
The All Different and Global Cardinality

Constraints on Set, Multiset and Tuple Variables

Claude-Guy Quimper1 and Toby Walsh2

1 School of Computer Science, University of Waterloo, Canada,
cquimper@math.uwaterloo.ca

2 NICTA and UNSW, Sydney, Australia, tw@cse.unsw.edu.au

Abstract. We describe how the propagator for the All-Different
constraint can be generalized to prune variables whose domains are not
just simple finite domains. We show, for example, how it can be used
to propagate set variables, multiset variables and variables which repre-
sent tuples of values. We also describe how the propagator for the global
cardinality constraint (which is a generalization of the All-Different
constraint) can be generalized in a similar way. Experiments show that
such propagators can be beneficial in practice, especially when the do-
mains are large.

1 Introduction

Constraint programming has restricted itself largely to finding values for vari-
ables taken from given finite domains. However, we might want to consider vari-
ables whose values have more structure. We might, for instance, want to find a
set of values for a variable [12–15], a multiset of values for a variable [16], an
ordered tuple of values for a variable, or a string of values for a variable. There
are a number of reasons to want to enrich the type of values taken by a variable.
First, we can reduce the space needed to represent possible domain values. For
example, we can represent the exponential number of subsets for a set variable
with just an upper and lower bound representing possible and definite elements
in the set. Second, we can improve the efficiency of constraint propagators for
such variables by exploiting the structure in the domain. For example, it might
be sufficient to consider each of the possible elements in a set in turn, rather
than the exponential number of subsets. Third, we inherit all the usual benefits
of data abstraction like ease of debugging and code maintenance.

As an example, consider the round robin sports scheduling problem (prob026
in CSPLib). In this problem, we wish to find a game for each slot in the schedule.
Each game is a pair of teams. There are a number of constraints that the sched-
ule needs to satisfy including that all games are different from each other. We
therefore would like a propagator which works on an All-Different constraint
posted on variables whose values are pairs (binary tuples). In this paper, we con-
sider how to implement such constraints efficiently and effectively. We show how
two of the most important constraint propagators, those for the All-Different
and the global cardinality constraint (gcc) can be extended to deal with variables
whose values are sets, multisets or tuples.

2 Propagators for the All-Different Constraint

Propagating the All-Different constraint consists of detecting the values in
the variable domains that cannot be part of an assignment satisfying the con-
straint. To design his propagator, Leconte [18] introduced the concept of Hall

set based on Hall’s work [1].

Definition 1. A Hall set is a set H of values such that the number of variables

whose domain is contained in H is equal to the cardinality of H. More formally,

H is a Hall set if and only if |H | = |{xi | dom(xi) ⊆ H}|.

Consider the following example.

Example 1. Let dom(x1) = {3, 4}, dom(x2) = {3, 4}, and dom(x3) = {2, 4, 5}
be three variable domains subject to an All-Different constraint. The set
H = {3, 4} is a Hall set since it contains two elements and the two variable
domains dom(x1) and dom(x2) are contained in H .

In Example 1, variables x1 and x2 must be assigned to values 3 and 4, making
these two values unavailable for other variables. Therefore, value 4 should be
removed from the domain of x3.

To enforce domain consistency, it is necessary and sufficient to detect every
Hall set H and remove its values from the domains that are not fully contained
in H . This is exactly what Régin’s propagator [4] does using matching theory
to detect Hall sets. Leconte [18], Puget [20], López-Ortiz et al. [19] use simpler
ways to detect Hall intervals in order to achieve weaker consistencies.

3 Beyond integer variables

A propagator designed for integer variables can be applied to any type of variable
whose domain can be enumerated. For instance, let the following variables be
sets whose domains are expressed by a set of required values and a set of allowed
values.

{} ⊆ S1, S2, S3, S4 ⊆ {1, 2} and {} ⊆ S5, S6 ⊆ {2, 3}

Variable domains can be expanded as follows:

S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈ {{}, {2}, {3}, {2, 3}}

And then by enforcing GAC on the All-Different constraint, we obtain

S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈ {{3}, {2, 3}}

We can now convert the domains back to their initial representation.

{} ⊆ S1, S2, S3, S4 ⊆ {1, 2} and {3} ⊆ S5, S6 ⊆ {2, 3}

This technique always works but is not tractable in general since variable
domains might have exponential size. For instance, the domain of {} ⊆ Si ⊆
{1, . . . , n} contains 2n elements. The following important lemma allows us to
ignore such variables and focus just on those with “small” domains.

Lemma 1. Let n be the number of variables and let F be a set of variables

whose domains are not contained in any Hall set. Let xi 6∈ F be a variable whose

domain contains more than n − |F | values. Then dom(xi) is not contained in

any Hall set.

Proof. The largest Hall set can contain the domain of n − |F | variables and
therefore has at most n − |F | values. If |dom(xi)| > n − |F |, then dom(xi)
cannot be contained in any Hall set. ut

Using Lemma 1, we can iterate through the variables and append to a set
F those whose domain cannot be contained in a Hall set. A propagator for
the All-Different constraint can prune the domains not in F and find all
Hall sets. Values in Hall sets can then be removed from the variable domains
in F . This technique ensures that domains larger than n do not slow down the
propagation. Algorithm 1 exhibits the process for a set of (possibly non-integer)
variables X .

F ← ∅
Sort variables such that |dom(xi)| ≥ |dom(xi+1)|
for xi ∈ X do

1 if |dom(xi)| > n− |F | then F ← F ∪ {xi}

2 Expand domains of variables in X − F .
Find values H belonging to a Hall set and propagate the All-Different constraint
on variables X − F .
for xi ∈ F do

dom(xi)← dom(xi)−H;

3 Collapse domains of variables in X − F .

Algorithm 1: All-Different propagator for variables with large domains.

To apply our new techniques, three conditions must be satisfied by the rep-
resentation of the variables:

1. Computing the size of the domain must be tractable (Line 1).

2. Domains must be efficiently enumerable (Line 2).

3. Domains must be efficiently computed from an enumeration of values (Line 3)

The next sections describe how different representations of domains for set,
multiset and tuple variables can meet these three conditions.

4 All-Different on sets

Several representations of domains have been suggested for set variables. We
show how their cardinality can be computed and their domain enumerated ef-
ficiently. One of the most common representations for a set are the required
elements lb and the allowed elements ub, with any set S satisfying lb ⊆ S ⊆ ub

belongs to the domain [12, 14]. The number of sets in the domain is given by
2|ub−lb|. We can enumerate all these sets simply by enumerating all subsets of
ub − lb and adding them to the elements from lb. A set can be represented as
a binary vector where each element is associated to a bit. A bit equals 1 if its
corresponding element is in the set and equals 0 if its corresponding element is
not in the set. Enumerating all subsets of ub − lb is reduced to the problem of
enumerating all binary vectors between 0 and 2|ub−lb| exclusively which can be
done in O(2|ub−lb|) steps, i.e. O(|dom(Si)|) steps.

In order to exclude from the domain undesired sets, one can also add a
cardinality variable [3]. The domain of a set variable is therefore expressed by
dom(Si) = {S | lb ⊆ S ⊆ ub, |S| ∈ dom(C)} where C is an integer variable. We
assume that C is consistent with lb and ub, i.e. min(C) >= |lb| and max(C) <=
|ub|. The size of the domain is given by Equation 1 where

(

a
b

)

is the binomial
coefficient.

|dom(Si)| =
∑

j∈C

(

|ub− lb|

j − |lb|

)

(1)

The binomial coefficients can efficiently be computed as explained in Chapter
6.1 of [10]. The identity

(

n

k+1

)

= n−k
k+1

(

n

k

)

can be particularly useful to compute
the summation when the domain of C is an interval. The number of steps required
to compute |dom(Si)| is bounded by O(|dom(C)|).

Algorithm 2 enumerates all combinations of t elements chosen from elements
0 to n − 1. Each element i in a combination is mapped to the ith element in
ub− lb. By enumerating all t-combinations for t ∈ dom(C) to which we add the
required elements lb, we enumerate all sets in |dom(Si)|. Algorithm 2 has a time
complexity of O(t +

(

n

t

)

). Since we call it for each t ∈ dom(C), the total time
complexity simplifies to O(max(|ub − lb|, |dom(Si)|)).

Sadler and Gervet [7] suggest adding a lexicographic ordering constraint to
the domain description. This gives more expressiveness to the domain represen-
tation and can eliminate more undesired sets. that We say that S1 < S2 holds if
S1 comes before S2 in a lexicographical order. The new domain representation
now involves two lexicographic bounds l and u.

dom(Si) = {S | lb ⊆ S ⊆ ub, |S| = C, l ≤ S ≤ u} (2)

Knuth [8] represents all subsets of a set using a binomial tree like the one in
Figure 1. The empty set is the root of the tree to which we can add elements
by branching to a child. One can list all sets in lexicographical order by visiting

cj ← j − 1, ∀j 1 ≤ j ≤ t

ct+1 ← n

ct+2 ← 0
repeat

visit ct, ct−1, . . . , c1

j ← 1
while cj + 1 = cj+1 do

cj ← j − 1
j ← j + 1

cj ← cj + 1

until j > t

Algorithm 2: Enumerate the
(

n
t

)

combinations of t elements between 0 and n−1.
(Source: Algorithm T, Knuth [8] p.5)

the tree from left to right with a depth-first-search (DFS). We clearly see that
the lexicographic constraints are orthogonal to the cardinality constraints.

0

0 0 0

0 0 0

0

31

1 1

1

{1, 0} ≤ Si

2

2

Si ≤ {3, 0}

1 ≤ |Si|

|Si| ≤ 2

Fig. 1. Binomial tree representing the domain ∅ ⊆ Si ⊆ {0, 1, 2, 3}, 1 ≤ |Si| ≤ 2, and
{1, 0} ≤ Si ≤ {3, 0}.

Based on the binomial tree, we compute, level by level, the number of sets
that belong to the domain. Notice that sets at level k have cardinality k. A set
in the variable domain can be encoded with a binary vector of size |ub − lb|
where each bit is associated to a potential element in ub − lb. A bit set to
one indicates the element belongs to the set while a bit set to zero means that
the element does not belong to the set. The number of sets of cardinality k

in the domain is equal to the number of binary vectors with k bits set to one
and that lexicographically lie between l and u. Let [um, . . . , u1] be the binary
representation of the lexicographic upper bound u. Assuming

(

b
a

)

= 0 for all
negative values of a, function C([um, . . . , u1], k) returns the number of binary

vectors that are lexicographically smaller than or equal to u and that have k

bits set to one.

C([sm, . . . , s1], k) =

m
∑

i=1

si

(

i − 1

k −
∑m

j=i+1 sj

)

+ δ(s, k) (3)

δ([sm, . . . , s1], k) =

{

1 if
∑m

i=1 si = k and s0 = 0
0 otherwise

(4)

Lemma 2. Equation 3 is correct.

Proof. We prove correctness by induction on m. For m = 1, Equation 3 holds
with both k = 0 and k = 1. Suppose the equation holds for m, we want to prove
it also holds for m + 1. We have

C([sm+1, . . . , s1], k) = sm+1

(

m

k

)

+ C([sm, . . . , s1], k − sm+1) (5)

If sm+1 = 0, the lexicographic constraint is the same as if we only consider
the m first bits. We therefore have C([sm+1, . . . , s1], k) = C([sm, . . . , s1], k). If
sm+1 = 1, C(s, k) returns

(

m

k

)

which corresponds to the number of vectors with
k bits set to 1 and the (m + 1)th bit set to zero plus C([sm, . . . , s1], k− 1) which
corresponds to the number of vectors with k bits set to 1 including the (m+1)th

bit. Recursion 5 is therefore correct. Solving this recursion results in Equation 3
ut

Let a and b be respectively binary vectors associated to the lexicographical
bounds l and u where bits associated to the required elements lb are omitted.
We refer by a−1 to the binary vector that precedes a in the lexicographic order.
The size of the domain is given by the following equation.

|dom(Si)| =
∑

k∈C

(C(b, k) − C(a − 1, k))

Function C can be evaluated in O(|ub−lb|) steps. The size of domain dom(Si)
therefore requires O(|ub − lb||C|) steps to compute. Enumerating can also pro-
ceede level by level without taking into account the required elements lb since
they belong to all sets in the domain. The first set on level k can be obtained
from the lexicographic lower bound l. If |l| 6= k, we have to find the first set l′ of
cardinality k that is lexicographically greater than l. If |l| < k, we simply add to
set l the k− |l| smallest elements in ub− lb− l. Suppose |l| > k and consider the
binary representation of l. Let p be the kth heaviest bit set to 1 in l. We add one
to bit p and propagate carries and we set all bits before p to 0. We obtain a bit
vector l′ representing a set with no more than k elements. If |l′| < k, we add the
first k − |l′| elements in ub− lb− l′ to l′ and obtain the first set of cardinality k.

Once the first set at level k has been computed, subsequent sets can be ob-
tained using Algorithm 2. Obtaining the first set of each level costs O(|dom(C)||ub−
lb|) and cumulative calls to Algorithm 2 cost O(

∑

i∈dom(C) i + |dom(S)|). Enu-

merating the domain therefore requires O(|dom(C)||ub − lb| + |dom(S)|) steps.

5 All-Different on tuples

A tuple t is an ordered sequence of n elements that allows multiple occurrences.
Like sets, there are different ways to represent the domain of a tuple. The most
common way is simply by associating an integer variable to each of the tuple
components. A tuple of size n is therefore represented by n integer variables
x1, . . . , xn.

To apply an All-Different constraint to a set of tuples, a common solution
is to create an integer variable t for each tuple. If each component xi ranges from
0 to ci exclusively, we add the following channeling constraint between tuple t

and its components.

t = ((((x1c2 + x2)c3 + x3)c4 + x4) . . .)cn + xn =

n
∑

i

xi

n
∏

j=i+1

cj

This technique suffers from either inefficient or ineffective channeling between
variable t and the components xi. Most constraint libraries enforce bound con-
sistency on t. A modification to the domain of xi does not affect t if the bounds
of dom(xi) remain unchanged. Conversely, even if all tuples encoded in dom(t)
have xi 6= v, value v will most often not be removed from dom(xi). On the other
hand, enforcing domain consistency typically requires O(nk) steps where k is the
size of the tuple.

To address this issue, one can define a tuple variable whose domain is defined
by the domains of its components.

dom(t) = dom(x1) × . . . × dom(xn)

The size of such a domain is given by the following equation which can be
computed in O(n) steps.

|dom(t)| =

n
∏

i=1

|dom(xi)|

The domain of a tuple variable can be enumerated using Algorithm 3. As-
suming the domain of all component variables have the same size, Algorithm 3
runs in O(|dom(t)|) which is optimal.

As Sadler and Gervet [7] did for sets, we can add lexicographical bounds to
tuples in order to better express the values the domain contains. Let l and u be
these lexicographical bounds.

Initialize first tuple: aj ← min(dom(xj)), ∀j 1 ≤ j ≤ n

repeat

visit (a1, a2, . . . , an)
j ← n

while j > 0 and aj = max(dom(xj)) do

aj ← min(dom(xj))
j ← j − 1

aj ← min({a ∈ dom(xj) | a > aj})

until j = 0

Algorithm 3: Enumerate tuples of size n in lexicographical order. (Source: Algo-
rithm T, Knuth [8] p.2)

dom(t) = {t | t[i] ∈ dom(xi), l ≤ t ≤ u}

Let idx(v, x) be the number of values smaller than v in the domain of the
integer variable x. More formally, idx(v, x) = |{w ∈ dom(x) | w < v}|. As-
suming idx(v, x) has a running time complexity of O(log(|dom(x)|)), the size of
the domain can be evaluated in O(n + log(|dom(t)|)) steps using the following
equation.

|dom(t)| = 1 +

n
∑

i=1

(idx(u[i], xi) − idx(l[i], xi))

n
∏

j=i+1

|dom(xi)|

We enumerate the domain of tuple variables with lexicographical bounds
similarly as tuple variables without lexicographical bounds. We simply initialize
Algorithm 3 with tuple l and stop enumerating when tuple u is reached. In
average case analysis, this operation is performed in O(|dom(t)|) steps.

6 All-Different on multi-sets

Unlike sets, multi-sets allow multiple occurrences of the same element. We use
occ(v, S) to denote the number of occurrences of element v in multi-set S. An
element v belongs to a multi-set A if and only if its number of occurrences
occ(v, A) is greater than 0. We say that set A is included in set B (A ⊆ B) if
for all element v we have occ(v, A) ≤ occ(v, B). The domain representation of
multi-sets is generally similar to the one for standard sets. We have a multi-set of
essential elements lb and a multi-set of allowed elements ub. Equation 6 gives the
domain of a multi-set and Equation 7 shows how to compute its size in O(|ub|)
steps.

dom(Si) = {S | lb ⊆ S ⊆ ub} (6)

|dom(Si)| =
∏

v∈ub

(occ(v, ub) − occ(v, lb) + 1) (7)

Multisets can be represented by a vector where each component represents
the number of occurrences of an element in the multi-set. Of course, for the multi-
set to be in the domain, this number of occurrences must lie between occ(v, lb)
and occ(v, ub). Therefore a multi-set variable is equivalent to a tuple variable
where the domain of each component is given by the interval [occ(v, lb), occ(v, ub)].
Enumerating the values in the domain is done as seen in Section 5. The same
approach can be used to introduce lexicographical bounds to multi-sets.

7 Indexing domain values

Propagators for the All-Different constraint, like the one proposed by Régin [4],
need to store information about some values appearing in the variable domains.
When values are integers, the simplest implementation is to create a table T

where information related to value v is stored in entry T [v]. Algorithm 1 ensures
that the propagator is called over a maximum of n variables each having no more
than n (possibly distinct) values in their domain. We therefore have a maximum
of n2 values to consider. When these n2 values come from a significantly greater
set of values, table T becomes sparse. In some cases, it might not even be realistic
to consider such a solution. To allow direct memory access when accessing the
information of a value, we need to map the n2 values to an index in the interval
[1, n2].

We suggest to build an indexing tree able to index sets, multi-sets, tuples,
or any other sequential data structure. Each node is associated to a sequence.
The root of the tree is the empty sequence (∅). We append an element to the
current sequence by branching to a child of the current node. There are at most
n2 nodes corresponding to a value in a variable domain. These nodes are labeled
with integers from 1 to n2. Figure 2 shows the indexing tree based on the domain
of 5 set variables.

1

2

2

3
{2, 3} ∈ S5

{2} ∈ S1, S3, S5

{1, 2, 3} ∈ S5

{1, 2} ∈ S1, S2, S3, S5

{1} ∈ S1, S2, S4

3

∅ ∈ S1, S4

Fig. 2. Indexing tree representing the following domains: ∅ ⊆ S1 ⊆ {1, 2}, {1} ⊆ S2 ⊆
{1, 2}, {2} ⊆ S3 ⊆ {1, 2}, ∅ ⊆ S4 ⊆ {1}, {2} ⊆ S5 ⊆ {1, 2, 3}.

This simple data structure allows to index and retrieve in O(l) steps the
number associated to a sequence of length l.

8 Global cardinality constraint

The global cardinality constraint (gcc) is a generalization of the All-Different
constraint. A value v must be assigned to at least bvc variables and at most dve
variables. Traditionally, the lower capacity bvc and the upper capacity dve are
given by look-up tables. When working with large domains, these look-up tables
could require too much memory. We therefore assume that the lower and upper
capacity of each value is returned by a function. For instance, the constant
functions bvc = 0 and dve = 1 define the All-Different constraint. In order
to be feasible, the following restrictions apply:

∑

vbvc ≤ n and
∑

vdve ≥ n. For
efficiency reasons, we assume that the values L whose lower capacity is positive
are known, i.e. L = {v | bvc > 0} is known.

Based on the concept of upper capacity, we give a new definition to a Hall
set.

Hall set [9] A Hall set H is a set of values such that there are
∑

v∈Hdve vari-
ables whose domains are contained in H ; i.e., H is a Hall set iff |{xi |
dom(xi) ⊆ H}| =

∑

v∈Hdve.

Under gcc, Lemma 1 becomes the following lemma.

Lemma 3. Let F be a set of variables whose domains are not contained in any

Hall set and assume dve ≥ k holds for all value v. If xi 6∈ F is a variable whose

domain contains more than bn−|F |
k

c values, then dom(xi) is not contained in any

Hall set.

Proof. The largest Hall set can contain the domain of n − |F | variables and

therefore has at most bn−|F |
k

c values. If |dom(xi)| > bn−|F |
k

c, then dom(xi)
cannot be contained to any Hall set. ut

Following [9], the gcc can be divided into two constraints: the lower bound
constraint is only concerned with the lower capacities (bvc) and the upper bound
constraint is only concerned with the upper capacities (dve).

The upper bound constraint is similar to the All-Different constraint.
Up to dve variables can be assigned to a value v instead of only 1 with the
All-Different constraint. Lemma 3 suggests to modify Line 1 of Algorithm 1

by testing if |dom(xi)| >
|X|−|F |

k
before inserting variable xi in set F .

The lower bound constraint can easily be handled when variable domains
are large. Consider the set L of values whose lower capacity is positive, i.e.
L = {v | bvc > 0}. In order for the lower bound constraint to be satisfiable over
n variables, the cardinality of L must be bounded by n. The values not in L can
be assigned to a variable only if all values v in L have been assigned to at least
bvc variables. Since all values not in L are symmetric, we can replace them by a

single value p such that bpc = 0. We now obtain a problem where each variable
domain is bounded by n + 1 values. We can apply a propagator for the lower
bound constraint on this new problem. Notice that if the lower bound constraint
propagator removes p from a variable domain, it implies by symmetry that all
values not in L should be removed from this variable domain.

9 Experiments

To test the efficiency and effectiveness of these generalizations to the propagator
for the All-Different constraint, we ran a number of experiments on a well
known problem from design theory. A Latin square is an n × n table where
cells can be colored with n different colors. We use integers between 1 and n

to identify the n colors. A Graeco-Latin square is m Latin squares A1, . . . , Am

such that the tuples 〈A1[i, j], . . . , Am[i, j]〉 are all distinct. The following tables
represent a Graeco-Latin square for n = 4 and m = 2.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

3 4 1 2
1 2 3 4
2 1 4 3
4 3 2 1

We encode the problem using one tuple variable per cell. There is an
All-Different constraint on each row and each column. We add a redundant
0/1-Cardinality-Matrix constraint on each value as suggested by Régin [11].
We use two different encodings for tuples: one is the tuple encoding where each
component is an integer variable, the other is the factored representation. We en-
force bounds consistency on the channeling constraints between the cell variables
and the factored tuple variables. As suggested in [11], our heuristic chooses the
variable with the smallest domain and we break ties on the variable that has the
most bounded variables on its row and column. We use the same implementation
of the All-Different propagator for both tuple encodings.

Table 1 and Figure 3 clearly show that when tuples gets longer, our technique
outperforms the factored representation of tuples. This is mainly due to space
requirements since the factored representation of tuples requires more memory
than the cache can contain.

10 Conclusions

We have described how Régin’s propagator for the All-Different constraint
can be generalized to prune variables whose domains are not just simple finite
domains. In particular, we described how it can be used to propagate set vari-
ables, multiset variables and variables which represent tuples of values. We also
described how the propagator for the global cardinality constraint can be gen-
eralized in a similar way. Experiments showed that such propagators can be
beneficial in practice, especially when the domains are large. Many other global
constraints still remain to be generalized to deal with other variable types than
simple integer domains.

@
@@n

m
3 4 5 6

factored tuple factored tuple factored tuple factored tuple

8 0.48 0.23 0.57 0.35 4.51 0.40 56.48 1.08
9 0.33 0.49 0.31 0.85 1.77 0.94 23.09 2.39
10 0.58 0.91 0.56 1.57 3.44 1.78 52.30 4.36
11 1.05 1.62 1.04 2.97 7.33 3.23 124.95 7.69
12 1.76 2.80 1.79 5.59 13.70 6.04 263.28 13.61
13 2.86 4.69 2.85 9.00 23.96 9.74 493.04 22.80
14 4.37 7.03 4.17 14.34 38.95 15.19 33.79
15 6.88 10.62 6.56 22.18 69.89 23.63 50.23
16 10.11 15.41 9.54 32.52 110.08 34.55 73.60
17 14.21 21.48 13.82 45.35 174.18 47.89 102.98
18 20.41 30.55 19.13 64.87 255.76 68.46 146.21
19 28.28 42.12 25.01 91.45 364.58 95.99 204.45
20 38.31 56.10 34.35 122.30 540.06 136.43 274.29

Table 1. Time to solve a Graeco-Latin square using factored and tuple variables

 0

 100

 200

 300

 400

 500

 600

 8 10 12 14 16 18 20

T
im

e
(s

)

Graeco-Latin Square Dimension

Time (s) to Find a Graeco-Latin Square

Factored m=3
Component m=3

Factored m=5
Component m=5

Factored m=6
Component m=6

Fig. 3. Time in seconds to solve a Graeco-Latin square with m different square sizes.
The data is extracted from Table 1. We see that for m ≥ 5, the component encoding
offers a better performance than the factored encoding.

References

1. P. Hall, On representatives of subsets. Journal of the London Mathematical Society,
pages 26–30, 1935.

2. J. Hopcroft and R. Karp, An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal of Computing, volume 2 pages 225–231, 1973.

3. ILOG S. A., ILOG Solver 4.2 user’s manual. 1998.
4. J.-C. Régin, A filtering algorithm for constraints of difference in CSPs. In Proceed-

ings of the Twelfth National Conference on Artificial Intelligence, pages 362–367,
Seattle, 1994.

5. J.-C. Régin, Generalized arc consistency for global cardinality constraint. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages
209–215, Portland, Oregon, 1996.

6. K. Stergiou and T. Walsh, The difference all-difference makes. In Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence, pages 414–419,
Stockholm, 1999.

7. A. Sadler and C. Gervet, Hybrid Set Domains to Strengthen Constraint Propa-
gation and Reduce Symmetries. In In Proceedings of the 10th International Con-
ference on Principles and Practice of Constraint Programming, pages 604–618,
Toronto, Canada, 2004.

8. D. Knuth, Generating All Tuples and Permutations. Addison-Wesley Professional,
144 pages, 2005.

9. A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek, A fast and simple
algorithm for bounds consistency of the alldifferent constraint. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence, pages
245–250, Acapulco, Mexico, 2003.

10. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes
in C: The Art of Scientific Computing, Second Edition, Cambridge University
Press, 1992.

11. J.-C. Régin and C. P. Gomes, The Cardinality Matrix Constraint. In In Proceed-
ings of the 10th International Conference on Principles and Practice of Constraint
Programming, pages 572–587, Toronto, Canada, 2004.

12. C. Gervet, Interval Propagation to Reason about Sets: Definition and Implemen-
tation of a Practical Language. Constraints Journal, 1(3) pages 191–244, 1997.

13. C. Gervet, Set Intervals in Constraint Logic Programming: Definition and Im-
plementation of a Language. PhD thesis, Université de Franche-Comté, France,
September 1995. European thesis, in English.

14. J.-F. Puget, Finite set intervals. In Proceedings of Workshop on Set Constraints,
held at CP’96, 1996.

15. T. Müller and M. Müller, Finite set constraints in Oz. In François Bry,Burkhard
Freitag, and Dietmar Seipel, editors, 13. Workshop Logische Programmierung,
pages 104–115, Technische Universität München, pages 17–19 September 1997.

16. T. Walsh, Consistency and Propagation with Multiset Constraints: A Formal
Viewpoint. In Proceedings of the 9th International Conference on Principles and
Practice of Constraint Programming, Kinsale, Ireland, 2003.

17. I.P. Gent and T. Walsh, CSPLib: a benchmark library for constraints. Technical
report APES-09-1999, 1999.

18. M. Leconte, A bounds-based reduction scheme for constraints of difference. In
Proceedings of the Constraint-96 International Workshop on Constraint-Based Rea-
soning, pages 19–28, 1996.

19. A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek, A fast and simple
algorithm for bounds consistency of the alldifferent constraint. in Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJCAI-03) pages
245–250, 2003.

20. J.-F. Puget, A Fast Algorithm for the Bound Consistency of Alldiff Constraints.
In Proceedings of the 15th National Conference on Artificiel Intelligence (AAAI-
98) and the 10th Conference on Innovation Applications of Artificial Intelligence
(IAAI-98)”, pages 359–366, 1998.

