
Learning Parameters For the Sequence
Constraint From Solutions

Émilie Picard-Cantin1, Mathieu Bouchard2,
Claude-Guy Quimper1, and Jason Sweeney2

1 emilie.picard-cantin.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

Université Laval, 2325, rue de l’Université, Québec, Canada, G1V 0A6
2 mbouchard@petalmd.com, jsweeney@petalmd.com

PetalMD, 350 boulevard Charest Est, Québec, Canada, G1K 3H5

Abstract. This paper studies the problem of learning parameters for
global constraints such as Sequence from a small set of positive exam-
ples. The proposed technique computes the probability of observing a
given constraint in a random solution. This probability is used to select
the more likely constraint in a list of candidates. The learning method
can be applied to both soft and hard constraints.

Keywords: Constraint Acquisition, Timetabling, Machine Learning, CSP,
Global Constraints, Solution Counting, Markov Chain, Soft Constraints

1 Introduction

Accurate mathematical modeling requires a specific and complex training process
and a lot of scheduling experience as there are as many models as there are
problems. This is why modeling automation has become a popular field of study.

In this paper, we propose a statistical approach that detects the parameters
of multiple global constraints such as Among and Sequence, two common con-
straints used in timetabling. This approach, based on machine learning, analyzes
given positive examples (the only inputs from the user) and determines which
constraint better explains these examples.

The first contribution of this paper is a technique to compute the probability
of observing a specific Sequence constraint. Constraint candidates (satisfied
by all examples) are compared using their individual probability. The candidate
with the lowest probability of being observed, if it is not part of the model,
is chosen and added to the optimization model. The second contribution is an
improvement on solution counting for the Regular constraint using a simpli-
fied automaton and a matrix representation. The last contribution is a machine
learning tool that can be applied to both soft and hard global constraints.

Section 2 describes the problem that motivates our research. Section 3 lists
major contributions to the constraint acquisition field. Section 4 details our
machine learning approach to detect the most likely Sequence constraint for
a set of positive examples. Section 5 summarizes our results on a timetabling
problem supplied by PetalMD, a specialist in medical scheduling.

2

2 Problem Description

Our research is motivated by a medical timetabling problem. A schedule is a
table where rows are associated to employees and columns are associated to
days. The cell (e, t) contains the task assigned to employee e on day t. The
optimization model has two objectives : assigning the maximum number of tasks
and minimizing the deviations from employees’ workload targets. Each employee
can be assigned at most one task at a time. Let xet be the task assigned to
employee e at time t. Let R be the total number of employees and T be the
set of all task types. At least ci and at most c̄i employees must work on task i
every day. We use a global cardinality constraint [16], GCC([x1t, . . . , xRt], c, c̄)
for each day t to ensure these requirements are met.

Let d be the total number of days in the schedule. An employee can be as-
signed at least l and at most u tasks taken from a set V ⊆ T within a period of
k consecutive days. This limit is imposed by Sequence(l, u, k, [xe1, . . . , xed], V)
for every employee e, i.e. on each row of the schedule. Both global constraints
Among and Sequence were introduced by Beldiceanu and Contejean [1]. The
constraint Among(l, u, [xij , . . . , xi(j+k−1)], V) ensures that xij , . . . , xi(j+k−1) are
assigned to values in V at least l times and at most u times. The constraint Se-
quence(l, u, k, [xi1, . . . , xid], V) ensures that Among(l, u, [xij , . . . , xi(j+k−1)], V)
holds for every subset of k consecutive variables in {xi1, . . . , xid}.

This paper addresses the problem of learning parameters l, u, k and V of a Se-
quence constraint from a small set of positive solutions. In particular, we apply
our method on manually completed schedules provided by PetalMD. Sequence
is one of the most common constraint, yet the parameters are hard to extract
from clients. The automated learning of this constraint will save PetalMD time
and money. Typically, clients express their constraints informally and model cre-
ation is a long interactive process where scheduling experts present new schedules
and clients tell them what is wrong with the new schedule until all constraints
and parameters are determined.

3 Background

As explained in Section 1, automatic modeling is a popular field of study. In the
present section, we list important concepts related to our research.

3.1 Constraint Acquisition

Bessiere et al. in [6], [5], [8] and [10] propose an algorithm named ConAcq learn-
ing constraint networks from positive and negative solutions using version space
learning. Version space learning defines the search space for the constraint net-
work as a set of constraint network candidates (hypothesis). Each hypothesis
not satisfied by all positive examples is removed. ConAcq encodes each example
as a set of clauses where the atoms are taken from the constraint vocabulary of

3

the library of constraints. A solution to the corresponding satisfiability problem
is therefore an admissible constraint network.

O’Connel et al. [13] propose an interactive version space algorithm, which
creates a first version space from examples given by the user. From one of the
hypotheses, the system builds an qualifying example. The user accepts or rejects
it, and the version space is updated accordingly. The algorithm terminates when
the version space contains a single hypothesis.

Bessiere et al. [4] propose an active learning system named QuAcq. QuAcq
adds one constraint at a time in the network by presenting partial queries, which
are classified by the user as positive or negative. QuAcq choose queries that
satisfy the constraints in the current network and violate at least one constraint
in the library until no such queries exist.

Beldiceanu and Simonis [3] propose a constraint acquisition tool they refer
to as Model Seeker. This tool builds a satisfaction model from positive examples
using constraints from the global constraint catalog. The Model Seeker creates
a list of candidates, all global constraints satisfying the examples, by generating
sequences and matching them against the global constraints using the Constraint
Seeker [2]. The candidates are ordered according to their pertinence, which is
computed using multiple criteria, such as solution density and constraint popu-
larity. A dominance check is performed to remove redundant constraints.

3.2 Solution Counting

The constraint Regular([Xi, . . . , Xn],A) [14] forces the word [Xi, . . . , Xn] to
belong to the regular language defined by the deterministic finite automaton
A. The automaton A is composed of a finite list of states Q, an alphabet Σ, a
transition set δ ⊆ Q × Σ × Q, an initial state q0 ∈ Q, and a set of final states
F ⊂ Q which determine the end of all accepted words. A sequence X1, . . . , Xn

is accepted by A if and only if there exists a sequence of states q0, . . . , qn ∈ Q
such that (qi−1, Xi, qi) ∈ δ for all i ∈ {1, . . . , n} and qn ∈ F .

Zanarini and Pesant [19] use dynamic programming to count the solutions
that satisfy Regular([X1, . . . , Xn],A). Let Ā be the unfolded version of A
where layer Li contains states attainable with the subsequence [X1, . . . , Xi−1],
see Figure 1. L1 contains the initial state and Ln+1 contains all final states.

L1 L2 L3
. . . Ln Ln+1

ε X1 X2 X3 Xn−1 Xn

Fig. 1. Unfolded automaton, where Li contains states attainable with [X1, . . . , Xi−1].

Let vlq be the state q in layer l and let #op(l, q) be the number of paths from
vlq to a final state in layer Ln+1. Then, we have

#op(n+ 1, q) = 1 (1)

4

#op(l, q) =
∑

(vl,q,c,vl+1,q′)∈δ

#op(l + 1, q′), ∀q ∈ Q, 1 ≤ l ≤ n . (2)

The number of solutions that satisfy Regular([X1, . . . , Xn],A) is #op(1, q0).
Hoeve et al. [11] encode Sequence using Regular. Brand et al. [9] im-

prove this encoding by simplifying Sequence(l, u, k, [x1, . . . , xd], V) to the con-
straint Sequence(l, u, k, [y1, . . . , yd], {1}) where dom(yi) = {0, 1} and with the
relation yi = 1 ⇐⇒ xi ∈ V . Bessiere et al. [7] show how an automaton
can encode the sliding of any constraint over a sequence of variables. Since Se-
quence(l, u, k, [y1, . . . , yd], {1}) is defined as the sliding of the constraint Among
on the sequence of variables [y1, . . . , yd], one can get an automaton in the fol-
lowing way. The states are labeled with sequences of zeros and ones of length at
most k − 1 and are partitioned into two sets. The states in Qs are all possible
sequences of length s ≤ k − 2 and are called transitory states. They are only
visited at the beginning of the sequence. The states in Qk−1 are sequences of
length k − 1 that contains at least l − 1 and at most u occurrences of 1. The
initial state is the empty sequence ε and the final states are Qk−1.

Qs = {0, 1}s,∀ s ∈ {0, . . . , k − 2} , (3)

Qk−1 = {w ∈ {0, 1}k−1 | l − 1 ≤
k−1∑
i=1

wi ≤ u} , (4)

Q =

k−1⋃
i=0

Qi . (5)

A state w ∈ Qs for s < k − 1 leads to the state wc ∈ Qs+1 upon reading the
character c ∈ {0, 1}, where wc is the concatenation of the sequence w with the
character c. Finally, let a and b be two characters and w a sequence of length
k − 2. Reading the character b from state aw ∈ Qk−1 leads to state wb ∈ Qk−1
only if there are at least l and at most u occurrences of ones in the sequence wb.

δ ={〈w, c, wc〉 | w ∈ Qs, wc ∈ Qs+1} (6)

∪ {〈aw, b, wb〉 | aw,wb ∈ Qk−1, l ≤ a+

k−2∑
i=1

wi + b ≤ u} .

Figure 2 shows the automaton for Sequence(1, 2, 3, [y1, . . . , yd], {1}). Note that
states in Qk−1 are accepting because the transitions only lead to acceptable
sequences and the initial state is ε, the empty sequence. From the definition
of the transitory states, certain states might be isolated in some automatons.
Figure 3 illustrates a small example where a state labeled 0 is created but never
used. We could reduce the automaton by removing those isolated states, but we
keep them to simplify notation.

The number of solutions to Sequence can therefore be computed by count-
ing the number of solutions to Regular, when used with the automaton that

5

00 01 10 11

0 1

ε

0 1

0 1 0 1

1 0

10

0

Fig. 2. Automaton corresponding to Sequence(1, 2, 3, [y1, . . . , yd], {1})

0 ε 1 11
1 1

1

Fig. 3. Automaton corresponding to Sequence(3, 3, 3, [y1, . . . , yd], {1})

encodes Sequence. As the automaton encodes v ∈ V with the value 1 and v 6∈ V
with 0, we need a slightly modified version of the solution counting algorithm of
Pesant [15] to take into account that there are |V | ways to produce the value 1
and |T \ V | ways to produce a 0. We replace equation (2) by the following.

#op(l, q) =
∑

(vl,q,0,vl+1,q′)∈δ

|T \ V |#op(l + 1, q′)

+
∑

(vl,q,1,vl+1,q′)∈δ

|V |#op(l + 1, q′), ∀q ∈ Q, 1 ≤ l ≤ n . (7)

For the constraint Sequence(l, u, k, [y1, . . . , yn]), since the automaton has O(2k)
states, computing the number of solution is achieved in O(n2k).

3.3 Markov Chains

Markov chains can be used to compute the number of solutions for Regular
by encoding the automaton as a transition matrix. A Markov chain [17] is a
stochastic process defined by a set of time steps t ∈ {0, 1, . . . , n} and a set of
states i ∈ {0, 1, . . . ,m}. The variable Xt represent the state of the process at
time t. If Xt = i, then the process is considered to be in state i at time t. The
probability of transitioning from state i to state j is given by a fixed probability
Pij . Pij is independent of the states before i. We must have

∑m
j=1 Pij = 1 for all

states i. The transition probabilities are gathered in a matrix P , called the matrix
of one-step transition probabilities [17]. The n-step transition probabilities Pnij
are the probabilities of being in state j after n transitions if starting in state

6

i. Let αi be the initial probability of state i. The unconditional probability of
ending at state j after n transitions is

P [Xn = j] =

m∑
i=0

αiP
n
ij . (8)

4 Constraint Acquisition

In this paper, we propose a statistical learning algorithm, which we divide into
three steps. The first step analyzes the given solution, positive example, and
makes a list of all constraints satisfied by the solution that call candidates. This
is done by verifying each possible constraint against the solution. The second
step ranks the selected constraints by computing the individual prior probability
of the candidates using Markov chains. The last step chooses the constraint that
explains the most the positive example we are given.

4.1 Listing Candidates

The first step of the learning process lists the constraints satisfied by the given
solution. We call these satisfied constraints candidates, meaning that the real
constraint we want to learn is in this subset. To learn the parameters of the
constraint Sequence(l, u, k, [y1, . . . , yd], V), we create all possible sets of pa-
rameters and validate them against the solution. The only known parameter is
d, since the scope of the constraint is known.

Example 1. Let the number of days be d = 6. Let [y1, . . . , y6] = [1, 1, 0, 0, 1, 1]
be a solution for which we want to list all Sequence(l, u, k, [y1, . . . , y6], {1})
candidates. Since V is known, we refer to each constraint with the tuple (l, u, k).

We have the following candidates. Since each window of length 1 has either
0 or 1 assignments, we have the candidate (0, 1, 1). We have between 0 and 2
assignments for a window of length 2. Therefore, we have the candidate (0, 2, 2).
For a window of length 3, we either have 1 assignment or 2, which gives us the
candidate (1, 2, 3). Note that we also observe the candidates (0, 2, 3), (0, 3, 3) and
(1, 3, 3) which are less restrictive than (1, 2, 3). For windows of length 4, we have
the candidates : {(l, u, 4) : 0 ≤ l ≤ 2 ∧ 2 ≤ u ≤ 4}. If we continue this process
up to k = d = 6, we obtain the list

C ={(0, 1, 1), (0, 2, 2)} ∪ {(l, u, 3) : 0 ≤ l ≤ 1 ∧ 2 ≤ u ≤ 3}
∪ {(l, u, 4) : 0 ≤ l ≤ 2 ∧ 2 ≤ u ≤ 4} ∪ {(l, u, 5) : 0 ≤ l ≤ 3 ∧ 3 ≤ u ≤ 5}
∪ {(l, u, 6) : 0 ≤ l ≤ 4 ∧ 4 ≤ u ≤ 6} .

4.2 Prior Probabilities

To determine which candidate should be learned, we compare them according
to the probability that a random solution validates the candidate constraint.

7

The best choice is the constraint with the lowest probability because it is highly
improbable that we observe this constraint by chance in the given solution.

Let dom(xj) = {0, 1, . . . ,m} = T for all j ∈ {1, . . . , d} and let pi = P [xj = i].
Consider Sequence(l, u, k, [x1, . . . , xd], V) with V ⊂ T and its simplification
c = Sequence(l, u, k, [y1, . . . , yd], {1}). An acceptable solution according to c is a
solution that validates c. Let Ec be the random event of observing an acceptable
solution for c. Let Xc be the set of all solutions x satisfying c and let P [x] be
the probability of the specific solution x. Then, we have P [Ec] =

∑
x∈Xc

P [x].
Inspired from the automaton presented in Section 3, which accepts sequences

satisfying a Sequence constraint, we define a Markov chain A’ that computes
the probability that a random assignment satisfies the sequence constraint. For
the constraint Sequence(l, u, k, [y1, . . . , yd], {1}), let the states of the Markov
chain be the set Q′ = Qk−1 ∪ {σ}, the sequences of length k − 1 described in
Section 3 and the sink state σ. The states of Qs for s ∈ {0, . . . , k − 2} are not
required since a Markov chain does not need an initial state. Let a, b ∈ {0, 1}
and w ∈ {0, 1}k−2. Then, aw,wb ∈ Qk−1. There is a transition from aw to wb
with probability

∑
i∈V pi if b = 1 and with probability 1 −

∑
i∈V pi if b = 0.

There is a transition from aw to the sink state σ with probability
∑
i∈V pi if

a+
∑k−2
j=1 wj = u and with probability 1−

∑
i∈V pi if a+

∑k−2
j=1 wj = l. Finally,

there is a transition from σ to σ with probability 1.
Let M be the matrix of one-step transition probabilities for A’. We can

compute, for each state q ∈ Qk−1, the initial probability gq of being in q. Let
[vi1, . . . , vi,k−1] be the sequence of values represented by the state qi. Then,

gi =

k−1∏
j=1

pvij .

Note that we can never start with the state σ and therefore gσ = 0. Let g =
[g1, . . . , gr] be the initial probabilities for all states q ∈ Q′. To build a sequence of
length d from the sequences of length k−1 (states in Q′), we need the (d−k−1)-
step transition probabilities for A’. Then, we have the equation

P [Ec] =

r−1∑
i=1

(gMd−k−1)i . (9)

This equation sums the probabilities of each acceptable path in the Markov
chain according to c, a Sequence constraint. Note that P [Ec] does not include
solutions passing through σ since they represent unacceptable sequences.

Example 2. Suppose we have c = Sequence(1, 2, 3, [x1, . . . , x8], {1, 2}) with
T = {0, 1, 2} and where p0 = 5/6 and p1 = p2 = 1/12. The associated Markov
chain is illustrated in Figure 4. The path from 00 to 00 forms the sequence 000
with probability p0 = 5/6. This transition violates the constraint. It is redirected
to the sink σ. The path from 00 to 01 forms the sequences 001 and 002 and has
a probability of 1/6 = p1 + p2. The path from 10 to 01 creates the sequences
101, 102, 201 and [2, 0, 2]. This transition has a probability of p1 + p2 = 1/6.

8

There is a single transition of probability 1 leaving σ. It ensures that paths pass-
ing through unfeasible states represented by σ are not counted in P [Ec]. The
associated matrix of one-step transition probabilities is

M =

0 0 1/6 0 5/6

5/6 0 1/6 0 0
0 5/6 0 1/6 0
0 5/6 0 0 1/6
0 0 0 0 1

 .
The initial probabilities are g = [25/36, 5/36, 5/36, 1/36, 0]. Therefore, we have

P [Ec] =

4∑
i=1

(gM4)i ≈ 0.1211 = 12.11%.

00 10 01 11 σ

5/6

1/6

5/6 1/6

5/6

1/6

5/6

1/6
1

Fig. 4. Markov chain for Sequence(1, 2, 3, [x1, . . . , xd], {1, 2}) when p0 = 5/6 and p1 =
p2 = 1/12. σ represents all forbidden transitions according to Sequence

As shown in section 3, the solution counting algorithm for the constraint
Sequence(l, u, k, [y1, . . . , yd], {1}) derived from Pesant’s algorithm [15] has a
computational complexity of O(d2k). This complexity can be improved. One
can compute a power of a matrix using a decrease and conquer approach [12]
based on this recurrence.

Mp =

I if p = 0
M ×Mp−1 if p is odd(
Mp/2

)2
otherwise

This algorithm requires O(log p) matrix multiplications and squaring. Given that
multiplying two n × n matrices requires O(nω) steps (ω = 2.373 when using
William’s matrix multiplication algorithm [18]), computing the probability that
a random assignment satisfies Sequence(l, u, k, [y1, . . . , yd], {1}) can be achieved
in O(2ωk log(d− k)) steps.

Another method to compute Md−k−1 is to use the spectral decomposition
of the matrix M = V−1DV, where Vis the matrix of eigenvectors for M and
Dis the diagonal matrix such that Dii is an eigenvalue of M . Therefore, we have
Md−k−1 = V−1Dd−k−1V. Since computing the eigenvectors and eigenvalues is

9

done in cubic time, this decomposition computes the probability in O(8k) time.
This complexity does not depend on the number of variables. This last method is
preferable in situations where the number of variables d for Sequence is largely
superior to the number of variables k for each corresponding Among.

4.3 Constraints Ordering

Consider a list of candidates C = {c1, . . . , cn}. We will demonstrate that the
best choice is the constraint with the lowest probability since all constraints in
C were observed in the solution set.

Theorem 1. Let C = {c1, . . . , cn} be the list of candidates for a solution. Let
Ei be the random event of observing an acceptable solution for the constraint
ci = Sequence(li, ui, ki, [y1, . . . , yd], {1}). The constraint ci explaining the most
the current positive example, meaning that P [E1 ∧ · · · ∧ En|Ei] is maximum, is
such that P [Ei] ≤ P [Ej] for all cj ∈ C \ {ci}.

Proof. P [E1 ∧ · · · ∧ En|Ei] is the probability of observing a solution satisfying
all constraints in C considering that ci is satisfied. Bayes’ theorem gives us

P [E1 ∧ · · · ∧ En|Ei] =
P [Ei|E1 ∧ · · · ∧ En]P [E1 ∧ · · · ∧ En]

P [Ei]

=
P [E1 ∧ · · · ∧ En]

P [Ei]
.

Therefore, we choose ci over cj if and only if

P [E1 ∧ · · · ∧ En|Ei] ≥ P [E1 ∧ · · · ∧ En|Ej]

⇐⇒ P [E1 ∧ · · · ∧ En]

P [Ei]
≥ P [E1 ∧ · · · ∧ En]

P [Ej]
⇐⇒ P [Ej] ≥ P [Ei].

4.4 Multiple Examples

If multiple positive examples are available, we can increase the performance
of the learning process. The method is applied on each example individually,
generating multiple separate candidate lists. Then, considering all examples are
restricted with the same Sequence constraint, we keep only the candidates that
are present for all examples. The idea is that the real constraint must be satisfied
in all examples.

4.5 Constraint Dominance

We say that a constraint c1 dominates another c2, noted by c1 � c2, if all
solutions to c1 are solutions to c2. Following Beldiceanu et al. [2], we reduce
computation time by removing dominated constraints from the list of candidates.
The concept of dominance is only applied to constraints with the same scope.

10

If c1 � c2, then the probability of observing a solution for c1 is lower (or
equal) than the probability of observing a solution for c2 since c1 is more re-
strictive than c2. Therefore, the classifier will choose c1 over c2 and removing
dominated constraints does not affect the final choice of the classifier. Moreover,
the dominance check is quick and dominance relations can be computed before-
hand and stored. Note that if multiple examples are used, the dominance check is
performed after collecting all candidate constraints from every example. Indeed,
a constraint dominates another one only if it is a candidate for all examples.

. . .

k2

k1 k1 k2 mod k1

Fig. 5. When k1 < k2

k1

k1 mod k2k2

Fig. 6. When k1 > k2

• If k1 = k2, then c1 � c2 if and only if u1 ≤ u2 and l1 ≥ l2.
• If k1 < k2, then a maximum of u1 assignments of values in V for every

window of length k1 allows a maximum of

ā = bk2/k1c × u1 + min(u1, k2 mod k1)

in a window of length k2. Similarly, a minimum of l1 assignments of values
in V for every window of length k1 imposes a minimum of

a = k2 − [bk2/k1c × (k1 − l1) + min((k1 − l1), k2 mod k1)]

in a window of length k2. Therefore, c1 � c2 if and only if ā ≤ u2 and a ≥ l2.
See Figure 5 for a visual representation.

• If k1 > k2, then c1 � c2 if and only if (u1 ≤ u2∨k2 = u2)∧(l1 ≥ l2∨k2 = l2).
See Figure 5 and Figure 6 for a visual representation.

4.6 Classifier

Algorithm 1 is a summary of the procedure to determine the Sequence con-
straint from a set of positive examples.

4.7 Soft Constraints

The proposed approach can be used to learn soft constraints. The listing of
candidates needs to be adapted in order to select constraints which are violated
by the given example. Let β ∈ [0, 1] be the accepted percentage of violations. We
consider Sequence(l, u, k, [y1, . . . , yd], {1}) satisfied if at least (1−β)×100% of

11

Algorithm 1: How to determine the parameters of a Sequence constraint
from a set of positive examples.

Data: Positive examples of d variables with the same configuration.
Result: The parameters of a Sequence constraint.

1 begin
2 List all Sequence candidates (l, u, k, V) satisfying all examples;
3 Apply the dominance check to remove dominated constraints;
4 Select, from the remaining candidates, the one with the lower probability of

being observed;

5 end

the corresponding Among(l, u, [yj , . . . , yj+k−1], {1}) constraints are satisfied by
the example.

The Markov chain also needs to be adapted to accept violations. The new
set of states is Q = {0, 1}k−1 ∪ {σ}, the set of all sequences of length k − 1
augmented with a sink state σ. The violation degree of a sequence Y ∈ {0, 1}k,
according to the constraint Among(l, u, [yi, . . . , yi+k−1], {1}), is given by

d(Y) = max

(
k∑
i=1

Yi − u, l −
k∑
i=1

Yi, 0

)
.

Let w ∈ {0, 1}k−2, a, b ∈ {0, 1} and h = min(d(aw0), d(aw1)). Let v be the
user defined probability of observing d(awb) > h, i.e. the probability of reading
a character that does not minimize the degree of violation. Let P [yi = 1] =∑
v∈V pv and P [yi = 0] = 1−P [yi = 1]. If d(awb) = h, then we have a transition

from state aw to state wb with probability P [yi = b]. If d(awb) > h, then we
have a transition from aw to wb with probability vP [yi = b] and a transition
from aw to σ with probability (1−v)P [yi = b]. Finally, there is a transition from
σ to σ with probability 1.

We assume that the events of accepting the different violated Among con-
straints are independent. Note also that the probability does not depend on
the degree of violation of the Among constraint, but our model could easily be
adapted to do so.

The last modification is the new vector of initial probabilities g. For a state
q ∈ Q, let r =

∑k−1
i=1 qi. The initial probability for q is

gq = P [yi = 1]r × P [yi = 0]k−1−r
(
vd(0q)P [yi = 0] + vd(1q)P [yi = 1]

)
.

The initial probability of the sink state σ is gσ = 1−
∑
q∈Q

gq.

Example 3. Suppose v = 1/10, p0 = 5/6 and p1 = 1/6. The Markov chain for
the soft constraint Sequence(1, 2, 3, [y1, . . . , yd], {1}) is illustrated in Figure 7.
The initial probabilities for this example are g00 = 25/144, g01 = g10 = 5/36,
g11 = 17/720 and gσ = 1− 342/720 = 378/720.

12

00 σ

1001 11

1/12

1/6

3/4

1/6

5/6

5/6

1/6

3/20

5/6
1/60

1

Fig. 7. Graphical representation of the Markov chain corresponding to the soft con-
straint Sequence(1, 2, 3, [y1, . . . , yd], {1}) when v = 1/10, p0 = 5/6 and p1 = 1/6

5 Experiments

Experiments focus on the timetabling problem presented in Section 2. For every
instance there are three employees and three medical task types (day, evening,
night) repeated each day of an 84 days scheduling period. Tasks are represented
by positive integers and 0 is reserved for unassigned days. In our context, the
employees want to have similar workloads. As there are 84 × 3 tasks to assign,
the target workload of each employee is 84. An employee e can only work on
one task each day. The targets are encoded with soft constraints limiting work-
loads. We minimize deviations from targets in the objective function. Each task
requires one employee, which is encoded using a GCC. There is a constraint
Sequence(0, u, k, [xr1, . . . , xr84], V) where u, k and V are to be learned.

Remember that xet ∈ {0, 1, . . . ,m} is the task assigned to employee e at
time t and that yet ∈ {0, 1} determines if xet ∈ V or not. Let zet be the Boolean
variable, which encodes if e is working or not at time t. Therefore, we have
zet = 0 if xet = 0 and zet = 1 if xet > 0. Let ∆e be the deviation from the target
for the employee e. Let H ⊆ {1, 2, 3} be a subset of employees. The general
model that produced the instances is as follows.

max

3∑
e=1

84∑
t=1

zet −
3∑
e=1

0.1∆e

84−
84∑
t=1

zet ≤ ∆e, ∀e ∈ {1, 2, 3}

zet = 1 ⇐⇒ xet ≥ 1, ∀e ∈ {1, 2, 3},∀t ∈ {1, . . . , 84}
GCC([x1t, x2t, x3t], [0, 0, 0], [1, 1, 1]]), ∀t ∈ {1, . . . , 84}
Sequence(0, u, k, [xe1, . . . , xe84], V), ∀e ∈ H
xet ∈ {0, 1, . . . ,m}, ∀e ∈ {1, 2, 3},∀t ∈ {1, . . . , 84}
yet, zet ∈ {0, 1}, ∀e ∈ {1, 2, 3},∀t ∈ {1, . . . , 84}
∆e ∈ N, ∀e ∈ {1, 2, 3}

13

As a benchmark3, we generate some models and find several optimal solutions
for each of them. These solutions are the positive examples that we feed into our
algorithm, in order to test whether it returns the constraints that were actually
used to generate the solutions. The generated models can be divided into three
categories. We create a first set of schedules (A) where the same Sequence
constraint is applied to all employees (H = {1, 2, 3}). Then, we produce five
different schedules for all possible combinations of (u, k) with 1 ≤ u < k ≤ 7 and
V = {1, 2, 3}. We create a second set of instances (B) where the same Sequence
is applied to e ∈ {1, 2}. The last employee is not subject to any Sequence
constraint. Again, we produce five schedules for all (u, k) with V = {1, 2, 3}.
Finally, we create a last set (C) where Sequence is applied to a subset of tasks
and is the same for all employees. For all V ∈ {{1}, {1, 2}} and for all (u, k), we
produce five schedules. Both sets A and B contain 21 instances (105 schedules)
and the set C contains 42 instances (210 schedules).

Because of the GCC and the target workloads, all tasks tend to have the same
frequency in the schedules. To test our method on instances where values in V
do not have the same probability, we create new schedules. For each instance in
the sets A, B, and C previously described, we modify the schedules so that each
value i ∈ V has a specific probability pi to appear in the schedule. Let Ie = {t ∈
{1, . . . , 84} : xet ∈ V }. For t ∈ Ie, we randomly choose a value in V and assign it
to xet using on of the following probability distribution: (P [v1], P [v2]) = (0.1, 0.9)
if |V | = 2 and (P [v1], P [v2], P [v3]) = (0.1, 0.4, 0.5) if |V | = 3. Then, we apply
the same modification process with I ′e = {t ∈ {1, . . . , 84} : xet ∈ (T \ V)}. The
new schedule still satisfies Sequence since the tasks in V are shuffled between
themselves. The GCC might not be satisfied and the solution might not be
optimal, but our goal is to test our learning tool on instances with unbalanced
distributions of tasks.

The probability of each task is unknown to the learning process. For a given
example, we compute the probability of each task with P [xet = v] = |{t :
xet = v}|/84 for each employee e. We approximate the probability P [v] with the
average of these probabilities over the five examples. The learning algorithm is
applied individually on each employee. We compare the results obtained using
this approximation with the results using the solution counting algorithm, which
is one of the criteria used by Beldiceanu et al. [3] to rank constraint candidates.
We note the statistical learning algorithm Statistical and the solution counting
version Counting. We note uniform the instances with uniformly distributed
tasks and non-uniform the instances with non-uniformly distributed tasks.

The results obtained for only one positive example are illustrated in Table 1.
The results are divided by instance set (A, B, or C). # is the total number of
instances in the category (one per employee). Inspired by Beldiceanu et al. [2],
we classify our results according to the position of the real constraint in the list
of candidates returned.

As shown in Table 1, the first candidate (#1) is the real constraint for all 63
instances of category A while it is the real constraint for 108 out of 126 instances

3 The benchmark is available upon request to the authors.

14

0

10

20

30

40

50

1 2 3 4 5
Number of examples

N
um

be
r

of
 in

co
rr

ec
tly

 le
ar

ne
d

in
st

an
ce

s
(in

 %
)

Label

Counting (uniform)

Statistical (uniform)

Counting (non−uniform)

Statistical (non−uniform)

Comparison of different methods to
 learn constraints from positive examples.

Fig. 8. Number of incorrectly classified instances in percentage for each method and
each number of examples

of category C. Table 1 also shows that Counting is less efficient on non-uniform
instances. For example, 213 uniform instances were correctly learned (ranked
#1) while only 164 non-uniform instances were correctly ranked. This is a loss
of 49 instances. In comparison, Statistical is more stable since it only “lost” 2
correctly ranked instances with the non-uniform task probabilities. This shows
that Statistical depends on the individual probability of the different values.

Table 1. Results for Counting and Statistical with a single positive example by instance

Counting Statistical
Uniform Non-uniform Uniform Non-uniform

#1 #2 #3 Other #1 #2 #3 Other #1 #2 #3 Other #1 #2 #3 Other

A 63 63 0 0 0 61 1 1 0 63 0 0 0 63 0 0 0
B 63 42 0 0 21 41 1 0 21 42 0 0 21 42 0 0 21
C 126 108 12 1 5 62 7 7 50 108 11 3 4 106 13 2 5

Total 252 213 12 1 26 164 9 8 71 213 11 3 25 211 13 2 26

Figure 8 illustrates the summary results for each method and each number
of examples. We can see that, for the instances where tasks are uniformly dis-
tributed, Statistical is better but Counting quickly catches up as the number of
examples increases. As illustrated, the lack of uniformity of tasks impacts the
performance of both methods. Statistical quickly regains the loss with only 4
examples, while Counting is still far behind (approximately 20% apart).

When the real constraint is dominated by one or many candidates, it is
removed from the candidate list and the instance is incorrectly classified. We
consider this a false negative, as it is impossible to rightly classify this type of

15

0

10

20

30

40

50

1 2 3 4 5
Number of examples

N
um

be
r

of
 in

co
rr

ec
tly

 le
ar

ne
d

in
st

an
ce

s
(in

 %
)

Label

Counting (uniform)

Statistical (uniform)

Counting (non−uniform)

Statistical (non−uniform)

Comparison of different methods to
 learn constraints from positive examples.

Fig. 9. Number of incorrectly classified instances in percentage after false negatives
have been removed

instances without further prior information about the problem. Figure 9 illus-
trates the summary results after the false negatives are removed.

6 Conclusion

In this paper, we proposed a statistical learning algorithm that can be applied to
both soft and hard global constraints that can be formulated as an automaton,
such as Sequence, Among, Knapsack, Stretch, etc. This algorithm uses a new
technique to compute the probability of observing a random solution for a given
constraint. Statistical has proven to be more efficient in the ranking of candidates
than the solution counting algorithm, when tested on scheduling instances. For
instances where values are uniformly distributed, Statistical requires less positive
examples to achieve the same results as other methods. This is important in
scheduling, where as little as four examples might represent more than a year
of data. For instances with non-uniformly distributed values, we showed that
Statistical is largely better than Counting.

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Mathematical
and computer Modelling 20(12), 97–123 (1994)

2. Beldiceanu, N., Simonis, H.: A constraint seeker: Finding and ranking global con-
straints from examples. In: Proceedings of the 17th International Conference of
Principles and Practice of Constraint Programming (CP 2011). pp. 12–26. Springer
(2011)

3. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint mod-
els from positive examples. In: Proceedings of the 18th International Conference
of Principles and Practice of Constraint Programming (CP 2012). pp. 141–157.
Springer (2012)

16

4. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C.G., Walsh, T.: Constraint acquisition via partial queries. In: Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI
2013). pp. 475–481. AAAI Press (2013)

5. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A sat-based version space
algorithm for acquiring constraint satisfaction problems. In: Proceedings of the
16th European Conference on Machine Learning (ECML 2005). pp. 23–34. Springer
(2005)

6. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: Acquiring constraint networks
using a sat-based version space algorithm. In: Proceedings of the 21st National
Conference on Artificial Intelligence. pp. 1565–1568. No. 2, AAAI Press (2006)

7. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.G., Walsh, T.: Re-
formulating global constraints: the slide and regular constraints. In: Proceedings
of the 7th International Symposium on Abstraction, Reformulation, and Approxi-
mation (SARA 07). pp. 80–92. Springer (2007)

8. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Arti-
ficial Intelligence (In Press) (2015)

9. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P., Walsh, T.: Encodings of the
sequence constraint. In: Proceedings of the 13th International Conference of Prin-
ciples and Practice of Constraint Programming (CP 2007). pp. 210–224. Springer
(2007)

10. Coletta, R., Bessiere, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinque-
ton, J.: Constraint acquisition as semi-automatic modeling. In: Proceedings of the
23rd SGAI International Conference on Innovative Techniques and Applications of
Artificial Intelligence (AI 2003). pp. 111–124. Springer (2004)

11. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the se-
quence constraint. In: Proceedings of the 12th International Conference of Prin-
ciples and Practice of Constraint Programming (CP 2006), pp. 620–634. Springer
(2006)

12. Levitin, A.: Introduction to the Design and Analysis of Algorithms. Pearson Edu-
cation (2011)

13. O’Connell, S., O’Sullivan, B., Freuder, E.C.: A study of query generation strategies
for interactive constraint acquisition. In: Applications and Science in Soft Com-
puting, pp. 225–232. Springer (2004)

14. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Proceedings of the 10th International Conference of Principles and Prac-
tice of Constraint Programming (CP 2004). pp. 482–495. Springer (2004)

15. Pesant, G.: Counting solutions of csps: A structural approach. In: Proceedings of
the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005). pp.
260–265. Morgan Kaufmann Publishers Inc. (2005)

16. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of the 13th National Conference on Artificial Intelligence - Volume 1
(AAAI 1996). pp. 209–215. AAAI Press (1996)

17. Ross, S.M.: Introduction to probability models. Elsevier (2014)
18. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In:

Proceedings of the 44th Annual ACM Symposium on Theory of Computing
(STOC’12). pp. 887–898. ACM (2012)

19. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered
search heuristics. Constraints 14(3), 392–413 (2009)

