
The WeightedCircuitsLmax Constraint

Kim Rioux-Paradis1 and Claude-Guy Quimper1

Université Laval
Québec City, Canada

kim.rioux-paradis.1@ulaval.ca
claude-guy.quimper@ift.ulaval.ca

Abstract. The travelling salesman problem is a well-known problem
that can be generalized to the m-travelling salesmen problem with min-
max objective. In this problem, each city must be visited by exactly one
salesman, amongm travelling salesmen. We want to minimize the longest
circuit travelled by a salesman. This paper generalizes the Circuit and
WeightedCircuit constraints and presents a new constraint that en-
codes m cycles all starting from the same city and whose lengths are
bounded by a variable Lmax. We propose two filtering algorithms, each
based on a relaxation of the problem that uses the structure of the graph
and the distances between each city. We show that this new constraint
improves the solving time for the m travelling salesmen problem.

1 Introduction

Constraint programming offers a large number of constraints to model and to
solve combinatorial problems [1]. These constraints serve two purposes: they
facilitate the modelling of a problem and they offer strong filtering algorithms
that reduce the search space. When solving an optimization problem with a
Branch & Bound approach, computing a tight bound on the objective function
is crucial to limit the size of the search tree. Global constraints can help compute
the bound by filtering the objective variable with respect to a large number of
variables in the problem.

We propose a new global constraint that helps to model and solve the m-
travelling salesman problem with a min-max objective. This problem consists in
planning the routes of m salesmen that start at the depot D, visit n − 1 cities
exactly once, and return to the depot. We want to minimize the longest route.
While there exist several global constraints that can be used to encode this prob-
lem, few include an optimization criterion, and none minimize the length of the
longest cycle. With the new global constraint WeightedCircuitsLmax, one
can easily model the m-travelling salesman problem and compute tight bounds
on the objective function.

The filtering algorithm we propose uses two relaxations both inspired by the
1-tree relaxation [2] used for the WeightedCircuit constraint. We name these
relaxations the 1-forest relaxation and the cluster relaxation. For each relaxation,
we develop a filtering algorithm that takes into account the minimization of the

longest cycle. We compare a model that uses this new constraint against a model
that does not use it and we show its efficiency.

Section 2 describes the problem and the data structures used to
design new filtering algorithms. Section 3 presents the new constraint
WeightedCircuitsLmax. Section 4 and 5 each present a relaxation and a
filtering algorithm. Section 6 explains how to detect situations where the con-
straint is consistent and filtering algorithms do not need to be executed. Finally,
Section 7 presents the experimental results.

.

2 Background

We present the m-travelling salesman problem. We follow with the presentation
of data structures, graph theory, and algorithms that we later use as tools to
design our filtering algorithms. We also present global constraints useful to model
the travelling salesman problem and its variants.

2.1 M-TSP

The m-travelling salesmen problem, denoted m-TPS, is a well-known general-
ization of the travelling salesman problem (TSP) [3]. The problem’s input is a
graph G = (V,E, d) where V is a set of vertices (or cities), E a set of edges, and
d(i, j) = d(j, i) is a symmetric function that returns the distance between the
vertices i and j. The city n − 1 is called the depot D = n − 1. The goal is to
find m disjoint routes for the m salesmen leaving and returning to the depot. All
cities have to be visited exactly once by only one salesman. The objective is to
minimize the total distance. The min-max m-TSP [4,5,6,7] is the same problem
but the objective is to minimize the longest route. Lz is the sum of the distance
travelled by the zth salesman and Lmax the maximum of the Lz. Minimizing the
longest circuit is often sufficient to balance the workload between each salesman.

There are different ways to solve a m-TSP exactly. Exact methods based
on branch and bound [8,9] and integer programming are often used [10]. One
can also reduce the m-TSP to a TSP problem with one salesman and use exact
methods for this problem [11,12]. There are many heuristics that have been
developed to efficiently obtain good solutions for the m-TSP problem, without
providing guaranties about the optimality of the solution. We recommend a
survey by Bektas [13] for an overview of these techniques.

2.2 The constraints Circuit and Cycles

Laurière [14] introduces the Circuit([X1, . . . , Xn]) constraint. This constraint
is satisfied if the directed graph composed of the vertices V = {1, . . . , n} and
the arcs E = {(i,Xi) | i ∈ V } contains exactly one cycle. The variable Xi is the
node that follows i on the cycle. This constraint models the Hamiltonian cycle
problem. Let G = 〈V,E〉 be an undirected graph. For every node i, one defines

a variable Xi with a domain containing the nodes adjacent to i. The constraint
Circuit([X1, . . . , Xn]) is satisfiable if and only if G contains a cycle visiting each
node exactly once, i.e. a Hamiltonian cycle. Therefore, it is NP-Hard to perform
a complete filtering on this constraint. However, many algorithms [15,16,17] per-
form a partial filtering in polynomial time.

Beldiceanu and Contejean [18] generalize the Circuit constraint into
the Cycles([N1, . . . , Nn],m) constraint to impose exactly m cycles rather
than one. The cycles must be disjoint, the salesmen do not leave
from the same depot. They generalize Cycles further by proposing
Cycles([X1, . . . , Xn],m, [W1, . . . ,Wn],min,max) whereWi is a weight assigned
to node i, not to an edge. The variables min and max are weights of the smallest
and largest cycles. Further generalization can force nodes to belong to different
cycles and control the length of individual cycles. These constraints are primi-
larly introduced as powerful modelling tools.

Benchimol et al. [19] present several filtering algorithms for the
WeightedCircuit([X1, . . . , Xn], d, L) constraint. Focacci et al. [20,21] also
study this constraint that is satisfied when the constraint Circuit([X1, . . . , Xn])
is satisfied and when the total weight of the selected edges is no more than L,
i.e.

∑n
i=1 w(Xi, i) ≤ L. They use different relaxations and reduced-cost based

filtering algorithms to filter the constraint, including the 1-tree relaxation that
we describe in Section 2.6.

Without introducing a new constraint, Pesant et al. [22] show how to combine
constraint programming and heuristics to solve the travelling salesman problem
with and without time windows.

2.3 Disjoints Sets

The algorithms presented in the next sections use the disjoint sets data structure.
This data structure maintains a partition of the set {0, . . . , n−1} such that each
subset is labelled with one of its elements called the representative. The function
Find(i) returns the representative of the subset that contains i. The function
Union(i,j) unites the subsets whose representatives are i and j and returns the
representative of the united subset. Find(i) runs in Θ(α(n)) amortized time,
where α(n) is Ackermann’s inverse function. Union(i, j) executes in constant
time [23].

2.4 Minimum Spanning Tree

A weighted tree T = (V,E,w) is an undirected connected acyclic graph. Each
pair of vertices is connected by exactly one path. The weight of a tree w(T) =∑
e∈E w(e) is the sum of the weight of its edges. A spanning tree of a graph

G = 〈V,G〉 is a subset of edges from E that forms a tree covering all vertices
in V . A minimum spanning tree T (G) is a spanning tree of G whose weight
w(T (G)) is minimal [24].

Kruskal’s algorithm [25] finds such a tree in Θ(|E| log |V |) time. It starts with
an empty set of edges S. The algorithm goes through all edges in non-decreasing

order. An edge is added to S if it does not create a cycle among the selected
edges in S. The disjoint sets are used to verify this condition. The algorithm
maintains an invariant where the nodes of each tree form disjoint sets. The
nodes that belong to the same sets are connected by a path of edges selected
by Kruskal’s algorithm. To test whether the addition of an edge (i, j) creates
a cycle, the algorithm checks whether the nodes i and j belong to the same
disjoint set. If not, the edge is selected and the disjoint sets that contain i and
j are united.

Let T (G) be the minimum spanning tree of the graph G = 〈V,E〉. Let Te(G)
be the minimum spanning tree of G for which the presence of the edge e is
imposed. The reduced cost of the edge e, denoted w̃(e), is the cost of using e
in the spanning tree : w̃(e) = w(Te(G)) − w(T (G)). The reduced cost w̃(e) of
an edge e = (i, j) ∈ E can be computed by finding the edge s with the largest
weight lying on the unique path between nodes i and j in T (G). We obtain
w̃(e) = w(e)− w(s) [26].

A spanning forest of a graph G = 〈V,E〉 is a collection of trees whose edges
belong to E and whose nodes span V . The weight of a forest is the sum of the
weights of its trees. A minimum spanning forest ofm trees is a spanning forest of
m trees whose weight is minimum. Kruskal’s algorithm can be adapted to find
a spanning forest. One simply needs to prematurely stop the algorithm after
finding m trees, i.e. after |V | −m unions.

2.5 Cartesian Tree

The Path Maximum Query problem is defined as follows: Given a weighted tree
T = (V,E,w) and two nodes u, v ∈ V , find the edge with the largest weight that
lies on the unique path connecting u to v in T . This problem can be solved with
a simple traversal of the tree in O(|E|) time. The offline version of the problem
is defined as follows. Given a weighted tree T = 〈V,E,w〉 and a set of queries
Q = {(u1, v1), . . . , (u|Q|, v|Q|)}, find for each query(ui, vi) ∈ Q the edge with
the largest weight that lies on the unique path connecting ui to vi in T . This
problem can be solved in O(|E|+ |Q|) time using a Cartesian tree as we explain
below.

A Cartesian tree TC of a tree T = 〈V,E,w〉 is a rooted binary, and possi-
bly unbalanced, tree with |V | leaves and |E| inner nodes. It can be recursively
constructed following Demaine et al. [27]. The Cartesian tree of a tree contain-
ing a single node and no edge (|V | = 1 and |E| = 0) is a node correspond-
ing to the unique node in V . If the tree T has more than one node, the root
of its Cartesian tree corresponds to the edge with the largest weight denoted
emax = argmaxe∈E w(e). The left and right children correspond to the Carte-
sian trees of each of the two trees in E \ {emax}. Finding the largest edge on a
path between ui and vi in T is equivalent to finding the lowest common ances-
tor of u and v in the Cartesian tree TC . The Cartesian tree can be created in
O(|V |) time after sorting the edges in preprocessing [27]. Tarjan’s off-line lowest
common ancestor algorithm [23] takes as input the Cartesian tree TC and the
queries Q and returns the lowest common ancestor of each query in Q, i.e. the

edge with largest weight lying on the path from ui to vi in T for each i. When
implemented with the disjoint set data structure by Gabow and Tarjan [28], the
algorithm has a complexity of O(|V |+ |Q|).

2.6 1-Tree relaxation

Held and Karp [2] introduce the 1-tree relaxation to solve the travelling sales-
man problem that Benchimol et al. [19] use to filter the WeightedCircuit con-
straint. The relaxation partitions the edges E into two disjoint subsets: the subset
of edges connected to the depot D, denoted ED= {(i, j) ∈ E | i = D ∨ j = D},
and the other edges denoted EO = E \ED. A solution to the travelling salesman
problem is a cycle and therefore has two edges in ED and the remaining edges in
EO form a simple path. In order to obtain a lower bound on the weight of this cy-
cle, Held and Karp [2] select the two edges in ED that have the smallest weights
and compute the minimum spanning tree of the graph G′ = 〈V \ {D}, EO〉. The
weight of the two selected edges in ED plus the weight of the minimum spanning
tree gives a lower bound on the distance travelled by the salesman. This relax-
ation is valid since a simple path is a tree and therefore, the minimum spanning
tree’s weight is no more than the simple path’s weight.

3 Introducing WeightedCircuitsLmax

We introduce the constraint WeightedCircuitsLmax that encodes the m cir-
cuits of the salesman that start from the depot D, visit all cities once, and return
to the depot. All circuits have a length bounded by Lmax.

WeightedCircuitsLmax([S0, ..., Sm−1],

[N0, ..., Nn−2], d[0, ..., n− 1][0, ..., n− 1], Lmax)
(1)

The variable Sk is the first city visited by the salesman k. The variable Ni
is the next city visited after city i. The symmetric matrix parameter d provides
the distances between all pairs of cities. The variable Lmax is an upper bound on
the lengths of all circuits. The constraint WeightedCircuitsLmax is designed
to be compatible with the Circuit constraint in order to take advantage of
its filtering algorithms. For that reason, the value associated to the depot is
duplicated m times. Each salesman returns to a different copy of the depot. The
integers from 0 to n− 2 represent the n− 1 cities and the integers from n− 1 to
n+m−2 represent the depot. If Ni ≤ n−2, the salesman visit city Ni after city i.
If n−1 ≤ Ni, the salesman returns to the depot after visiting city i. Consequently,
we have dom(Sk) ⊆ {0, . . . , n− 2} and dom(Ni) ⊆ {0, . . . , n+m− 2}.

While using the constraint WeightedCircuitsLmax one can post the con-
straint Circuit([N0, ..., Nn−2, S0, ..., Sm−1]) to complement the filtering of the
WeightedCircuitsLmax constraint. The filtering algorithms we present in
Sections 4 and 5 for the WeightedCircuitsLmax constraint are based on the
cost Lmax. On the other hand, the filtering algorithms of Circuit constraints are
based on the structure of the graph. The filtering algorithms are complementary.

Circuit is a special case of WeightedCircuitsLmax where m = 1 and
Lmax =∞. Enforcing domain consistency on circuit is NP-Hard [14]. Therefore,
enforcing domain consistency on WeightedCircuitsLmax is NP-Hard.

4 1-forest relaxation

We now describe a relaxation of the WeightedCircuitsLmax constraint. We
introduce two relaxations to the WeightedCircuitsLmax constraint. These
relaxations are used to compute a bound on the length of the longest cycle
and to filter the starting variables Si and the next variables Ni. As seen in the
previous section, it is possible to use the WeightedCircuitsLmax constraint
in conjunction with the Circuit constraint. The filtering algorithm that we
present is added to the filtering that is already done by the Circuit constraint.

4.1 Relaxation

The domains of the variables Si and Ni encode the following graph that we
denote G. Let the vertices be V = {0, . . . , n−1} where the depot is the node D =
n− 1. Let the edges E = ED ∪EO be partitioned into two sets. The set of edges
adjacent to the depot ED = {(D, i) | max(dom(Ni)) ≥ n− 1} ∪

⋃m−1
k=0 dom(Sk)

and the edges that are not adjacent to the depot EO = {(i, j) | i < j ∧ (i ∈
dom(Nj)∨j ∈ dom(Ni))}. The weight of an edge is given by the distance matrix
w(i, j) = d[i][j].

We generalize the 1-tree relaxation to handle multiple cycles passing by a
unique depot D. We call this generalization the 1-forest. Rather than choosing
2 edges in ED, we choose the m shortest edges a0, . . . , am−1 ∈ ED. We do
not choose the 2m shortest edges because there could be a salesman that goes
back and forth to a node v using twice the edge ev,D. Choosing 2m different
edges is therefore not a valid lower bound. Rather than computing the minimum
spanning tree with the edges in EO, we compute the minimum spanning forest
of m trees T0, . . . , Tm−1 using the edges in EO. Then, Lmax has to be greater
than or equal to the average cost of the trees. The lower bound on Lmax is given
by c([a0, . . . , am−1], [T0, ..., Tm−1]).

c([a0, . . . , am−1], [T0, ..., Tm−1]) =
1

m

(
2

m−1∑
i=0

w(ai) +

m−1∑
i=0

w(Ti)

)
(2)

We show the validity of this relaxation.

Theorem 1. c([a0, . . . , am−1], [T0, ..., Tm−1]) is a lower bound on Lmax for the
constraint WeightedCircuitsLmax([S0, ..., Sm−1], [N1, . . . , Nn−1], d[0, . . . , n−
1][0, . . . , n− 1], Lmax).

Proof. Consider a solution to the constraint where the length of the longest
circuit is minimized. Let ESD ⊆ ED be the edges of the circuits connected to the
depot and let ESO ⊆ EO be the other edges.

There are 2 edges by circuit going or returning to the depot (with the possi-
bility of duplicates for salesmen visiting a single city). Therefore, there are 2m
edges in ESD, counting duplicates. A lower bound for the cost of the edges in ESD
is twice the cost of the m shortest edges in ED.

The edges in ESO form a forest of m trees. Hence, a lower bound of the cost
of the edges in ESO is the cost of a minimum forest of m trees Ti.

c([a0, . . . , am−1], [T0, ..., Tm−1]) =
1

m

(
2

m−1∑
i=0

w(ai) +

m−1∑
i=0

w(Ti)

)

≤ 1

m

 ∑
eD,i∈ESD

w(eD,i) +
∑

ei,j∈ESO

w(ei,j)


Since the average cost per salesman is smaller than or equal to the maximum
cost, we obtain: c([a0, . . . , am−1], [T0, ..., Tm−1]) ≤ Lmax. ut

The algorithm to compute c([a0, . . . , am−1], [T0, ..., Tm−1]) works as follows.
First, we pick the m smallest edges in ED. Then, we compute a forest of m trees
with Kruskal’s algorithm in O(|E| log |V |) time.

4.2 Filtering the edges in ED

We want to filter the edges e = (D, i) in ED that are not selected by the re-
laxation. We want to know whether c([a0, . . . , am−2, e], [T0, ..., Tm−1]) is greater
than Lmax. If it is the case, then e cannot be in the solution because the cost of
using this edge is too large. The filtering rule (3) removes i+m from the domain
of all starting time variable Sk and removes all values associated to the depot
from the domain of Ni.

c([a0, . . . , am−1,],[T0, ..., Tm−1]) +
1

m
(w(e)− w(am−1)) > max(dom(Lmax))

=⇒ Sk 6= i ∧Ni < n− 1 ∀ k ∈ {0, . . . ,m− 1}
(3)

4.3 Filtering the edges in EO

We want to decide whether there exists a support for the edge e = (i, j) in EO.
In other words, we want to find a forest of m trees T ′0, . . . , T ′m−1 that contains e
such that c([a0, . . . , am−1,], [T ′0, ..., T ′m−1]) is no greater than max(dom(Lmax)).
If e belongs to the trees T0, . . . , Tm−1 computed in Section 4.1, e has as support
and should not be filtered. Otherwise, there are two possible scenarios: the nodes
i and j belong to the same tree in T0, . . . , Tm−1 or they do not.

Same tree Tβ Given the edge e = (i, j), if nodes i and j belong to a tree Tβ ,
the cost of adding the edge e is equal to its reduced cost w̃(e) (see Section 2.4),
i.e. the weight w(e) minus the largest weight of an edge lying on the unique
path in Tβ between i and j. If c([a0, . . . , am−1,], [T0, ..., Tm−1]) + w̃(e) is greater
than max(dom(Lmax)), then edge e must be filtered out from the graph, i.e. i is
removed from the domain of Nj and j is removed from the domain of Ni.

To efficiently compute the reduced costs, we construct a Cartesian tree (see
Section 2.5) for each tree in T0, . . . , Tm−1 in O(|V |) time. For each edge e = (i, j)
such that i and j belong to the same tree, we create a query to find the edge with
the largest weight between i and j in the tree. Tarjan’s off-line lowest common
ancestor algorithm [23] answers, in batches, all queries in time O(|V |+Q) where
Q is the number of queries. For each edge, we compute the reduced cost and
check whether filtering is needed.

Different trees Tε, Tδ If the nodes i and j of the edge e = (i, j) do not belong
to the same tree, adding the edge e to the trees T0, . . . , Tm−1 connects two trees
together. In order, to maintain the number of trees to m, one needs to remove an
edge from any tree. To minimize the weight of the trees, the edge e′ we remove
must be the one with the largest weight, i.e. the last edge selected by Kruskal’s
algorithm. We obtain the reduced cost w̃(e) = w(e)− w(e′). Using this reduced
cost, we filter the variables Ni as we did when the nodes i and j belong to the
same tree.

5 Clusters relaxation

The 1-forest relaxation is fast to compute, but its bound is not always tight.
Counting twice the m shortest edges is less effective than counting the 2m edges
that could be in the circuits. Moreover, for m = 2 salesmen, if the solution has
a long and a short circuit, the bound lies between the length of both circuits.
In that case, the lower bound for the longest circuit is not tight. We refine the
1-forest relaxation to better capture the structure of the graph and to obtain a
tight bound on the longest cycle when all variables are assigned.

5.1 Relaxation

We consider the m trees {T0, . . . , Tm−1} as computed in the 1-forest relaxation.
Let C1, . . . , Cr be a partition of the trees into clusters such that the trees that
belong to the same cluster are connected with each other with edges in EO and
are not connected to the trees from the other clusters. Figure 1 shows an example
of three trees partitioned into two clusters. Note that the number of clusters r is
between 1 and m. In a solution, cities visited by a salesman necessarily belong
to the same cluster. We compute a lower bound on Lmax for each cluster and
keep the tightest bound.

We choose two edges eCα1 and eCα2 in ED for each cluster Cα. If the cluster
contains a single node v, we choose twice the edge ev,D, i.e. eCα1 = eCα2 = ev,D. If

D

1

2

3

4

5 6

7

8

1

2

2

4

3

4

2
7

15
6

3

1

8

5

6

9

Fig. 1: Three trees grouped into two clusters. Edges that belong to a tree are in
bold.

the cluster contains more than one node, we choose the two shortest edges that
connect the depot to a node in the cluster. The weight of a cluster Cα, denoted
w(Cα), is the weight of the two chosen edges eCα1 and eCα2 and the weight of the
trees in the cluster.

w(Cα) =
∑

Tβ∈Cα

w(Tβ) + w(eCα1) + w(eCα2)

The nodes that belong to a cluster can be visited by a maximum of λ = m−r+1
salesmen. In such a case, the average length of a circuit is given by the weight
of the cluster divided by λ and it constitutes a valid lower bound of Lmax.

µ({C1, . . . , Cr}) =
1

λ
max
Cα

w(Cα) (4)

Theorem 2. µ({C1, . . . , Cr}) is a lower bound for Lmax.

Proof. Consider a solution to the constraint where the length of the longest
circuit is minimized. Let ESD ⊆ ED be the edges of the circuits connected to the
depot and let ESO ⊆ EO be the other edges.

µ({C1, . . . , Cr}) =
1

λ
max
Cα

 ∑
Tβ∈Cα

w(Tβ) + w(eCα1) + w(eCα2)

 (5)

≤ max
Cα

1

λ

 ∑
ei,j∈ESO
i∈Cα

w(ei,j) +
∑

ei,D∈ESD
i∈Cα

w(ei,D)

 (6)

Algorithm 1: ComputeClusters(G,m)
Data: G = (V,E), m, the number of salesmen
Result: num_nodes_Eo, the number of nodes by clusters, max_edge_Eo, the

longest edge of each cluster, weight_Eothe weight of each cluster
begin

trees← DisjointsSets(|V |)
clusters← DisjointsSets(|V |)
num_clusters← |V |
for i = 0..|V | − 1 do

weight_Eo[i]← 0
max_edge_Eo[i]← 0
num_nodes_Eo[i]← 1

for e = (i, j) ∈ E in non-decreasing order of weight do
vi ← clusters.Find(i)
vj ← clusters.Find(j)
if vi 6= vj then

if num_clusters < |V | −m then
vf ← trees.Union(vi, vj)

vf ← clusters.Union(v1, v2)
num_clusters← num_clusters− 1

1 weight_Eo[vf]← weight_Eo[v1] + weight_Eo[v2]
2 max_edge_Eo[vf]← w(e)

num_nodes_Eo[vf]← num_nodes_Eo[v1] + num_nodes_Eo[v2]

return weight_Eo,max_edge_Eo, num_nodes_Eo

Let c denote the longest circuit. Since the longest circuit is longer than or equal
to the average length circuit, we obtain:

≤
∑

ei,j∈ESO
i∈c

w(ei,j) +
∑

ei,D∈ESD
i∈c

w(ei,D) (7)

≤ Lmax (8)

ut

To compute the lower bound µ({C1, . . . , Cr}), we need to compute the clus-
ters and select edges from EO. To do so, we adapt Kruskal’s algorithm as shown
in Algorithm 1. Kruskal already uses a disjoint set data structure where the
nodes of a tree are grouped into a set. We add another disjoint set data struc-
ture where the nodes of a cluster are grouped in a set. We process the edges in
non-decreasing order of weight. When processing the edge (i, j), if i and j belong
to two distinct clusters, we unite these clusters to form only one. The algorithm
also merges the tree that contains i with the tree that contains j, but only if
there are more than |V |−m trees in the current forest. While we create each set,
we keep three vectors that keep track of: the longest edge of each cluster, the
weight of each cluster, and the number of nodes in each cluster. As for Kruskal’s

Algorithm 2: ComputeEdgesFromED(ED,num_nodes_Eo)
Data: ED, num_nodes_Eo
Result: max_weight_Ed, weight_Ed, num_edges_Ed
for i = 1..n− 1 do

max_weight_Ed[i]← 0
weight_Ed[i]← 0
num_edges_Ed[i]← 0

for (i,D) ∈ ED in non-decreasing order of weigth do
vi ← clusters.Find(i)
if num_edges_Ed[vi] < 2 then

weight_Ed[vi]← weight_Ed[vi] + w(e)
num_edges_Ed[vi]← num_edges_Ed[vi] + 1
max_weight_Ed[vi]← w(e)

for i = 0..n− 1 do
rep←clusters.Find(i)
if rep = i then

if num_edges_Ed[i] = 1 ∧ num_nodes_Eo[i] > 1 then
weight_Ed[i]← 2× weight_Ed[i]

else if num_edges_Ed[i] < 2 then Fail
return max_weight_Ed, weight_Ed

algorithm, the running time complexity is dominated by sorting the edges by
weight which is done in O(|E| log |V |).

Using the clusters computed by Algorithm 1, Algorithm 2 selects the edges
from ED by processing the edges in non-decreasing order of weight. When pro-
cessing the edge (i,D), the algorithm finds the cluster that contains the node i.
It selects the edge (i,D) only if fewer than two edges were selected for the cluster
that contains i. Lines 1 and 2 update the sum of the weights of the selected edges
for that cluster and the largest edge selected for the cluster. This information
will be used later in the filtering algorithm. The second for loop checks whether
there are clusters linked to the depot with a single edge. If it is the case and
the cluster contains only one node, we make that edge count for double. If the
cluster has more than one node, the constraint is unsatisfiable.

To compute a lower bound on Lmax, we go through each cluster C. In (4), the
summation is given by the entry of the vector weight_Eo corresponding to the
cluster Cα as computed by Algorithm 1. The weight of the edges w(eCα1)+w(eCα2)
is given by the entry in the vector weight_Ed corresponding to the cluster Cα.

Overall, the cluster relaxation complements the 1-forest relaxation as follows.
At the top of the search tree, when variable domains contain many values, this
cluster relaxation is not as tight as the 1-forest relaxation. There are very few
clusters and the cluster relaxation only selects two edges per cluster in the set
ED while the 1-forest relaxation selects m edges no matter how many clusters
there are. However, as the search progresses down the search tree, there are
fewer values in the domains and more clusters. Computing the maximum cycle
per cluster becomes more advantageous than computing the average tree of the

1-forest relaxation. The cluster relaxation provides an exact bound when all
variables are instantiated, which is not the case for the 1-forest relaxation.

5.2 Filtering the edges in ED

We filter the edges in ED based on the cluster relaxation as follows. Let Cα(i)
be the cluster that contains the node i. For each edge e = (D, i) ∈ ED, we check
whether 1

λ

(
w(Cα)− e

Cα(i)

2 + w(e)
)
≤ Lmax. In other words, we check whether

substituting the edge eCα(i)

2 by e induces a cost that is still below the desired
threshold. If not, we remove i from the domain of Sk for all k ∈ {0, . . . ,m− 1}
and we remove D from the domain of Ni.

5.3 Filtering the edges in EO

As for the 1-forest relaxation, we filter edges in EO differently depending they
connect two nodes of the same tree or from different trees.

Same tree: Consider an edge e = (i, j) such that i and j belong to the same tree
and the same cluster that we denote Cα(i). We compute the reduced cost w̃(e),
using a Cartesian tree, exactly as we do for the 1-forest relaxation in Section 4.3.
If the inequality w(Cα(i)) + w̃(e) ≤ max(dom(Lmax)) does not hold, we remove
i from the domain of Nj and remove j from the domain of Ni.

Different trees: Consider an edge e = (i, j) such that i and j do not belong
to the same tree. However, by definition of a cluster, i and j belong to the same
cluster that we denote Cα(i). Let e′ be the edge with the largest weight in a tree
of the cluster Cα(i), i.e. the last edge selected by Algorithm 1. We can substitute
e′ by e without changing the number of trees. The reduced cost of edge e is
w̃(e) = w(e)− w(e′). If w(Cα(i)) + w̃(e) > max(dom(Lmax)), we remove i from
the domain of Nj and remove j from the domain of Ni.

6 Special Filtering Cases

There exist conditions when the filtering algorithm, whether it is based on the 1-
forest or the cluster relaxation, does not do any pruning. Some of these conditions
are easy to detect and can prevent useless executions of the filtering algorithms.

We consider two consecutive executions of the filtering algorithm. The second
execution is either triggered by the instantiation of a variable or by constraint
propagation. We check which values are removed from the domains between
both executions. The removal of these values can trigger further filtering in two
situations:

1. The upper bound of dom(Lmax) is filtered;
2. An edge selected by the 1-forest or the cluster relaxation is filtered;

minLmax

s.t.
Sv ∈ {0, . . . , n− 2} ∀ v ∈ {0, . . . ,m− 1}
Ni ∈ {0, . . . , n+m− 1} \ {i} ∀i ∈ {1, . . . , n}
circuit(N0, . . . , Nn−1, S0, . . . , Sm−1)

D[i] = 0 ∀ i ∈ {n− 1, . . . , n+m− 2}
D[i] = d′[n− 1][Si−m−n+1] +D[Si−m−n+1] ∀ i ∈ {n+m− 1, . . . , n+ 2m− 2}
D[i] = d′[i][Ni] +D[Ni] ∀ i ∈ {0, . . . , n− 1}
Lmax ≥ D[i] ∀ i ∈ {n+m− 1, . . . , n+ 2m− 2}

Fig. 2: Model 1 for the m-TSP.

In situation 1, the edges selected by the 1-forest and cluster relaxations re-
main unchanged. However, it is possible that the reduced cost of some edges are
too large for the new bound on Lmax and that these edges need to be filtered.
In such a case, we do not need to recompute the relaxation nor the Cartesian
trees, but we need to check whether the reduced cost of each edge is too high.

In situation 2, the trees and the clusters must be recomputed and the filtering
algorithm needs to be executed entirely. If neither situation 1 nor 2 occurs, for
instance if only an edge in EO that does not belong to a tree is filtered, no
filtering needs to be done and the algorithm does not need to be executed.

7 Experiments

We solve the m-TSP problem as defined in Section 2.1. We compare two dif-
ferent models in our experimentation. The model 1 is presented in Figure 2.
The variable Sv indicates the starting address for the salesman v. The variable
Nv indicates the address visited after address v. The integers between 0 and
n− 2 represent the addresses while the integers from n− 1 to n+m− 2 repre-
sent the arrival at the depot. The variable D[v] encodes the remaining distance
that a salesman needs to travel to reach the depot from address v. The con-
straint element connects the distance variables D[v] with the next variables
Nv. The model 2 is based on model 1 that we augment with the constraint
WeightedCircuitsLmax(S0, . . . , Sm−1, N1, . . . , Nn, d

′, Lmax). In the model,
we make sure that the distance matrix can report the distances with the dupli-
cates of the depot. We define the matrix d′[i][j] = d[min(i, n− 1)][min(j, n− 1)].

Both models use the circuit constraint to exploit the graph’s structure
and to achieve a strong strucural filtering. In addition, Model 2 uses the
WeightedCircuitsLmax constraint to perform an optimality filtering that is
based on the bound of the objective function. Our experiments aim at showing
the advantage the new algorithms offer by performing optimality filtering.

We use instances from them-TSP benchmark developed by Necula et al. [29].
We also generate instances of {10, 20, 50} addresses in Quebec City with uni-

formly distributed longitude in [-71.20,-71.51] and latitude in [46.74, 46.95] with
the shortest driving time as the distance between the addresses. Experiments
are run on a MacBook Pro with a 2.7 GHz Intel Core i5 processor and 8 Gb of
memory with the solver Choco 4.0.6 compiled with Java 8. We select the variable
Ni and assign it to value j such that the distance d(i, j) is minimal. However,
other heuristics could have been used [30]. We report the best solution found
after a 10-minute timeout.

7.1 Result and discussion

The first experiment aims to determine which relaxation should be used: the
1-forest relaxation, the cluster relaxation, or both. We solved random instances
with 10 addresses with 1, 2, and 3 salesmen using model 2. Figure 3a shows that
the cluster relaxation is better than the 1-forest relaxation. However, all instances
except one were solved faster when combining both relaxations. For this reason,
for model 2, we combine both relaxations for the rest of the experiments.

●●●●●●●●●●●●●●●●●●●●0

50

100

150

200

250

0 100 200 300
One relaxation

B
ot

h
re

la
xa

tio
ns

Relaxation
●●

●●

1−Forest
Clusters

Salesmen
●● 1

2
3

Time (s) to prove optimality (10 addresses)

(a)

●

●

●

●

●

●

●

●

●

●

4000

8000

12000

16000

6000 9000 12000 15000 18000
Model 1

M
od

el
 2

Salesmen
● 1

2
3
5
7

Lmax with 20 addresses

(b)

●

●

●

●

●

●

●

●●

●

10000

15000

20000

25000

30000

20000 40000 60000
Model 1

M
od

el
 2

Salesmen
● 1

2
3
5
7

Lmax with 50 addresses

(c)

0

10

20

30

40

50

0 100 200 300 400 500
Model 1

M
od

el
 2

Salesmen
5
7

Addresses
●

●

20
50

Time (s) to find the best solution (20−50 addresses)

(d)

● ●●●● ●●0

50

100

150

0 200 400 600
Model 1

M
od

el
 2 Salesmen

● 1
2
3

Time (s) to prove optimality (10 addresses)

(e)

●●●0

40

80

120

0 200 400 600
Model 1

M
od

el
 2

Salesmen
● 1

2
3
5
7

Time (s) to find the best solution (10 addresses)

(f)

Fig. 3: Comparison of model 1 (without the WeightedCircuitsLmax) and
model 2 (with WeightedCircuitsLmax) for instances with random addresses
in Quebec City.

We compare model 1 against model 2. Figure 3b and Figure 3c present the
objective function obtained by both models after 10 minutes with instances of 20

and 50 random addresses. Since we minimize, a point under the identity function
indicates that model 2 finds a better solution. No solutions were proved optimal.
However, we clearly see that model 2 finds better solutions and the gap increases
as the number of salemen increase. As shown on Figure 3d, for instances where
solutions of equivalent quality are returned by both models, model 2 finds the
solution faster in most of the cases.

Some instances with 10 addresses are solved to optimality. Figure 3e reports
the solving times for these instances and model 2 is clearly faster. For unsolved
instances, both models return the same solutions (without proving their opti-
mality). Figure 3f shows that model 2 returns the solution instantaneously.

Table 1 compares models 1 and 2 using a standard benchmark from [29].
Model 2 either finds a better solution or finds an equivalent solution faster for
all instances.

Model 1 Model 2
Instances n m Lmax Time last solution Lmax Time last solution

Eil51 51 1 2307 6.0 2307 1.5
51 2 1183 13.9 1183 1.4
51 3 1906 0.5 1183 0.1
51 5 638 0.1 631 211.2
51 7 486 591.2 457 130

Berlin52 52 1 41534 3.1 41276 175.3
52 2 32316 599.6 20979 164.4
52 3 14629 599.3 14457 40.6
52 5 14543 599.4 13986 42.5
52 7 9668 347.4 9668 0.5

Eil76 76 1 3459 497.1 3458 307.0
76 2 3284 1.8 3278 466.7
76 3 2989 561.4 2988 375.2
76 5 847 585.7 730 578.9
76 7 651 34.9 651 0.3

Rat99 99 1 12093 68.8 12084 213.9
99 2 11946 69.1 11937 343.4
99 3 11881 78.2 11872 298.6
99 5 11863 64.9 11854 372.9
99 7 11813 108.4 11804 325.9

Table 1: Result for TSPLIB instances

8 Conclusion

We presented a constraint that models the m-travelling salesmen problem. We
proposed two complementary filtering algorithms based on two relaxations. Ex-
periments show that these filtering algorithms improve the solving times and
the quality of the solutions. In future work, inspired from [19], we would like to
use additive bounding to reinforce the relaxations. We also want to consider the
number of salesman m as a variable instead of a parameter.

References

1. Beldiceanu, N., Carlsson, M., Rampon, J.: Global constraint catalog, 2nd edition
(revision a). Technical Report 03, SICS (2012)

2. Held, M., Karp, R.: The traveling-salesman problem and minimum spanning trees.
Operations Research 18(6) (1970) 1138–1162

3. Laporte, G., Nobert, Y.: A cutting planes algorithm for the m-salesmen problem.
Journal of the Operational Research Society (1980) 1017–1023

4. M.França, P., Gendreau, M., Laportt, G., Müller, F.M.: The m-traveling salesman
problem with minmax objective. Transportation Science 29(3) (1995) 267–275

5. Necula, R., Breaban, M., Raschip, M.: Tackling the bi-criteria facet of multiple
traveling salesman problem with ant colony systems. In: Tools with Artificial
Intelligence (ICTAI), 2015 IEEE 27th International Conference on, IEEE (2015)
873–880

6. Narasimha, K.V., Kivelevitch, E., Sharma, B., Kumar, M.: An ant colony optimiza-
tion technique for solving min–max multi-depot vehicle routing problem. Swarm
and Evolutionary Computation 13 (2013) 63–73

7. Somhom, S., Modares, A., Enkawa, T.: Competition-based neural network for
the multiple travelling salesmen problem with minmax objective. Computers &
Operations Research 26(4) (1999) 395–407

8. Ali, A.I., Kennington, J.L.: The asymmetric m-travelling salesmen problem: A
duality based branch-and-bound algorithm. Discrete Applied Mathematics 13(2-
3) (1986) 259–276

9. Gromicho, J., Paixão, J., Bronco, I.: Exact solution of multiple traveling salesman
problems. In: Combinatorial Optimization. Springer (1992) 291–292

10. Kara, I., Bektas, T.: Integer linear programming formulations of multiple salesman
problems and its variations. European Journal of Operational Research 174(3)
(2006) 1449–1458

11. Rao, M.R.: A note on the multiple traveling salesmen problem. Operations Re-
search 28(3-part-i) (1980) 628–632

12. Jonker, R., Volgenant, T.: An improved transformation of the symmetric multiple
traveling salesman problem. Operations Research 36(1) (1988) 163–167

13. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3) (2006) 209–219

14. Lauriere, J.L.: A language and a program for stating and solving combinatorial
problems. Artificial intelligence 10(1) (1978) 29–127

15. Caseau, Y., Laburthe, F.: Solving small tsps with constraints. In: Proceedings of
the 14th International Conference on Logic Programming (ICLP 1997). 316—-330

16. Kaya, L.G., Hooker, J.N.: A filter for the circuit constraint. In: In Proceedings of
the 12th International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2006). (2006) 706–710

17. Fages, J., Lorca, X.: Improving the asymmetric tsp by considering graph structure.
Technical Report 1206.3437, arxiv (2012)

18. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Mathematical
and computer Modelling 20(12) (1994) 97–123

19. Benchimol, P., Hoeve, W.J.V., Régin, J.C., L.-M. Rousseau, L.M., Rueher, M.:
Improved filtering for weighted circuit constraints. Constraints 17(3) (2012) 205–
233

20. Focacci, F., Lodi, A., Milano, M.: Embedding relaxations in global constraints for
solving tsp and tsptw. Annals of Mathematics and Artificial Intelligence 34(4)
(2002) 291–311

21. Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the tsptw. IN-
FORMS Journal on Computing 14(4) (2002) 403–417

22. Pesant, G., Gendreaul, M., Rousseau, J.M.: Genius-cp: A generic single-vehicle
routing algorithm. In: In Proceedings of the 3rd International Conference on Prin-
ciples and Practice of Constraint Programming (CP 1997). (1997) 420–434

23. Tarjan, R.E.: Applications of path compression on balanced trees. Journal of the
ACM (JACM) 26(4) (1979) 690–715

24. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.
Annals of the History of Computing 7(1) (1985) 43–57

25. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society 7(1) (1956)
48–50

26. Chin, F., Houck, D.: Algorithms for updating minimal spanning trees. Journal of
Computer and System Sciences 16(3) (1978) 333–344

27. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range min-
imum queries. In: International Colloquium on Automata, Languages, and Pro-
gramming, Springer (2009) 341–353

28. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. In: Proceedings of the 15th annual ACM symposium on Theory of
computing. (1983) 246–251

29. Necula, R., Breaban, M., Raschip, M.: Performance evaluation of ant colony sys-
tems for the single-depot multiple traveling salesman problem. In: International
Conference on Hybrid Artificial Intelligence Systems, Springer (2015) 257–268

30. Fages, J.G., Prud’Homme, C.: Making the first solution good! In: ICTAI 2017
29th IEEE International Conference on Tools with Artificial Intelligence. (2017)

