Ovmost
) = [c+ min(B), n] so that the balance is at least

min(B) and we set the domains of the other occurrence variables to Oi ∈ [0, n] for i 6∈
{vleast, vmost}. There areO(nm2) restricted cases to test since vleast ∈ [1,m], vmost ∈
[1,m], and c ∈ [0, n−min(B)]. The restricted cases apply for ATLEASTALLBALANCE
except that the domain D(Ovleast

) is [0, c] to allow the value vleast to not occur. ut



4 Decompositions

We focus mainly on BALANCE and ALLBALANCE, as their decompositions can be
used also for the others by suitably constraining only the lower or upper bound of
B. The Global Constraints Catalog [3] proposes a decomposition of BALANCE that
uses the constraint SORTEDNESS([X1, . . . , Xn], [Y1, . . . , Yn]) to count the minimum
and maximum length of stretches of equal value in the sequence [Y1, . . . , Yn]. Then,
it makes sure that the difference between the length of the maximum and minimum
stretch is equal to B. We propose another decomposition of BALANCE using GCC. Let⋃n

i=1 D(Xi) = {1, . . . ,m}:

GCC([X1, . . . , Xn], [O1, . . . , Om]) &

P = max({O1, . . . , Om}) &

Q = min({O1, . . . , Om} \ {0}) &

B = P −Q

As DC on BALANCE is NP-hard, it is no surprise that neither decomposition enforces
DC. However, Example 1 shows that, even if we assume perfect communication be-
tween the variables Yj’s and B in the decomposition using SORTEDNESS8, then this
decomposition is not stronger than the new decomposition using the GCC constraint.

Example 1. m = 6, X1 ∈ {1, 6}, X2 ∈ {2, 5}, X3 ∈ {3, 4}, Y1 ∈ {1, 2, 3, 4}, Y2 ∈
{2, 3, 4, 5}, Y3 ∈ {3, 4, 5, 6}, B = 1. The domains of occurrences variables Ov are set
to {0, 1} by GCC, hence the variables P andQ are both set to 1, and thus the constraint
is found inconsistent. However, the SORTEDNESS decomposition allows stretches greater
than 1. It is therefore consistent, irrespective of the reasoning used on Yi and B.

Similar to BALANCE, the ALLBALANCE constraint can also be decomposed using
the GCC constraint. Let V = {1, . . . ,m}.

∀i ∈ {1, . . . , n}, Xi ∈ V
GCC([X1, . . . , Xn], [O1, . . . , Om]) &

P = max({O1, . . . , Om}) &

Q = min({O1, . . . , Om}) &

B = P −Q
D(P ) = [

⌈
n
m

⌉
, n]

D(Q) = [0,
⌊
n
m

⌋
]

The domains of the variables P and Q are based on the observation that the average
of the occurrence variables is exactly n

m . Consequently, the greatest occurrence should
be no smaller than the average and the smallest occurrence should be no greater than
the average. Example 2 shows that this decomposition does not maintain DC, even on
ATMOSTALLBALANCE.

8 Such filtering can be obtained, for instance, through a REGULAR constraint.



Example 2. m = 4, B ∈ [0, 2], X1 = X2 = 1, X3 ∈ {1, 2, 3}, X4 ∈ {1, 3, 4},
X5 ∈ {1, 3, 4}. After propagation, the domains of these variables remain the same and
we get:

O1 ∈ [2, 3], O2 ∈ [0, 1], O3 ∈ [0, 3], O4 ∈ [0, 2], P ∈ [2, 3], Q ∈ [0, 1]

However, the only way for the occurrence variables to sum to 5 and have a balance of at
most 2 is to take their values in the multiset {2, 2, 1, 0} or {2, 1, 1, 1}. In other words, a
value cannot occur three times and the value 1 should be removed from the domains of
X3, X4, and X5.

In order to investigate the limits of a decomposition of ALLBALANCE based on
the GCC constraint, we consider another decomposition using the constraints together
with an automaton defined on the occurrence variables. Observe that we have perfect
communication from the Xi’s domains to the Oj’s bounds (through GCC) and perfect
communication between the Oj’s and B (through REGULAR). However, we shall see
that this is still not sufficient to achieve DC on ALLBALANCE.

GCC([X1, . . . , Xn], [O1, . . . , Om]) &

REGULAR([O1, . . . , Om, B],A)

The automaton A has O(n3m) states. Non-final states are tuples 〈i, S, q, p〉 which re-
spectively encode the current variable, the current sum, the minimum value encoun-
tered, and the maximum value encountered. The final state is denoted f . The starting
state is 〈1, 0, n, 0〉. The transition function is:

δ(〈i, S, q, p〉, x) =

{
〈i+ 1, S + x,min(q, x),max(p, x)〉 if i ≤ m
f if i = m+ 1 and x = p− q

Since this automaton is acyclic, unfolding does not alter the number of states, hence the
total complexity to propagate this REGULAR constraint isO(mn4). This decomposition
is costly yet is still insufficient to maintain DC. Consider the following example.

Example 3. m = 4, B ∈ [0, 2], X1, X2 = 1, X3 ∈ {1, 2, 3}, and X4, X5, X6 ∈
{1, 3, 4}. After filtering the REGULAR constraint, we obtain the domains O1 ∈ [2, 3],
O2 ∈ [0, 1], O3 ∈ [1, 2], and O4 ∈ [1, 2] that do not allow the GCC to filter 1 from the
domain of X3.

In the rest of the paper, we will focus on the GCC decomposition of ALLBALANCE.
In addition to being cheaper than the REGULAR decomposition, it can be strengthened
by adding implied constraints, as we will show next.

4.1 Constraints Implied by ALLBALANCE

We can strengthen the GCC decomposition of ALLBALANCE thanks to the following
inequality: P + (m − 1)Q ≤ n. This is true because at least one value will occur P
times, and at most m − 1 values will occur Q times, where n is the total number of
occurrences. We have Q = P −B, hence P + (m− 1)(P −B) ≤ n, that is:



mP − (m− 1)B ≤ n (4.1)

In other words, we have an upper bound P ≤
⌊
n−B
m

⌋
+ B. Consider again Example 2

which shows that the GCC decomposition of ALLBALANCE does not maintain DC.
Due to (4.1), we discover that P ≤

⌊
n+(m−1)B

m

⌋
≤
⌊
5+3×2

4

⌋
= 2 and the upper bound

of P , O1, and O3 is reduced to 2. Therefore, the constraint GCC removes 1 from the
domains of X3, X4, and X5.

We can make a similar argument to obtain a lower bound on Q. We have: Q+(m−
1)P ≥ n which is equivalent to:

mQ+ (m− 1)B ≥ n (4.2)

Again in Example 2, thanks to (4.2), we discover thatQ ≥
⌊
n−(m−1)B

m

⌋
≥
⌊
5−3×0

4

⌋
=

1 and the lower bound of Q, O2, and O3 are increased to 1, and the variable X3 is set
to 2.

It is possible to add implied constraints providing even stronger level of filtering.
The following constraints are implied by the decomposition whilst being stronger than
constraints (4.1) and (4.2).

(

m∑
j=1

max(P −B,Oj)) ≤ n ≤ (

m∑
j=1

min(P,Oj)) (4.3)

(

m∑
j=1

min(Q+B,Oj)) ≥ n ≥ (

m∑
j=1

max(Q,Oj)) (4.4)

Indeed, consider the following example.

Example 4. m = 7, X1, X2 ∈ {1}, X3, X4 ∈ {2}, X5, X6 ∈ {3}, X7, X8, X9 ∈
{4, 5, 6, 7}, B ∈ {1, 2}. The domains of occurrences variables O1, O2, O3 are set to 2
and O4, O5, O6, O7 to [0, 3] by GCC, hence the variables P and Q are set respectively
to [2, 3] and [0, 1], and thus the GCC decomposition as well as constraints (4.1) and
(4.2) are DC. However, P = 3 is not consistent with the constraint (4.3) and Q = 1 is
not consistent with the constraint (4.4). Therefore we can deduce B = 2.

Notice that these two extra constraints require a dedicated, albeit rather straightforward,
filtering algorithm because using SUM and MIN/MAX constraints would hinder prop-
agation. The algorithm proceeds by shaving the bounds of the variables P and Q. For
instance, after having temporarily fixed P to its upper bound, we find a support for the
relation (

∑m
j=1 max(P − B,Oj)) ≤ n by using the maximum value for B and the

minimum value for each Oj . If this is not sufficient to keep the sum below n, then we
can deduce that P = max(P ) is inconsistent. In Example 4, assuming P = 3, we have
P −max(B) = 1, and

∑m
j=1 max(P −B,Oj) = 2 + 2 + 2 + 1 + 1 + 1 + 1 > 9.

Last, we can add another cheap implied constraint. If the number of values (m) does
not divide the number of variables (n), then B cannot be equal to 0. Conversely, if n =



mk, then B cannot be equal to 1. Indeed, suppose that the balance is 1. Furthermore,
suppose that a value occurs k − 1 times or less. Then since n = mk, at least one other
value occurs k + 1 times or more, hence the balance is greater or equal to 2. The same
contradiction arises if we suppose that a value occurs k+1 times or more. Therefore, the
value of B cannot be equal to 1. These two rules can be combined together as follows:

1 +
⌊ n
m

⌋
−
⌈ n
m

⌉
6= B (4.5)

As we will show later in the empirical results, the implied constraints presented in
this section turn out to be very effective in propagating ALLBALANCE.

4.2 Special Cases of ALLBALANCE

There exist some special cases of the ALLBALANCE where we have a simple encoding
that does not hurt DC propagation. For instance, if B = n then all variables must be
equal. We can thus post: Xi = Xi+1 for 1 ≤ i < n. Another case is when m = 2.
In this case, the implied constraints (4.1) and (4.2) reveal that: P ≤ n+B

2 , Q ≥ n−B
2 .

Since there are two values, one occurs P times, and the other Q times, and P +Q = n.
Therefore, we have P = n+B

2 and Q = n−B
2 . It follows that the value of B must be

even if and only if n is even. Moreover, we can safely assume that the two values are 0
and 1 since any binary domain can be mapped to these values. Therefore, the expression∑n

i=1Xi gives either P or Q. Thus, we post:

B mod 2 = n mod 2 ∧
n∑

i=1

Xi ∈
{
n−B

2
,
n+B

2

}
There are other cases where the decomposition with the implied constraints is sufficient.

Proposition 1. The GCC decomposition with the implied constraints (4.1),(4.2) and
(4.5) achieves DC on ALLBALANCE if B ≤ 1.

Proof. When B = 0, the implied constraints (4.1) and (4.2) entail that: P ≤ n
m , Q ≥

n
m . This enforces the occurrence variables Ov for all v ∈ V of the GCC decomposition
to be set to n

m . Since P,Q and B are fixed, the constraint is now equivalent to GCC.
When B = 1, the implied bounds are:

P ≤
⌊
n− 1

m

⌋
+ 1 ≤

⌈ n
m

⌉
, Q ≥

⌈
n+ 1

m

⌉
− 1 ≥

⌊ n
m

⌋
This will enforce D(Ov) =

[⌊
n
m

⌋
,
⌈
n
m

⌉]
for all v ∈ V of the GCC decomposition. We

know that either m does not divide n or B = 1 is inconsistent. Since the latter case has
already been treated, we check the former. In this case, constraint (4.5) implies that a
balance of 0 is not consistent, hence D(B) = {1}. However, any assignment consistent
with GCC with the bounds given by P and Q will have a balance of 1. Therefore, in
either case, we achieve DC on ALLBALANCE. ut

Another special case is as follows.



Proposition 2. The GCC decomposition with the implied constraints (4.1),(4.2) and
(4.5) achieves DC on ATMOSTALLBALANCE if m ≤ 2.

Proof. Let b = max(B). The implied constraints (4.1) and (4.2) put an upper bound on
P of

⌊
n−b
m

⌋
+ b, and a lower bound on Q of

⌈
n+b
m

⌉
− b. Hence:

max(P )−min(Q) ≤ 2b−
⌈
n+ b

m

⌉
+

⌊
n− b
m

⌋
≤ 2b− n+ b

m
+
n− b
m

= 2b− 2b

m

Now, supposem ≤ 2. Then max(P )−min(Q) ≤ b and for any 1 ≤ j ≤ m, max(Oj)−
min(Oj) ≤ b. Thus, all solutions of the GCC satisfy ATMOSTALLBALANCE. ut

In summary, we have shown that our decomposition with the introduced implied
constraints achieves DC on ALLBALANCE if B ≤ 1, and on ATMOSTALLBALANCE
if m ≤ 2. Moreover, there exists a decomposition achieving DC on ALLBALANCE if
m ≤ 2. In general, the decomposition does not achieve DC, even given perfect commu-
nication between the variables Oj , P,Q and B (Example 3).

5 A Filtering Algorithm for ATMOSTALLBALANCE

We present now a filtering algorithm that achieves DC on ATMOSTALLBALANCE. The
algorithm (see Algorithm 1) proceeds in two steps. First, it finds a support by iteratively
reducing the balance of a support for GCC until it is minimal. Second, it computes
the union of the supports over each possible window of width max(B) for the values’
occurrences. The resulting union can be computed efficiently and corresponds to the
domain consistent values.

5.1 Finding a Support

To find a support, the algorithm computes a flow in a graph similar to the one used for
the GCC. There is one node Xi per variable, one node v per value, a source s, and a
sink t. Each edge has a capacity [a, b], i.e. a lower capacity a and an upper capacity b.
There is an edge of capacity [0, 1] between s and each variable node Xi. There is an
edge of capacity [0, 1] between each node Xi and value v for v ∈ D(Xi). Finally, there
is an edge of capacity [0, n] between each value v and t. Let f(a, b) be the amount of
flow that circulates from node a to b. A maximum flow [1] from s to t corresponds to
an assignment of the variables, i.e. Xi = v ⇐⇒ f(Xi, v) = 1. The value v occurs
exactly f(v, t) times in the assignment. To modify the assignment so that it satisfies
the ATMOSTALLBALANCE constraint, the algorithm finds a path in the residual graph
from the most occurring (or least occurring) value v to any value v′ such that f(v′, t) ≤
f(v, t) − 2 (or such that f(v′, t) ≥ f(v, t) + 2). The algorithm pushes a unit of flow
along this path to modify the assignment. The algorithm repeats this operation until no
such path exists. If no such path exists and if the balance of the current assignment is
strictly greater than max(B), then no support exists. To prove correctness, we show that



Algorithm 1: FilterAtMostAllBalance([V, [X1, . . . , Xn], B)

b← max(B);
D(X ′

i)← D(Xi) for all i = 1..n;
Find a support σ for ATMOSTALLBALANCE whose balance is minimal and let q be the1
occurrence of the least occurring value;
Set min(B) to be the balance of the support σ;
D(Oi)← [q, q + b] for all i = 1..m;
filter GCC([D(X1), . . . ,D(Xn)], [O1, . . . , Om]);2
if no filtering occurred then return;
if filtering occurred because of a Hall set then k ← 1;
else k ← −1;
D(Oi)← [q + k, q + b+ k] for all i = 1..m;
filter GCC([D(X ′

1), . . . ,D(X ′
n)], [O1, . . . , Om]);

D(Xi)← D(Xi) ∪ D(X ′
i) for all i = 1..n;

if there is a solution of ATMOSTALLBALANCE, then there is a sequence of such paths
leading to it from any maximum flow. In other words, if no such path exists, then the
gap between the maximum and minimum flow going through an edge for a value node
to the sink node is a lower bound of B.

Lemma 1. If v is the most occurring value and there is no value v′ such that f(v′, t) ≤
f(v, t)− 2 and that v can reach v′ in the residual graph and if w is the least occurring
value and there is no value w′ such that f(w′, t) ≥ f(w, t) + 2 and that w can reach
w′ in the residual graph, then the balance of the current assignment is minimal.

Proof. We prove the contraposition. Suppose there is a flow f∗ whose corresponding
assignment has a smaller balance than the assignment given by f . Let the most occur-
ring and least occuring values in each flow be:

vmost = argmax
v∈V

f(v, t), vleast = argmin
v∈V

f(v, t),

v∗most = argmax
v∈V

f∗(v, t), v∗least = argmin
v∈V

f∗(v, t).

Necessarily, we have f(vmost, t) > f∗(v∗most, t)∨f(vleast, t) < f∗(v∗least, t). Suppose
that f(vmost, t) > f∗(v∗most, t), we have f(vmost, t) > f∗(v∗most, t) ≥ f∗(vmost, t).
Since both flows have the same flow value, the difference of the vectors f∗ − f de-
scribes a circulation, i.e. a collection of cycles on which the flow circulates. Since
f∗(vmost, t) − f(vmost, t) < 0, the flow circulates from t to vmost in the circula-
tion which means that there is a value v′ for which the flow circulates from v′ to t
which implies f∗(v′, t)− f(v′, t) > 0. We conclude that f(vmost, t) > f∗(v∗most, t) ≥
f∗(v′, t) > f(v′, t) thus f(vmost, t) ≥ f(v′, t) + 2. Finally, the edges (v′, t) and (t, v)
lie on the same cycle in the circulation. Hence there is a path that connects v to v′ in the
residual graph. The case f(vleast, t) < f∗(v∗least, t) is symmetric. ut



5.2 Filtering the Domains

First, we filter the lower bound of B to the balance value of the support found in the
first phase. The balance of this solution is, by Lemma 1, the maximum lower bound
on B. Next, we set q = minv f(v, t) to be the frequency of the least occurring value.
Let b̄ = max(B). We then run the filtering algorithm of the GCC with the domains
of the occurrence variables set to [q, q + b̄]. If this does no filtering, then each value in
the domains belongs to a support where the occurrences of the values lie between q and
q+ b̄. All these supports satisfy the ATMOSTALLBALANCE and we are done. However,
if the filtering algorithm detects that the assignmentXi = v is inconsistent for the GCC,
it is not necessarily inconsistent for ATMOSTALLBALANCE. The assignment Xi = v
can occur in a support where the maximum and minimum number of occurrences do not
belong to [q, q+ b̄]. Therefore, we need to test for a support with different domains such
as [q−1, q+ b̄−1] and [q+1, q+ b̄+1]. Fortunately, we do not need to test all possible
intervals of size b̄. A Hall set is a set of values H for which exactly (q + b̄) × |H|
variable domains are subset of H , since q + b̄ is the maximum allowed occurrences
for any value in H . Conversely, an unstable set is a set of values U for which exactly
q×|U | variable domains intersect U . From [11], an assignmentXi = v is filtered either
because v belongs to a Hall set or the domain of Xi intersects with an unstable set. The
following lemmas restrict search to two windows.

Lemma 2. If H is a Hall set for a GCC with occurrences bounded by q and q + b̄ and
k a positive integer, then the bounds q − k and q + b̄− k are inconsistent.

Proof. Since H is a Hall set when the upper bound is equal to q + b̄, then there are
(q + b̄) × |H| variables whose domains are included in H . Therefore the total number
occurrences of values in H is at least (q + b̄) × |H|. Therefore at least one value must
occur at least q + b̄ times. This is a contradiction with the upper bound q + b̄− k. ut

The dual result for unstable sets can be obtained in a similar way (proof omitted):

Lemma 3. If U is an unstable set for a GCC with occurrences bounded by q and q+ b̄
and k a positive integer, then the bounds q + k and q + 1̄ + k are inconsistent.

These two lemmas imply that we only need to check the window [q + 1, q + b̄+ 1]
if the pruning was due to Hall sets only, the window [q − 1, q + b̄ − 1] if it was due to
unstable sets only, and no other window otherwise. This leads to the following theorem.

Theorem 4. Enforcing DC on ATMOSTALLBALANCE takes O(n2m) time.

Proof. First, the pruning on B is correct by Lemma 1. Since B is only an upper bound,
its own upper bound is never pruned. It follows that the pruning on B is complete and
a support is found if and only if the constraint is not disentailed. Now, consider Algo-
rithm 1. Let b = max(B) and q be the minimum occurrence of any value found in the
support (Line 1). We compute all consistent values for a GCC constraint where occur-
rence variables are bounded by [q, q + b̄]. Suppose first that no pruning occurs. Then
every value is consistent for GCC. In each support the difference between maximum
and minimum occurrence is at most b̄. Hence it is a support for ATMOSTALLBALANCE.



Suppose now that there is at least one Hall set. Then by Lemma 2, we know that a
GCC on the same variables but with all occurrence variables bounded by [q−k, q+b̄−k]
would be inconsistent. In other words, these values have no support for ATMOSTALLBALANCE
on lower windows. By Lemma 2, since the GCC is consistent for the window [q, q+ b̄],
there will not be any Hall set on higher windows. It follows that values inconsistent for
GCC on the window [q, q+ b̄] are inconsistent for ATMOSTALLBALANCE only if they
are pruned because of an unstable set on [q + 1, q + b̄ + 1] and all higher windows.
However, by Lemma 3, if there is an unstable set on the window [q+ 1, q+ b̄+ 1], then
all higher windows will be inconsistent. It follows that values pruned by GCC on the
windows [q, q + b̄] are inconsistent if and only if they are also pruned on the window
[q+1, q+ b̄+1]. The second case is when there is at least one unstable set when setting
the occurrence variables to the window [q, q+ b̄]. Symmetrically, values are inconsistent
if and only if they would be pruned also for the window [q−1, q+ b̄−1]. Finally, if the
window [q, q+ b̄] has both a Hall and an unstable set, all other windows are inconsistent.

The running time is bounded by the time to find a support. This requires finding
O(n − max(B)) augmenting paths, each with a depth-first search (DFS) in O(nm)
time. The two calls to the filtering algorithm of GCC take O(n3/2m) time. Finding
what caused the filtering uses a DFS in the transposed residual graph that marks nodes
that can reach the sink t. If the value v was filtered out of the domain of Xi and that
v cannot reach the sink, then the filtering occurred because of a Hall set. Otherwise, it
occurred because of an unstable set. The total complexity is thus O(n2m). ut

In practice, the complexity can be considerably reduced. For instance, the support
σ can remain valid for multiple consecutive calls to the filtering algorithm. Then, the
running time is equivalent to executing the filtering algorithm of GCC twice. If the
support is no longer valid, it can usualy be updated rather than computed from scratch.
This involves finding much fewer than n−max(B) augmenting paths.

6 Related Work

The problem of ensuring a certain balance in the assignments of [X1, . . . , Xn] has been
previously studied with the SPREAD [10, 15, 14] and DEVIATION [16, 14] constraints.
Both constraints look at the deviation from the mean m = 1

n

∑n
i=1Xi with balancing

criteria D =
∑n

i=1(Xi −m)2 and D =
∑n

i=1 |Xi −m|, respectively. The constraints
in the BALANCE family, however, cannot be expressed using SPREAD and DEVIATION.
In particular, SPREAD and DEVIATION consider the values taken by Xis, as opposed
to the number of occurrences of each value. For instance, for DEVIATION, an assign-
ment [1, 2, 2, 2, 2, 2, 2, 2, 3] is better than [1, 1, 1, 2, 2, 2, 3, 3, 3] as the deviation from
the mean is lower in the first, but the latter has balance B = 0 (3 occurences for each
value), so is preferred by ATMOSTALLBALANCE. This criterion is important in appli-
cations where we want to balance the occurrence of values where each occurrence of
a value represents the use of a resource such as an employee or machine. The balance
criterion B is also different from DEVIATION on the occurrences of values. The criteria
coincide when B = D = 0, but not otherwise. Assume that the occurrences of some
4 values in some 16 variables can be [2, 2, 6, 6] or [2, 3, 4, 7]. While in the first vector
B = 4 and D = 8, in the second B = 5 and D = 6.



Similar criteria have been studied in graph theory in problems involving generating
balanced cuts, such as judicious partitioning [7] and graph conductance [2]. These are
all NP-hard but can be approximated in polynomial time.

7 Experimental Results

We evaluate our DC algorithm for ATMOSTALLBALANCE and its decompositions on
the Balanced Academic Curriculum Problem and a shift scheduling problem. All ex-
periments use Choco (version 2.1.5) under Linux on a 3Ghz CPU with 12 GB of RAM.

7.1 Balanced Academic Curriculum Problem (BACP)

In BACP (prob030 in CSPLib.org), a set of n courses must be assigned to m time
periods, such that (1) a lower and an upper bound on the number of courses per period
must be respected; (2) some courses are prerequisite for others; (3) the load (i.e., the
sum of the credits of the assigned courses) of each period should be balanced.

The “standard” model [6] has a variable Xi for each course i, whose value is the
period allocated to this course. A variable Oj for each period j gives the load on this
period. In order to channel these two sets, {0, 1} variables Yi,j are introduced and con-
strained such that Xi = j ⇔ Yi,j = 1 and Oj =

∑n
i=1 c(i) · Yi,j where c(i) stands

for the the number of credits of a course i. Constraint (1) is modeled by a GCC con-
straint on {X1, . . . , Xn}, constraints (2) are simple precedences between the corre-
sponding Xi and Xj . For the objective (3), a criterion is minimized representing how
balanced the set {O1, . . . , Om} is. In [6], the criterion is the maximum load. We here
consider the gap between the minimum and maximum load, denoted L(∞) in [16]. We
thus have three variables P , Q and B with the constraints P = max({O1, . . . , Om}),
Q = min({O1, . . . , Om}) and B = P −Q, and we minimize B.

We propose an alternative model which respects L(∞) using our ALLBALANCE
constraint. It uses the same variables {X1, . . . , Xn} and same constraints for (1) and
(2). However, we do not need Yi,j and Oj . We can directly post ALLBALANCE using
V = {1, . . . ,m} and B on the multiset of variables containing c(i) times each Xi.

We report the results obtained by running 7 models on 3 real instances involving 8,
10 and 12 periods. Standard is the first model described above. The rest correspond
to the alternative model using ALLBALANCE. The first uses the basic GCC decompo-
sition for ALLBALANCE (Decomp.), the second uses the decomposition with implied
constraints (4.1) and (4.2) (Implied), the third uses the implied constraints (4.3) and
(4.4) (Implied+), and the fourth uses the DC algorithm (AllBalance). Finally,
in the two last models we balance the load using the DEVIATION constraint [16] on
the load variables Oj . The way that DEVIATION is used differs in the two models.
In the former (Deviat.), following [16], Oj variables are channelled to the origi-
nal Xi variables via the Yi,j variables as in the standard model. In the latter model
(Gcc+Deviat.), the Oj variables are channelled to the duplicated Xi variables using
a GCC. That is, we use a GCC and a DEVIATION constraint together to balance the
load. We then report the L(∞) value of the best solutions provided by these two mod-
els. Notice that (almost) perfectly balanced solutions exist for the instances we used,
thus the L(∞) and deviation criteria are very close to each other.



Table 1: Balanced Academic Curriculum Problem

Standard Decomp. Implied Implied+ AllBalance Deviat. Gcc+Deviat.
B # Time B # Time B # Time B # Time B # Time B # Time B # Time

08 16.3 - 1.0 20 116 1.0 20 112 1.0 20 120 1.0 20 174 1.3 19 388 1.0 20 579
10 15.2 - 1.0 20 2626 1.0 20 2665 1.0 20 21261 1.0 20 17509 1.1 19 63100 1.6 18 9850
12 31.6 - 2.1 15 19104 2.0 15 21984 1.4 19 28999 0.0 20 45503 0.1 19 2832 0.2 18 15023

As branching strategy, we use Impact Based Search [12] in all cases. Each instance
is run 20 times with a 900s cutoff by each method after randomly shuffling the variables
so that initial ties are broken randomly. We report in Table 1 the average observed
balance (B = L(∞)) over the 20 runs, and the number of runs where optimality was
proven (#). Moreover, when possible, we report the average run time in milliseconds
(Time) over all completed runs (i.e., in which optimality was proven). In other words,
CPU times can be compared only when the same set of instances have been solved
by all methods. As also shown in [6], the standard model rarely solves the instances
to optimality which renders difficult the computation of averages for which optimality
is proven by all methods. We use bold to highlight the best results. When multiple
methods solve the same instances, we also highlight the best average CPU time.

We observe that the standard CP model has extremely poor performance, the solu-
tions found are all suboptimal. Notice that the criterion optimized by the DEVIATION
models is different. Several symmetric solutions for the L(∞) criterion have a differ-
ent deviation. Indeed, we can see that the Deviat. model, which is the same as the
standard model where the simple objective function is replaced by DEVIATION , greatly
outperforms the standard model. Neither of the DEVIATION models is able to find an
optimal solution and prove it in every case. However, adding the implied constraint as
suggested in [8], significantly improves the model Deviat.: it then finds optimal so-
lutions in all but one of the instances, making it nearly as good as the AllBalance
model. The models using the decompositions of the ALLBALANCE constraint is very
efficient on instances 08 and 10, however, only the filtering algorithm is able to find an
optimal solution and prove it within the cutoff time in all cases.

7.2 Shift Scheduling

In order to better assess the advantages of the propagator over the different decompo-
sitions, we ran another series of tests (under the same conditions). We consider a task
assignment problem. We have m tasks per day. Each task requires a separate worker so
we have m workers. Over the n days of the schedule, we want each worker to receive
an assignment as balanced as possible. We have one variable Xi,j per worker i and
per day j. We make sure that on any day j, all tasks are performed by distinct workers
through an ALL-DIFFERENT constraint over [X1,j , . . . , Xm,j ]. We bound the balance
of the tasks assigned to each worker i by a shared variable B which we minimize with
ATMOSTALLBALANCE over [Xi,1, . . . , Xi,n]. To make problems hard, we ensure that
not all workers are available for every task every day. Given a ratio 0 ≤ α < 1, we
randomly forbid

⌈
αn2m

⌉
triples 〈i, j, k〉 for which we remove the value k from the

variable Xi,j (so that worker i cannot do task k on day j). We make sure that i ∈ Xi,j

for all i and j, to ensure a feasible solution exists. We randomly generated instances for



Table 2: Shift Scheduling.

m n
Decomp. Implied Implied+ AllBalance

# B Time Bkt # B Time Bkt # B Time Bkt # B Time Bkt
6 16 8 1.92 6634 87398 25 1.88 37 472 25 1.88 35 423 25 1.88 33 260
6 17 11 2.16 60637 1073765 25 2.16 78 1123 25 2.16 63 877 25 2.16 36 249
6 18 16 3.2 8869 166146 25 1.84 127 1903 25 1.84 114 1617 25 1.84 36 279
6 19 8 3.24 106003 1352600 25 2.64 607 6983 25 2.64 504 6923 25 2.64 61 408
6 20 7 3.04 2302 27839 25 2.80 910 10027 25 2.80 734 8221 25 2.80 169 1085
7 16 6 1.44 32540 476847 25 1.44 2361 29767 25 1.44 2112 28382 25 1.44 1828 12383
7 17 9 2.04 159790 1542016 25 1.96 8416 90680 25 1.96 6697 72236 25 1.96 1576 9378
7 18 3 2.36 135580 1439674 22 1.76 19432 236671 22 1.76 14300 183069 24 1.68 13920 90665
7 19 4 2.04 80636 804503 22 1.88 21981 230327 22 1.88 13840 151262 23 1.76 6378 36822
7 20 2 2.72 25779 290430 23 1.56 46267 600434 24 1.52 55260 715789 23 1.68 18772 116406
8 16 8 2.12 128618 2109236 22 0.92 17420 231594 23 0.72 34216 462257 25 0.44 3797 14999
8 17 3 1.84 154183 1271700 21 1.68 55193 716866 21 1.68 49859 689151 25 1.28 12900 68059
8 18 1 1.76 4033 35971 15 1.56 56785 542326 16 1.52 84438 745177 16 1.56 5264 15636
8 19 2 2.12 176092 1675776 24 1.40 64074 665200 24 1.40 51899 544990 24 1.40 31092 201842
8 20 2 5.84 242901 2082063 11 2.76 51041 468643 11 2.68 35712 316148 15 2.32 12654 52741

6 to 8 workers/tasks (m) and 16 to 20 days (n). For each pair (m,n), we generated 25
instances with α ranging from 0.1 to 0.58 by increments of 0.02.

We compare the basic GCC decomposition (Decomp.), the decompositions with
implied constraints (Implied) and (Implied+), and the DC algorithm (AllBalance).
We report the same statistics as for BACP, but compute averages over the values of α
instead of over random runs. A static variable and value ordering was used so that the
decrease in number of backtracks is only due to stronger propagation. We also report
the average number of backtracks over instances solved to optimality within the cutoff.

We can clearly see that the implied constraints have a huge impact for a very low
overhead. On the smaller instances, while the filtering algorithm saves backtracks, it is
almost twice as slow (in terms of backtracks per second) as either decomposition with
implied constraints. It is nevertheless almost always faster, but only by a small margin.
As the instances get larger, the benefits of the algorithm over the decompositions, and
of the stronger decompositions over the weaker ones, become more evident. Indeed,
the algorithm allows to prove optimality in 84% of the cases for m = 8, whereas
the decompositions (Decomp., Implied, Implied+) can only do it in 13%, 74%
and 76% of the cases, respectively. Moreover, still for m = 8 the objective value is
decreased 48%, 16% and 12% in average with respect to these three decompositions.

8 Conclusions

We have studied constraints for ensuring solutions are balanced. We first proved that en-
forcing domain consistency on the ATMOSTBALANCE and therefore on the BALANCE
constraint is NP-hard. This is due to the disjunctive choice in the semantics of BALANCE
that ignores a value which does not occur. We therefore introduced a variant, ALLBALANCE
with a similar semantics in which all values are considered. We provided a propagation
algorithm, and a powerful decomposition, which both work in low polynomial time.
Experimental results demonstrated the promise of these new filtering methods.



References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Networks Flows, Theory, Algorithms, and
Applications. Prentice Hall, 1993.

2. Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

3. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global Constraint Catalogue: Past,
Present and Future. Constraints, 12(1):21–62, 2007.

4. C. Bessiere. Constraint propagation. In F. Rossi, P. van Beek, and T. Walsh, editors, Hand-
book of Constraint Programming. Elsevier, 2006.

5. M. Cattafi, R. Herrero, M. Gavanelli, M. Nonato, and F. Malucelli. Improving Quality and
Efficiency in Home Health Care: an application of Constraint Logic Programming for the
Ferrara NHS unit. In ICLP, pages 415–424, 2012.

6. B. Hnich, Z. Kiziltan, and T. Walsh. Modelling a Balanced Academic Curriculum Problem.
In CPAIOR, pages 121–131, 2002.

7. C. Lee, P.-S. Loh, and B. Sudakov. Bisections of graphs. Journal of Combinatorial Theory,
Series B, 103(5):599–629, 2013.

8. J.-N. Monette, P. Schaus, S. Zampelli, Y. Deville, and P. Dupont. A CP Approach to the Bal-
anced Academic Curriculum Problem. In The Seventh International Workshop on Symmetry
and Constraint Satisfaction Problems (Symcon’07), 2007.

9. G. Pesant. A regular language membership constraint for finite sequences of variables. In
CP, pages 482–295, 2004.

10. G. Pesant and J.-C. Régin. SPREAD: A Balancing Constraint Based on Statistics. In CP,
pages 460–474, 2005.
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