
Finding Synchronization Codes to Boost
Compression by Substring Enumeration

Dany Vohl, Claude-Guy Quimper, and Danny Dubé

Université Laval, Canada
Dany.Vohl.1@ulaval.ca

Claude-Guy.Quimper@ift.ulaval.ca

Danny.Dube@ift.ulaval.ca

Abstract. Synchronization codes are frequently used in numerical data
transmission and storage. Compression by Substring Enumeration (CSE)
is a new lossless compression scheme that has turned into a new and un-
usual application for synchronization codes. CSE is an inherently bit-
oriented technique. However, since the usual benchmark files are all
byte-oriented, CSE incurred a penalty due to a problem called phase
unawareness. Subsequent work showed that inserting a synchronization
code inside the data before compressing it improves the compression per-
formance. In this paper, we present two constraint models that compute
the shortest synchronization codes, i.e. those that add the fewest syn-
chronization bits to the original data. We find synchronization codes for
blocks of up to 64 bits.

1 Introduction

Synchronization codes are frequently used in numerical data transmission and
storage [1–6]. While they might not be as well known as error-correction and
error-detection codes, they still play a crucial role. Indeed, whenever the recep-
tion of data becomes ill-synchronized, data gets distorted. In such a case, even
error-correction codes are of no help since they might interpret some data sym-
bols as control symbols and vice-versa. In almost every application, keeping the
transmission and storage of data correctly synchronized is considered to be a
separate, lower-level task, which is handled by synchronization codes.

Recent work on data compression gives synchronization codes a new and
rather unusual purpose [7, 8]. These are used to boost the performance of a spe-
cific data compressor. A preprocessing step is added to the data compressor
which consists in inserting synchronization codes to the data. Since inserting a
synchronization code causes the data to expand, it seems at first glance that this
preprocessing is counter-productive. However, in this specific setup, the inser-
tion of the synchronization codes improves the performance of the subsequent
compression step, as measured (in an absolute sense) on the compressed data.1

1 That is, the size of the synchronized-and-compressed data is smaller than the size of
the directly compressed data, in an absolute sense. We insist on the term “absolute”

The data compression technique is called Compression by Substring Enumeration
(CSE) [9].

In order to be successful as compression boosters, the considered synchro-
nization codes must obey some properties. In particular, it is desirable for the
codes not to cause too big an expansion of the data. Indeed, the subsequent
compression phase has to compensate for all of this expansion. Also, the impor-
tant characteristics of the synchronization codes is their synchronization power;
i.e. how effectively they provide synchronization information. In the light of these
goals, this paper aims at designing strong synchronization codes that expand
data as little as possible.

The paper is structured as follows. Section 2 briefly surveys the synchroniza-
tion codes and formally defines the family of codes that we focus on. Section 3
presents the key features of CSE and gives some intuitive reasons why CSE has
the potential to be boosted by synchronization codes. Next, we present two con-
straint models that we use to compute a synchronization code. Section 4 presents
a model that is based on constraint programming. Section 5 presents a pseudo-
Boolean model. Section 6 discusses about ways to break symmetries among the
sets of codes that are considered in order to reduce the time spent by the solvers
in searching. The experiments described in Section 7 produced synchronization
codes for words of 2 to 8, 16, 32, and 64 bits. Our codes are proved optimal for
words of 2 to 8, 16 and 32 bits.

2 Synchronization Codes

2.1 Overview

There exists a wide variety of synchronization codes. Codes differ according to
the properties they feature and the principles they are based on. Naturally, their
effectiveness depends on the application at hand. We start by illustrating the
need for synchronization codes by considering two examples of applications.

Our first application is a serial communication link. In serial communication,
symbols (typically bits) are transmitted one after the other through a channel
from an emitter to a receiver. When the pace of transmission is controlled by a
clock, it might be the case that, in fact, the emitter and the receiver each have
their own separate clock. In such a context, it is likely that the clocks do not have
exactly the same frequencies. If the receiver’s clock is slower than the emitter’s
clock, then bits might go undetected from time to time by the receiver. On the
other hand, if the receiver’s clock is faster, then a single bit sent by the emitter
might get sampled twice by the receiver. Such communication errors are called
synchronization errors. Naturally, some form of synchronization mechanism has
to be provided in order to prevent these errors. In some contexts, the designer
of the communication device might have the luxury to join a control channel to
the data channel (e.g., on the motherboard of a computer). The control channel

here since making synchronized data more compressible, in a relative sense, is trivial
because one only needs to stuff the data with highly repetitive paddings.

transmits synchronization symbols while the data channel transmits the payload
symbols. In other contexts, no separate control channel is available and the
synchronization information must be inserted within the payload data.

Our second application is a hard disk. In a hard disk, the read/write (RW)
head hovers above one of the tracks of the spinning surface. The RW process of
the hard disk is subject to the same synchronization errors as the serial com-
munication link. For instance, serial-like synchronization errors are possible due
to the imprecision in the rotation speed of the disk or some other factor. But
the RW process also faces additional challenges. Indeed, the RW head has to
determine where a track starts; in particular, after it moves from one track to
another. Some sort of marker has to tell the RW head where the track starts (or,
at a finer level, where the individual sectors of the track start). Nowadays, the
magnetic bits are so densely packed on the tracks that it is unrealistic to rely on
a physical device to mark the beginning of the tracks. Instead, markers identify-
ing the start of the tracks (or sectors) have to be integrated among the magnetic
information. Since waiting for a unique “track beginning” marker would cause
a waste of time, we are likely to require the inscription of more frequent “sec-
tor beginning” markers. These enable quicker recovery of the synchronization
and also offer the opportunity to join a header that includes additional useful
information such as the sector IDs.

2.2 Characteristics of Synchronization Codes

Below is a list of considerations (either requirements or features) about syn-
chronization codes. But before we give the list, we introduce a few definitions
and a (not completely general) notation for synchronization codes that we use
throughout the paper.

A sequence A = a0a1 . . . a|A|−1, is an ordered list of characters taken from
an alphabet Σ. The length of a sequence A is the number of characters in the
sequence and is denoted |A|. The subsequence A[i..j] is formed by the characters
aiai+1 . . . aj−1aj . The rotation by one2 of a sequence is obtained by deleting the
first character of the sequence and appending it to the end of the sequence. For
instance, the rotation by one of the sequence abcd is bcda. We denote by A1

the rotation by one of a sequence A. A rotation by i of a sequence A, which we
denote by Ai, is obtained by applying i times a rotation by one.

We use the following notation to specify a synchronization code (at least,
to specify the family of synchronization codes we focus on). A synchronization
code is specified as a sequence taken from the alphabet Σ ∪ { }. The special
character acts as a wildcard. We say that two symbols match each other if
they are identical or if at least one of them is a wildcard. Sequence A matches
sequence B if |A| = |B| and if the character ai matches the character bi for
all 0 ≤ i < |A|. For instance, the sequence a b c matches the sequence

2 A complete name for the operation ought to be the rotation to the left by one.
However, this name would be unnecessarily long as we never consider rotations to
the right.

a b c c. Let C be a synchronization code and d be the number of wildcards
in C. We say that a clear-text sequence D of d symbols can be encoded using
a synchronization code C to obtain a synchronized sequence DC . One obtains
DC by substituting the first wildcard in C by d0, the second wildcard in C
by d1, and so on. When |D| is a multiple of d, the successive d-symbol blocks
of D are encoded using the same process. For instance, by encoding the original
sequence D = 0111 using the synchronization code C = 110, we obtain the
encoded sequence DC = 0111011110 (for the sake of clarity, the data symbols
are underlined).

Here is a list of considerations about synchronization codes.

– Existence of separate channels for control and data. In certain trans-
mission configurations, there are two channels available, one for data and
one for control, while in other configurations, there is only one channel in
which both data and control symbols are transmitted. When there is a single
channel and the distinction is possible, we refer to the symbols dedicated to
control as control symbols and to the symbols dedicated to the transmission
of pure data as data symbols or payload symbols.

– Transmission through time and/or space. Transmission through space
refers to transmission in the usual sense, i.e. from one point to the other.
Transmission through time refers to storage. That is, writing symbols on a
storage device can be seen as the emission of the symbols and later reading
the symbols from the device, as the reception of the symbols. For example,
in the case of a hard disk, the emitter and the receiver are the same RW
head, but at two different points in time.

– Presence of a feedback link. The synchronization mechanism may have
access to a feedback link. For example, the TCP/IP protocol uses feedback
to control the integrity of the transmission process [10]. On the other hand, a
hard disk RW head, when reading a track, might read something that it has
written long ago. In a sense, when it reads, the RW completes a transmission
through time. If it discovers a synchronization error, the RW head has no
means to ask itself to reemit the symbols.

– Size of the alphabet. The considered alphabet is either binary or larger.
– Strength of the synchronization. A synchronization code provides ei-

ther hard or soft synchronization. By hard synchronization, we mean that,
whenever an a priori ill-synchronized receiver obtains a sufficient number
of error-free symbols, it is guaranteed to be able to recover synchronization.
We also say reliable synchronization. Soft synchronization means that, in the
worst case, it might remain impossible to identify the position inside of the
data with certainty, even after receiving an arbitrary number of error-free
symbols.

– Blockiness of the synchronization. A synchronization code works either
in a blockwise or in a continuous fashion.

– Size of the blocks. If a synchronization code works in a blockwise fashion,
it handles either fixed-size or variable-size blocks.

– Variability of the control-symbol pattern. A synchronization code uses
either a fixed or a variable pattern of control symbols. For example, 011

inserts three constant bits. A variable pattern would use three functions to
determine the value of the three control bits, based on the data bits. (Note
that a variable pattern is not representable using our notation.) Strictly
speaking, a fixed pattern is a special case of a variable pattern.

– Position of the control bits. If it works in a blockwise fashion, a synchro-
nization code either groups the control symbols in a header or intersperses
them among the data symbols.

– Invariance of the payload symbols. If it works in a blockwise fashion,
a synchronization code either alters or preserves the payload symbols. A
typical case where a synchronization code alters the payload data is when
there is a header that contains a unique signature that marks the beginning
of the block. The synchronization mechanism modifies the payload data to
ensure that the signature does not appear by accident inside of the payload
part (see, e.g., [5]).

Let us give a succinct description of the synchronization codes that we con-
sider in this paper. Our codes are designed for a single control-and-data channel,
with no access to a feedback link, for the binary alphabet {0, 1}. They provide
hard synchronization in a blockwise fashion where the blocks have a fixed size
before and after the encoding process, they insert a fixed pattern of interspersed
control bits, and they keep the original payload bits unchanged.

2.3 The Considered Synchronization Codes

Let us first define the notion of phase. Given that we consider transmission in
a blockwise fashion, with fixed-size blocks, each bit that is transmitted has a
definite position relative to the beginning of the block in which it appears. This
is the phase of the bit. If one reads a stream of blocks starting at some unknown
position—not necessarily at the beginning of a block—one might be interested in
identifying the phase of the bits one reads. Indeed, identifying the phase allows
one to recover synchronization. Synchronization codes are intended to provide
the means to identify the phase. We number the phases starting at zero. The
maximum phase is the block size minus one. More generally, the phase of a
subsequence is the phase of its first bit. If A is a sequence made of one or more
blocks and the block size is s, then rotation Ai has phase i mod s, for any i.

A (d, k, n)-synchronization code C is a blockwise code that transforms a
clear-text block of d bits into a synchronized block of (d+ k) bits. C is denoted
by a sequence of symbols taken from the alphabet {0, 1, } where 0 and 1 de-
note control bits and denotes a data bit. A (d, k, n)-synchronization code is
characterized by its three parameters:

– d is the number of data bits;

– k is the number of control bits; and

– n is the reliability, i.e. the number of bits that need to be read, in the worst
case, to identify the phase of the sequence.

Table 1. An (8, 10, 9)-synchronization code published by [8].

0 0 0 1 1 0 1 0 1 1

0 0 0 1 1 0 1 0 1 1

0 0 0 1 1 0 1 0 1 1

0 0 0 1 1 0 1 0 1 1

0 0 0 1 1 0 1 0 1 1

0 0 1 1 0 1 0 1 1 0

0 1 1 0 1 0 1 1 0 0

1 1 0 1 0 1 1 0 0 0

1 0 1 0 1 1 0 0 0 1

0 1 0 1 1 0 0 0 1 1

0 1 0 1 1 0 0 0 1 1

0 1 0 1 1 0 0 0 1 1

0 1 0 1 1 0 0 0 1 1

0 1 0 1 1 0 0 0 1 1

1 0 1 1 0 0 0 1 1 0

0 1 1 0 0 0 1 1 0 1

1 1 0 0 0 1 1 0 1 0

1 0 0 0 1 1 0 1 0 1

Definition 1 (Synchronization code). C is a (d, k, n)-synchronization code
iff it is a sequence drawn from the alphabet {0, 1, }, it has length d+k, it contains
exactly d wildcards, and the subsequence Ci[0..n − 1] matches the subsequence
Cj [0..n− 1] only if i = j (mod d+ k).

Table 1 presents an example of an (8, 10, 9)-synchronization code and illus-
trates why it is 9-reliable. The code appears on the first row. The other rows are
mere rotations of the first row. The reader may verify that, whenever one selects
two distinct rows of the matrix, one is guaranteed to find a mismatch between
two control bits inside of the first 9 columns. Note that one cannot rely on the
data bits to cause bit mismatches because data bits are completely out of the
control of the synchronization code.

We prove a property of (d, k, n)-synchronization codes that we will reuse
later.

Lemma 1. In a (d, k, n)-synchronization code, the relation k ≤ 2n − d holds.

Proof. Suppose that one starts reading a stream of bits from an unknown posi-
tion in that stream. Since the stream is encoded with a n-reliable synchronization
code, it is sufficient to read the next n bits in the stream to find the phase in
a sure way. There are at most d + k phases and these n bits form one of the
2n possible sequence of n bits. Each of these sequences can be associated to at
most one phase and all phases are covered by at least one sequence which implies
d+ k ≤ 2n and thus k ≤ 2n − d. ut

Table 2. Number of occurrences of each substring of 01010000.

Length Substrings

0 8×ε
1 6×0 2×1
2 4×00 2×01 2×10
3 3×000 1×001 2×010 1×100 1×101
4 2×0000 1×0001 1×0010 1×0100 1×0101 1×1000 1×1010
5 1×00000 1×00001 1×00010 1×00101 1×01000 1×01010 1×10000 1×10100
6 1×000001 1×000010 1×000101 1×001010 1×010000 1×010100 1×100000 1×101000
7 1×0000010 1×0000101 1×0001010 1×0010100 1×0100000 1×0101000 1×1000001 1×1010000
8 1×00000101 1×00001010 1×00010100 1×00101000 1×01000001 1×01010000 1×10000010 1×10100000

3 Compression by Substring Enumeration

Dubé and Beaudoin [7] introduced a lossless data compression technique called
Compression by Substring Enumeration (CSE). CSE compresses by transmit-
ting to the decompressor in a half-explicit way the number Cw of occurrences
of every possible substring w of bits; i.e. for every w ∈ {0, 1}∗. Table 2 dis-
plays the information that needs to be transmitted, in a compressed form, for
the sequence 01010000. For example: entry ‘6×0’ indicates that C0 = 6; entry
‘1×01010000’ indicates that C01010000 = 1; entry ‘8×ε’ means that the data is
8-bit long; and the absence of entry for substring 11 means that C11 = 0. CSE
considers the data to be circular. Consequently, we have C00 = 4, not C00 = 3,
where the fourth occurrence is the one that wraps from the end to the beginning
of the data sequence. We say that CSE describes the numbers of occurrences
in a half-explicit way because the numbers are not transmitted explicitly in a
row-by-row fashion. Rather, relations between the numbers of occurrences of
different substrings are exploited.

As part of the processing of each substring w, there is the crucial step of
predicting the value of the bits that surround all of the occurrences of w. More
precisely, for each w that occurs in the original file, CSE predicts C0w0. This
prediction is not made from scratch: it is based on the already known values Cw,
C0w, C1w, Cw0, and Cw1. Moreover, it is sufficient for CSE to explicitly describe
C0w0 as the three remaining unknown values C0w1, C1w0, and C1w1 can be de-
duced from the known ones. Even if it is still in its earliest developments, CSE
is already fairly competitive with more mature, well known techniques such as
dictionary-based compression [11, 12], prediction by partial matching [13, 14], the
Burrows-Wheeler transform [15], and compression using anti-dictionaries [16].
The reader might wonder: what is the link between CSE and synchronization
codes?

CSE is an inherently bit-oriented technique. Yet, all the benchmark files (from
the Calgary Corpus [17]) that were used are byte-oriented. The conversion of the
files into bit sequences is trivial: each byte is simply viewed as a string of 8 bits.
However, this change in the point of view of the data is not just cosmetic. It

interferes with the prediction steps performed by CSE. Indeed, let us consider
what happens when CSE predicts the neighbors of substring 100. We illustrate
the problem using the following hypothetical excerpt from a benchmark file:

. . . |0 0 1 0 0 0 0 1 |0 1 0 1 0 1 1 1 |0 0 1 0 1 0 1 0 | . . .

in which the two occurrences of 100 have been underlined. The light-grey vertical
bars delimit the frontiers between the original bytes but CSE is completely
unaware of them. We say that the individual bits in some byte are located at
phases 0, . . . , 6, or 7, depending on their position relative to a byte frontier. For
instance, the first occurrence of 100 in the excerpt is at phase 2 while the second
one is at phase 7. Statistically, it is likely that the ‘100’ substrings located at a
certain phase have different neighboring bits than the ‘100’ substrings located
at another phase. Since CSE is unaware of the phase, it makes predictions about
the neighboring bits of all the occurrences of 100 at once, without regard to their
phases. It has been empirically observed that this phase unawareness incurs some
penalty for CSE.

Given this weakness of CSE, the authors had two choices: either adapt CSE
to effectively deal with bytes or use a trick to compensate for phase unawareness.
The second option appeared to be easier and it directly leads to the family of
synchronization codes that we focus on here [7, 8]. Despite the fact that synchro-
nizing original data expands it, the codes in this family are exactly the kind of
patterns that CSE is very proficient at detecting and exploiting. Consequently,
CSE does not suffer too much from “learning” the newly inserted synchroniza-
tion code. Moreover, the newly acquired artificial phase awareness leads to better
compression rates. We refer the reader to Section 7.

4 A Constraint Model

We present a model to compute a (d, k, n)-synchronization code. The model
is built around 2k variables that are the positions and values of the control
bits in the synchronization code C. Let Pi be the position of the ith control
bit and Vi be its corresponding value. Note that we will frequently have to
compute some value modulo (d+k), especially after adding two values together or
subtracting one value from another. From now on, we write x⊕y as a shorthand
for (x+ y) mod (d+ k) and x	 y as a shorthand for (x− y) mod (d+ k).

We have the following constraints.

Pi ∈ {0, 1, . . . , d+ k − 1} ∀ 0 ≤ i < k (1)

Vi ∈ {0, 1} ∀ 0 ≤ i < k (2)

To break symmetries, we assume that the control bits are enumerated in the
same order as they appear in the sequence.

Pi−1 < Pi ∀ 0 < i < k (3)

From Definition 1, we know that, for any i 6= j (mod d+ k), there exists at
least one control bit in Ci[1..n] that does not match a control bit in Cj [1..n].
Let the mismatching bit in Ci[1..n] be the ath control bit in the synchronization
code and the corresponding mismatching bit in Cj [1..n] be the bth control bit
in the synchronization code. Since the ath bit and the bth bit are aligned when
respectively shifted by i and j bits, we know that Pa − Pb = i 	 j. Moreover,
since the ath bit occurs in Ci[0..n− 1], its position in the code C is therefore in
{i, i⊕ 1, . . . , i⊕ (n− 1)}. Finally, these two bits exist for any i 6= j (mod d+ k).
We therefore create two variables for each 0 ≤ i < j < d+ k.

Ai,j ∈ {0, 1, . . . , k − 1} ∀ 0 ≤ i < j < d+ k

Bi,j ∈ {0, 1, . . . , k − 1} ∀ 0 ≤ i < j < d+ k

Let PA
i,j be the position of the ath bit in the synchronization code.

PA
i,j ∈ {i, i⊕ 1, . . . , i⊕ (n− 1)} ∀ 0 ≤ i < j < d+ k

Let PB
i,j be the position of the bth bit in the synchronization code.

PB
i,j ∈ {j, j ⊕ 1, . . . , j ⊕ (n− 1)} ∀ 0 ≤ i < j < d+ k

Similarly, we define V A
i,j and V B

i,j to be the values of these control bits.

V A
i,j ∈ {0, 1} ∀ 0 ≤ i < j < d+ k

V B
i,j ∈ {0, 1} ∀ 0 ≤ i < j < d+ k

These three constraints bind the variables Ai,j , Bi,j , P
A
i,j , and PB

i,j together. The
constraint Element([X0, . . . , Xn−1], Y, Z) ensures that XY = Z.

Element([P0, . . . , Pk−1], Ai,j , P
A
i,j) ∀ 0 ≤ i < j < d+ k

Element([P0, . . . , Pk−1], Bi,j , P
B
i,j) ∀ 0 ≤ i < j < d+ k

PB
i,j = PA

i,j ⊕ (j − i) ∀ 0 ≤ i < j < d+ k

Finally, since the ath bit does not match the bth bit, their characters must be
different.

Element([V0, . . . , Vk−1], Ai,j , V
A
i,j) ∀ 0 ≤ i < j < d+ k

Element([V0, . . . , Vk−1], Bi,j , V
B
i,j) ∀ 0 ≤ i < j < d+ k

V A
i,j 6= V B

i,j ∀ 0 ≤ i < j < d+ k

This model has a total of O(k2 + d2) variables and O(k2 + d2) constraints.
The cardinality of the domains is bounded by max(n, k) values.

We show in Section 6 how to further break symmetries.

5 A Pseudo-Boolean Model

The second model we present uses a different approach. Since the synchronization
code c0c1 . . . cd+k−1 has d + k characters taken from {0, 1, }, we declare two
binary variables for each of these characters. The binary variable Ki indicates
whether the ith character is a control bit. If the ith bit is a control bit, the
variable Vi indicates whether it is a zero or a one.

Ki ∈ {0, 1} ∀ 0 ≤ i < d+ k

Vi ∈ {0, 1} ∀ 0 ≤ i < d+ k

We fix the number of control bits to be k.

d+k−1∑
i=0

Ki = k

We declare a new binary variable Y g
i for 0 ≤ i < d + k and 1 ≤ g < d + k.

When this variable is equal to one, it implies that the bits ci and ci⊕g are
distinct control bits, i.e. Y g

i = 1⇒ Ki = Ki⊕g = 1 ∧ Vi 6= Vi⊕g. We encode this
implication with these constraints.

Y g
i ∈ {0, 1} ∀ 0 ≤ i, j < d+ k

Y g
i ≤ Ki ∀ 0 ≤ i, j < d+ k

Y g
i ≤ Ki⊕g ∀ 0 ≤ i, j < d+ k

(1− Y g
i) + Vi + Vi⊕g ≥ 1 ∀ 0 ≤ i, j < d+ k

(1− Y g
i) + (1− Vi) + (1− Vi⊕g) ≥ 1 ∀ 0 ≤ i, j < d+ k

Referring to Definition 1, we make sure that there is a control bit in Ci[0..n− 1]
that differs from a control bit in Cj [0..n− 1]. This is ensured by this constraint.

∑
p∈{i⊕a|a=0..n−1}

Y j−i
p ≥ 1 ∀ 0 ≤ i < j < d+ k

To break symmetries, we force the variable Vi to be assigned value 0 whenever
ci is not a control bit.

Ki ≥ Vi ∀ 0 ≤ i < d+ k

As for the constraint model of Section 5, this model has a total of O(k2 +d2)
variables and O(k2 + d2) constraints. However, all domains contain two values.

We show in the next section how to break additional symmetries.

6 Symmetries

For any synchronization code C, there exist several other codes that are equiva-
lent. For instance, all zeros in C can be changed to ones and all ones changed to
zeros. This produces a valid code. If C is a synchronization code, the rotation Ci

is also a synchronization code for any integer i. Finally, reverting the sequence
C such that the first character becomes last and the last character becomes first
also produces a valid code.

In order to break symmetries in both models, we force the first two characters
of the code to be 0 and 1. Indeed, any synchronization code must have two
adjacent bits of different value in order for the subsequences C0[0..n − 1] and
C1[0..n− 1] not to match. These bits could be anywhere in the sequence C, but
after applying a rotation, one can always make them appear at the first two
positions of the sequence.

We also force the number of control bits set to zero to be no fewer than the
number of control bits set to one.

In the constraint model of Section 4, we add these constraints.

P0 = 0 P1 = 1 V0 = 0 V1 = 1

k−1∑
i=0

Vi ≤
k

2

In the pseudo-Boolean model of Section 5, we add these constraints

K0 = 1 K1 = 1 V0 = 0 V1 = 1

d+k−1∑
i=0

Vi ≤
k

2

7 Experiments

We implemented the constraint model using Gecode 3.7.3 and solved the pseudo-
Boolean model using the solver MiniSat+ [18]. All experiments were conducted
on a 2.4 GHz Intel Core i7 machine, with 4 Go, 1333 MHz DDR3 RAM.

We tried Gecode using different predefined branching heuristics. The most
efficient method was to choose the variable with the smallest domain size divided
by the weighted degree of the variable (INT VAR SIZE AFC MIN) [19] — a variable
ordering heuristic that gives a higher priority to variables on which failures occur
more often. Gecode was able to solve small instances such as d = n = 8, k = 15 in
5 minutes and 18 seconds. However, the solver could not prove that the instance
d = n = 8, k = 14 is unsatisfiable even after a month of computation.

We tried to solve the pseudo-Boolean model with the solver MiniSat+ using
the default configuration. The solver solves the instance d = n = 8, k = 15 in
0.31 second and proves the unsatisfiability of the instance d = n = 8, k = 14
in 3.77 seconds. We also tried the pseudo-Boolean solver Sat4j [20] but Min-
iSat+ turned out to be more competitive on most instances3. We conclude that

3 For instance, we showed there is no (32, 13, 32)-synchronization code after about 6
days using MiniSat+ while Sat4j did not return any answer after 30 days.

d = n = 8 d = n = 16

d = n = 32 d = n = 64

Fig. 1. Time required by MiniSat+ to find a (d, k, n)-synchronization code or prove
that no such a code exists. The number of data bits d and the reliability n are fixed,
only the number k of control bits vary. A black circle represents an instance for which
there is no possible (d, k, n)-synchronization code, and a white circle represents that
such code exists.

the combination of the pseudo-Boolean model and the solver MiniSat+ is more
efficient than the constraint model.

We first investigate instances with d = n since those are the codes that are the
most used. A machine that manipulates data divided into words of d bits is more
likely to synchronize the stream of bits after reading n = d bits. Generally, the
fewer the synchronization bits, the better. In some cases, a code with additional
synchronization bits could perform better for compression purposes.

Figure 1 presents the time needed for MiniSat+ to find a synchronization
code or to prove that no such code exists. For (d, k, n)-synchronization codes with
d = n = 8, d = n = 16 and d = n = 32 data bits, we proved that the smallest
number of control bits is k = 15, k = 11 and k = 14 respectively. For (64, k, 64)-
synchronization codes, we found a code with k = 22 control bits and proved that
no such codes exists with k ≤ 11 bits. We previously solved most of the same
instances with the solver Sat4j and proved there is a (64, 21, 64)-synchronization
code. However, we have not yet proved there is one using MiniSat+, so the result
does not show in Figure 1. Whether there exists a (64, k, 64)-synchronization

Table 3. Smallest values of k relative to n and d. An entry with ∞ indicates that
the solver proved that no such code exists. A blank entry indicates the incapacity of
the solver to prove or disprove the existence of the code withing 18000 seconds of
computation.

n
2 3 4 5 6 7 8 9 10 11 12 13

d

2 ∞ ∞ 6 3 3 3 3 3 3 3 3 3
3 ∞ ∞ ∞ 12 6 4 4 4 4 4 4 4
4 ∞ ∞ ∞ ∞ 8 7 4 4 4 4 4 4
5 ∞ ∞ ∞ ∞ 9 7 4 4 4 4 4
6 ∞ ∞ ∞ ∞ 8 8 8 7 5 5 5
7 ∞ ∞ ∞ ∞ 18 13 9 8 8 5 5
8 ∞ ∞ ∞ ∞ 20 15 10 10 8 8 5

Table 4. Synchronization codes used to boost CSE in previous research [8].

n k Synchronization Scheme

— 0
— 1 0

— 2 0 1

— 3 0 1 1

— 4 0 1 1 1

13 5 0 0 1 1 1

12 8 0 1 0 0 1 1 1 0

11 8 0 0 1 1 0 1 1 0

10 10 0 0 1 1 0 1 0 0 1 1

9 10 0 0 0 1 1 0 1 0 1 1

8 15 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1

7 20 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1

code for 11 < k < 21 is an open question. MiniSat+ did not succeed to find such
codes after 10 hours of computation.

As a second experiment, we try to find the codes with the fewest number of
control bits when d 6= n. We fix the values of d and n and let MiniSat+ solve
the instances with k = 1, 2, 3, . . . until the solver finds a (d, k, n)-synchronization
code. If a (d, k, n)-synchronization code is found, the value of k is written in
Table 3. If no (d, k, n)-synchronization code exists for k ≤ 2n−d, then Lemma 1
ensures that no synchronization code exists for any value of k and therefore ∞
is written in Table 3. If the solver does not find a code nor prove that it does
not exists after 18000 seconds, the entry is left blank.

Table 3 shows that our model is efficient with different instances of d, k,
and n. It also validates previously published results obtained using a different
methodology [8] and extends it to a wider range of values of d and n.

Table 5. Compression performance obtained while boosting CSE using the synchro-
nization of Table 4, as presented in [8]. Measurements are in bits per character.

Bits/Car. BWT PPM Anti k=0 k=1 k=2 k=3 k=4 n=13 n=12 n=11 n=10 n=9 n=8 n=7

bib 2.07 1.91 2.56 1.98 1.95 1.92 1.92 1.91 1.90 1.89 1.89 1.89 1.89 1.88 1.88

book1 2.49 2.40 3.08 2.27 2.26 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.29 2.33

book2 2.13 2.02 2.81 1.98 1.96 1.95 1.95 1.94 1.94 1.93 1.93 1.93 1.93 1.93 1.95

geo 4.45 4.83 6.22 5.35 5.21 4.98 4.81 4.70 4.63 4.58 4.59 4.58 4.58 4.58 4.57

news 2.59 2.42 3.42 2.52 2.49 2.46 2.45 2.44 2.43 2.43 2.43 2.43 2.43 2.42 2.42

obj1 3.98 4.00 4.87 4.46 4.53 4.43 4.32 4.24 4.17 4.03 4.05 4.02 4.01 4.00 3.99

obj2 2.64 2.43 3.61 2.71 2.69 2.59 2.53 2.49 2.47 2.45 2.46 2.45 2.45 2.45 2.44

paper1 2.55 2.37 3.17 2.54 2.51 2.48 2.47 2.46 2.44 2.41 2.41 2.41 2.41 2.41 2.41

paper2 2.51 2.36 3.14 2.41 2.39 2.38 2.38 2.37 2.36 2.35 2.35 2.34 2.35 2.34 2.34

paper3 — — — 2.73 2.70 2.69 2.68 2.67 2.65 2.63 2.63 2.63 2.63 2.63 2.63

paper4 — — — 3.20 3.16 3.13 3.13 3.10 3.07 3.02 3.02 3.02 3.02 3.01 3.01

paper5 — — — 3.33 3.29 3.27 3.24 3.22 3.19 3.12 3.13 3.12 3.12 3.11 3.10

paper6 — — — 2.65 2.61 2.58 2.56 2.55 2.52 2.50 2.50 2.49 2.50 2.49 2.49

pic 0.83 0.85 1.09 0.77 0.84 0.82 0.82 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.81

progc 2.58 2.40 3.18 2.60 2.58 2.54 2.52 2.50 2.48 2.44 2.44 2.44 2.44 2.44 2.43

progl 1.80 1.67 2.24 1.71 1.70 1.69 1.68 1.67 1.66 1.65 1.65 1.65 1.65 1.64 1.64

progp 1.79 1.62 2.27 1.78 1.76 1.73 1.71 1.70 1.68 1.66 1.66 1.66 1.66 1.66 1.65

trans 1.57 1.45 1.94 1.60 1.58 1.53 1.52 1.50 1.48 1.47 1.47 1.47 1.47 1.47 1.46

Even though this paper addresses the problem of finding synchronization
codes, it remains interesting to have an illustration of the effectiveness of the
synchronization codes on CSE’s performance. Tables 4 and 5 show synchroniza-
tion codes and compression performance measurements, respectively, presented
in previous research by Dubé [8].4 In Table 4, the n and k parameters are in-
dicated for each code. Certain codes have no associated n; these are unreli-
able (soft) codes. Apart from the first three columns, the measurements pre-
sented in Table 5 correspond to the use of the codes of Table 4. The first three
columns present the compression performance of three well-known compression
techniques: the Burrows-Wheeler transform, prediction by partial matching, and
compression using antidictionaries. The files in the benchmark come from the
Calgary Corpus [17]. We refer the reader to the original paper for a complete
description of these experiments [8]. One might notice that most of the boosting
effect is obtained as soon as the synchronization code is reliable. Still, there exist
many applications other than CSE that may benefit from very strong codes.

8 Conclusion

We presented the combinatorial problem of finding a (d, k, n)-synchronization
code for CSE compression algorithms. We presented two models for solving the

4 That previous research has been carried on prior to that presented in this very paper.
The synchronization codes that were used have been obtained using various means,
some manual, other computational.

problem: a constraint programming model and a pseudo-Boolean model. The
pseudo-Boolean model, when solved with MiniSat+, turned out to be more ef-
ficient. We were able to produce (64, k, 64)-synchronization codes for large in-
stances requiring as few as 21 control bits. We proved that for (7, k, 7)-synchroni-
zation codes to exist, we need k ≥ 18, for (8, k, 8)-codes, we need k ≥ 15, for
(16, k, 16)-codes, we need k ≥ 11, and for (32, k, 32)-synchronization codes, we
need k ≥ 14. These bounds are tight. We also computed the minimum number
of control bits required for instances with 2 ≤ d ≤ 8 and 2 ≤ n ≤ 13.

Acknowledgments The authors would like to thank Julia Gustavsen and Jiye
Li for their support while writing this paper. This work is funded by the Natural
Sciences and Engineering Research Council of Canada.

References

1. Bruyère, V.: A completion algorithm for codes with bounded synchronization
delay. In: Proceedings of the International Colloquium on Automata, Languages
and Programming, Bologna, Italy (1997) 87–97

2. Do, L.V., Litovsky, I.: On a family of codes with bounded deciphering delay. In:
Proceedings of the International Conference on Developments in Language Theory,
Kyoto, Japan (2002) 369–380

3. Golomb, S.W., Gordon, B.: Codes with bounded synchronization delay. Informa-
tion and Control 8 (1965) 355–372

4. Scholtz, R.A.: Codes with synchronization capability. IEEE Transactions on In-
formation Theory 12 (1966) 135–142

5. van Wijngaarden, A.J., Morita, H.: Partial-prefix synchronizable codes. IEEE
Transactions on Information Theory 47 (2001) 1839–1848

6. Stiffler, J.J.: Theory of synchronous communications. Prentice-Hall (1971)
7. Dubé, D.: Using synchronization bits to boost compression by substring enumera-

tion. In: Proceedings of the International Symposium on Information Theory and
its Applications, Taichung, Taiwan (2010)

8. Dubé, D.: On the use of stronger synchronization to boost compression by substring
enumeration. In: Proceedings of the Data Compression Conference, Snowbird,
Utah, USA (2011)

9. Dubé, D., Beaudoin, V.: Lossless data compression via substring enumeration. In:
Proceedings of the Data Compression Conference, Snowbird, Utah, USA (2010)
229–238

10. R. Braden, E.: RFC 1122 (1989) http://tools.ietf.org/html/rfc1122.
11. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Trans. on Information Theory 23 (1977) 337–342
12. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.

IEEE Trans. on Information Theory 24 (1978) 530–536
13. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial

string matching. IEEE Trans. on Communications 32 (1984) 396–402
14. Cleary, J.G., Teahan, W.J.: Unbounded length contexts for PPM. The Computer

Journal 40 (1997) 67–75
15. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.

Technical Report 124, Digital Equipment Corporation (1994)

16. Crochemore, M., Navarro, G.: Improved antidictionary based compression. In: Pro-
ceedings of the International Conference of the Chilean Computer Science Society.
(2002) 7–13

17. Witten, I., Bell, T., Cleary, J.: The Calgary corpus (1987)
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

18. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2 (2006) 1–26

19. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAI. (2004) 146–150

20. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7 (2010) 59–64

