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Abstract

Designing a search heuristic for constraint programming that is reliable across problem
domains has been an important research topic in recent years. This paper concentrates on
one family of candidates: counting-based search. Such heuristics seek to make branching
decisions that preserve most of the solutions by determining what proportion of solutions to
each individual constraint agree with that decision. Whereas most generic search heuristics
in constraint programming rely on local information at the level of the individual variable,
our search heuristics are based on more global information at the constraint level. We
design several algorithms that are used to count the number of solutions to specific families
of constraints and propose some search heuristics exploiting such information. The exper-
imental part of the paper considers eight problem domains ranging from well-established
benchmark puzzles to rostering and sport scheduling. An initial empirical analysis identifies
heuristic maxSD as a robust candidate among our proposals. We then evaluate the latter
against the state of the art, including the latest generic search heuristics, restarts, and
discrepancy-based tree traversals. Experimental results show that counting-based search
generally outperforms other generic heuristics.

1. Introduction

Constraint Programming (cp) is a powerful technique to solve combinatorial problems. It
applies sophisticated inference to reduce the search space and a combination of variable-
and value-selection heuristics to guide the exploration of that search space. Because this
inference is encapsulated in each constraint appearing in the model of a problem, users may
consider it as a black box. In contrast, search in cp is programmable, which is a mixed
blessing. It allows one to easily tailor search to a problem, adding expertise and domain
knowledge, but it may also discourage the average user who would prefer a generic and
fairly robust default search heuristic that works well most of the time. Some generic search
heuristics are indeed available in cp but robustness remains an issue.

Whereas most generic search heuristics in constraint programming rely on information
at the level of the individual variable (e.g. its domain size and degree in the constraint
network), we investigate search heuristics based on more global information. “Global”
constraints in cp are successful because they encapsulate powerful dedicated inference al-
gorithms but foremost because they bring out the underlying structure of combinatorial
problems. That exposed structure can also be exploited during search. Search heuristics
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following the fail-first principle (detect failure as early as possible) and centered on con-
straints can be guided by a count of the number of solutions left for each constraint. We
might for example focus search on the constraint currently having the smallest number
of solutions, recognizing that failure necessarily occurs through a constraint admitting no
more solution. We can also count the number of solutions featuring a given variable-value
assignment in an individual constraint, favoring assignments appearing in a high proportion
of solutions with the hope that such a choice generally brings us closer to satisfying the
whole csp.

The concept of counting-based search heuristics has already been introduced, most re-
cently by Zanarini and Pesant (2009). The specific contributions of this paper are: addi-
tional counting algorithms, including for other families of constraints, thus broadening the
applicability of these heuristics; experiments that include the effect of some common features
of search heuristics such as search tree traversal order, restarts and learning; considerable
empirical evidence that counting-based search outperforms other generic heuristics.

In the rest of the paper: Section 2 provides background and reviews related work; Sec-
tions 3 to 5 present counting algorithms for several of the most usual constraints; Section 6
introduces counting-based search heuristics which can exploit the algorithms of the previ-
ous sections; Section 7 reports on an extensive experimental study comparing our proposed
heuristics to state-of-the-art generic heuristics on many problem domains; finally Section 8
concludes the paper.

2. Background and Related Work

We start with the usual general representation formalism for cp.

Definition 1 (constraint satisfaction problem (csp)). Given a finite set of variables X =
{x1, x2, . . .}, a finite domain of possible values for each of these variables, D = {D1, . . . , D|X|},
xi ∈ Di (1 ≤ i ≤ |X|), and a finite set of constraints (relations) over subsets of X,
C = {c1, c2, . . .}, the constraint satisfaction problem (X,D, C) asks for an assignment of a
value from Di to each variable xi of X that satisfies (belongs to) each cj in C.

And now recall some definitions and notation from Pesant (2005) and Zanarini and Pesant
(2009).

Definition 2 (solution count). Given a constraint c(x1, . . . , xn) and respective finite do-
mains Di 1≤i≤n, let #c(x1, . . . , xn) denote the number of n-tuples in the corresponding
relation, called its solution count.

Definition 3 (solution density). Given a constraint c(x1, . . . , xn), respective finite domains
Di 1≤i≤n, a variable xi in the scope of c, and a value d ∈ Di, we will call

σ(xi, d, c) =
#c(x1, . . . , xi−1, d, xi+1, . . . , xn)

#c(x1, . . . , xn)

the solution density of pair (xi, d) in c. It measures how often a certain assignment is part
of a solution to c.
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Heuristics are usually classified in two main categories: static variable ordering heuristics
(SVOs) and dynamic variable ordering heuristics (DVOs). The former order the variables
prior to search and do not revise the ordering during search. Common SVOs are lexico-
graphic order, lexico, and decreasing degree (i.e. number of constraints in which a variable
is involved), deg. DVOs are generally considered more effective as they exploit information
gathered during search. They often follow the fail-first principle originally introduced by
Haralick and Elliott (1980, p. 263) i.e. “To succeed, try first where you are most likely
to fail.” The same authors proposed the widely-used heuristic dom that branches on the
variables with the smallest domain; the aim of such a heuristic is to minimize branch depth.
A similar heuristic, proposed by Brélaz (1979), selects the variable with the smallest re-
maining domain and then breaks ties by choosing the one with the highest dynamic degree -
ddeg 1 (that is, the one constraining the largest number of unbound variables). Bessière and
Régin (1996) and Smith and Grant (1998) combined the domain and degree information by
minimizing the ratio dom/deg or dom/ddeg.

2.1 Impact-Based Heuristics

Refalo (2004) proposed Impact Based Search (IBS), a heuristic that chooses the variable
whose instantiation triggers the largest search space reduction (highest impact) that is
approximated as the reduction of the product of the variable domain cardinalities. More
formally the impact of a variable-value pair is:

I(xi = d) = 1−
Pafter
Pbefore

where Pafter and Pbefore are the products of the domain cardinalities respectively after and
before branching on xi = d (and propagating that decision). The impact is either computed
exactly at a given node of the search (the exact computation provides better information
but is more time consuming) or approximated as the average reduction observed during the
search (hence automatically collected on-the-go at almost no additional cost), that is:

Ī(xi = d) =

∑
k∈K I

k(xi = d)

|K|

where K is the index set of the impact observed so far for the assignment xi = d. The
variable impact is defined by Refalo (2004) as

I(xi) =
∑
d∈D′i

1− Ī(xi = d)

where D′i is the current domain of the variable xi. Impact initialization is fundamental to
obtain a good performance even at the root of the search tree; therefore, Refalo proposed
to initialize the impacts by probing each variable-value pair at the root node (note that
this subsumes a reduced form of singleton consistency at the root node and can be quite
computationally costly). IBS selects the variable having the largest impact (hence trying

1. It is also referred to as future degree or forward degree in the literature.
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to maximize the propagation effects and the reduction of the search space) and then selects
the value having the smallest impact (hence leaving more choices for the future variables).

As an interesting connection with impact-based heuristics, Szymanek and O’Sullivan
(2006) proposed to query the model constraints to approximate the number of filtered
values by each constraint individually. This information is then exploited to design a vari-
able and/or value selection heuristic. Nonetheless, it differs from impact-based search as
they take into consideration each constraint separately, and from counting-based heuristics
(Zanarini & Pesant, 2009) as the information provided is more coarse-grained than actual
solution counts.

2.2 Conflict-Driven Heuristics

Boussemart, Hemery, Lecoutre, and Sais (2004) proposed a conflict-driven variable ordering
heuristic: they extended the concept of variable degree integrating a simple but effective
learning technique that takes failures into account. Basically each constraint has an asso-
ciated weight that is increased by one each time the constraint leads to a failure (i.e. a
domain wipe-out). A variable has a weighted degree – wdeg – that is the sum of the weights
of constraints in which it is involved. Formally, the weighted degree of a variable is:

αwdeg(xi) =
∑
c∈C

weight[c] | V ars(c) 3 xi ∧ |FutV ars(c)| > 1

where FutV ars(c) denotes the uninstantiated variables of the constraint c, weight[c] is its
weight and V ars(c) the variables involved in c. The heuristics proposed simply choose the
variable that maximizes wdeg or minimizes dom/wdeg. These heuristics offer no general
method to deal with global constraints: a natural extension is to increase the weight of
every variable in a failed constraint but most of them may not have anything to do with
the failure, which dilutes the conflict information. They are also particularly sensitive to
revision orderings (i.e. the ordering of the propagation queue) hence leading to varying
performance. Grimes and Wallace (2006, 2007) proposed some adaptations of dom/wdeg
when combined with restarts or by updating weights on value deletions as well. Balafoutis
and Stergiou (2008b) proposed, among other improvements over the original dom/wdeg,
weight aging, that is the constraint weights are periodically reduced. This limits the inertia
of constraints that got a significant weight early in the search but that are not critical
anymore later on.

Nowadays heuristics dom/wdeg and IBS are considered to be the state of the art of
generic heuristics with no clear dominance by one or the other (Balafoutis & Stergiou,
2008a). Finally we note that both rely on the hypothesis that what is learned early in the
search will tend to remain true throughout the search tree: impacts should not change much
from one search tree node to the other; the same constraints lead to domain wipe-outs in
different parts of the search tree.

2.3 Approximated Counting-Based Heuristics

The idea of using an approximation on the number of solutions of a problem as heuristic
is not new. Kask, Dechter, and Gogate (2004) approximate the total number of solutions
extending a partial solution to a csp and use it in a value selection heuristic, choosing
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the value whose assignment to the current variable gives the largest approximate solution
count. An implementation optimized for binary constraints performs well compared to
other popular strategies. Hsu, Kitching, Bacchus, and McIlraith (2007) and later Bras,
Zanarini, and Pesant (2009) apply a Belief Propagation algorithm within an Expectation
Maximization framework (EMBP) in order to approximate variable biases (or marginals)
i.e. the probability a variable takes a given value in a solution. The resulting heuristics tend
to be effective but quite time-consuming. One way to differentiate our work from these is
that we focus on fine-grained information from individual constraints whereas they work on
coarser information over the whole problem.

3. Counting for Alldifferent Constraints

The alldifferent constraint restricts a set of variables to be pairwise different (Régin,
1994).

Definition 4 (Alldifferent Constraint). Given a set of variables X = {x1, . . . , xn} with
respective domains D1, . . . , Dn, the set of tuples allowed by alldifferent(X) are:

{(d1, d2, . . . , dn) | di ∈ Di, di 6= dj∀i 6= j}

We define the associated (0-1) square matrix A = (aid) with |
⋃
i=1,...,nDi| rows and

columns such that aid = 1 iff d ∈ Di
2. If there are more distinct values in the domains than

there are variables, say p more, we add p rows filled with 1s to matrix A. An equivalent
representation is given by the bipartite value graph with a vertex for each variable and value
and edges corresponding to “1” entries in A.

Then as discussed by Zanarini and Pesant (2009), counting the number of solutions to
an alldifferent constraint is equivalent to computing the permanent of A (or the number
of maximum matchings in the value graph), formally defined as

perm(A) =

n∑
d=1

a1,d perm(A1,d) (1)

where A1,d denotes the submatrix obtained from A by removing row 1 and column d (the
permanent of the empty matrix is equal to 1). If p extra rows were added, the result must
be divided by p! as shown by Zanarini and Pesant (2010).

Because computing the permanent is well-known to be #P -complete (Valiant, 1979),
Zanarini and Pesant (2009) developed an approach based on sampling which gave close
approximations and led to very effective heuristics on hard instances. However it was not
competitive on easy to medium difficulty instances because of the additional computational
effort. The next section describes an approach based on upper bounds, trading approxima-
tion accuracy for a significant speedup in the counting procedure.3

2. For notational convenience and without loss of generality, we identify domain values with consecutive
natural numbers.

3. This was originally introduced by Zanarini and Pesant (2010).
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3.1 Upper Bounds

In the following we assume for notational convenience that matrix A has n rows and columns
and we denote by ri the sum of the elements in the ith row of A (i.e. ri =

∑n
d=1 aid).

A first upper bound for the permanent was conjectured by Minc (1963) and later proved
by Brégman (1973):

perm(A) ≤
n∏
i=1

(ri!)
1/ri . (2)

Recently Liang and Bai (2004) proposed a second upper bound (with qi = min{d ri+1
2 e, d

i
2e}):

perm(A)2 ≤
n∏
i=1

qi(ri − qi + 1). (3)

Neither of these two upper bounds strictly dominates the other. In the following we
denote by UBBM (A) the Brégman-Minc upper bound and by UBLB(A) the Liang-Bai
upper bound. Jurkat and Ryser (1966) proposed another bound:

perm(A) ≤
n∏
i=1

min(ri, i).

However it is considered generally weaker than UBBM (A) (see Soules, 2005 for a compre-
hensive literature review).

3.1.1 Algorithm

We decided to adapt UBBM and UBLB in order to compute an approximation of solution
densities for the alldifferent constraint. Assigning d to variable xi translates to replacing
the ith row by the unit vector e(d) (i.e. setting the ith row of the matrix to 0 except for
the element in column d). We write Axi=d to denote matrix A except that xi is fixed to d.
We call local probe the assignment xi = d performed to compute Axi=d i.e. a temporary
assignment that does not propagate to any other constraint except the one being processed.

The upper bound on the number of solutions of the alldifferent(x1, . . . , xn) constraint
with a related adjacency matrix A is then simply

#alldifferent(x1, . . . , xn) ≤ min{UBBM (A), UBLB(A)}

Note that in Formulas 2 and 3, the ri’s are equal to |Di|; since |Di| ranges from 0 to n,
the factors can be precomputed and stored: in a vector BMfactors[r] = (r!)1/r, r = 0, . . . , n
for the first bound and similarly for the second one (with factors depending on both |Di|
and i). Assuming that |Di| is returned in O(1), computing the formulas takes O(n) time.
Solution densities are then approximated as

σ(xi, d, alldifferent) ≈ min{UBBM (Axi=d), UB
LB(Axi=d)}

η

where η is a normalizing constant so that
∑

d∈Di σ(xi, d, alldifferent) = 1.

178



Counting-Based Search

The local probe xi = d may trigger some local propagation according to the level of
consistency we want to achieve; therefore Axi=d is subject to the filtering performed on the
constraint being processed. Since the two bounds in Formulas 2 and 3 depend on |Di|, a
stronger form of consistency would likely lead to more changes in the domains and on the
bounds, and presumably to more accurate solution densities.

If we want to compute σ(xi, d, alldifferent) for all i = 1, . . . , n and for all d ∈ Di then
a trivial implementation would compute Axi=d for each variable-value pair; the total time
complexity would be O(mP +mn) (where m is the sum of the cardinalities of the variable
domains and P the time complexity of the filtering).

Although unable to improve over the worst case complexity, in the following we pro-
pose an algorithm that performs definitely better in practice. We introduce before some
additional notation: we write as D′k the variable domains after enforcing θ-consistency4

on that constraint alone and as Ĩxi=d the set of indices of the variables that were subject
to a domain change due to a local probe and the ensuing filtering, that is, k ∈ Ĩxi=d iff
|D′k| 6= |Dk|. We describe the algorithm for the Brégman-Minc bound — it can be easily
adapted for the Liang-Bai bound.

The basic idea is to compute the bound for matrix A and to reuse it to speed up the
computation of the bounds for Axi=d for all i = 1, . . . , n and d ∈ Di. Let

γk =


BMfactors[|D′k|]
BMfactors[|Dk|] if k ∈ Ĩxi=d

1 otherwise

UBBM (Axi=d) =
n∏
k=1

BMfactors[|D′k|] =
n∏
k=1

γk BMfactors[|Dk|]

= UBBM (A)
n∏
k=1

γk

Note that γk with k = i (i.e. we are computing UBBM (Axi=d)) does not depend on d;
however Ĩxi=d does depend on d because of the domain filtering.

Algorithm 1 shows the pseudo code for computing UBBM (Axi=d) for all i = 1, . . . , n
and d ∈ Di. Initially, it computes the bound for matrix A (line 1); then, for a given i, it
computes γi and the upper bound is modified accordingly (line 3). Afterwards, for each
d ∈ Di, θ-consistency is enforced (line 7) and it iterates over the set of modified variables
(line 9-10) to compute all the γk that are different from 1. We store the upper bound for
variable i and value d in the structure V arV alUB[i][d]. Before computing the bound for
the other variables-values the assignment xi = d needs to be undone (line 12). Finally, we
normalize the upper bounds in order to correctly return solution densities (line 13-14). Let
I be equal to maxi,d |Ĩxi=d|, the time complexity is O(mP +mI).

If matrix A is dense we expect I ' n. Therefore most of the γk are different from 1 and
need to be computed. As soon as the matrix becomes sparse enough then I � n and only a
small fraction of γk need to be computed, and that is where Algorithm 1 has an advantage.

4. Stands for any form of consistency
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UB = UBBM (A);1

for i = 1, . . . , n do2

varUB = UB * BMfactors[1] / BMfactors[|Di|];3

total = 0;4

forall d ∈ Di do5

set xi = d;6

enforce θ-consistency;7

VarValUB[i][d] = varUB;8

forall k ∈ Ĩxi=d \ {i} do9

VarValUB[i][d] = VarValUB[i][d] * BMfactors[|D′k|] / BMfactors[|Dk|];10

total = total + VarValUB[i][d];11

rollback xi = d;12

forall d ∈ Di do13

SD[i][d] = VarValUB[i][d]/total;14

return SD;15

Algorithm 1: Solution Densities

The sampling algorithm introduced by Zanarini and Pesant (2009) performed very well
both in approximating the solution count and the solution densities, but this is not the case
for upper bounds. The latter in fact produce weak approximations of the solution count
but offer a very good trade-off between performance and accuracy for solution densities:
taking the ratio of two solution counts appears to cancel out the weakness of the original
approximations (see Zanarini & Pesant, 2010 for further details).

3.2 Symmetric Alldifferent

Régin (1999) proposed the symmetric alldifferent constraint that is a special case of
the alldifferent in which variables and values are defined from the same set. This is
equivalent to a traditional alldifferent with an additional set of constraints stating that
variable i is assigned to a value j iff variable j is assigned to value i. This constraint is useful
in many real world problems in which a set of entities need to be paired up; particularly, in
sport scheduling problems teams need to form a set of pairs that define the games.

A symmetric alldifferent achieving domain consistency provides more pruning power
than the equivalent decomposition given by the alldifferent constraint and the set of
xi = j ⇐⇒ xj = i constraints (Régin, 1999). Its filtering algorithm is inspired from the
one for alldifferent with the difference being that the matching is computed in a graph
(not necessarily bipartite) called contracted value graph where vertices and values repre-
senting the same entity are collapsed into a single vertex (i.e. the vertex xi and the vertex
i are merged into a single vertex i representing both the variable and the value). Régin
proved that there is a bijection between a matching in the contracted value graph and a
solution of the symmetric alldifferent constraint. Therefore, counting the number of
matchings on the contracted value graph corresponds to counting the number of solutions
to the constraint.
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Friedland (2008) and Alon and Friedland (2008) extended the Brégman-Minc upper
bound to consider the number of matchings in general undirected graphs. Therefore, we
can exploit the bound as in the previous section in order to provide an upper bound of the
solution count and the solution densities for the symmetric alldifferent constraint. The
upper bound for the number of matchings of a graph G = (V,E) representing the contracted
value graph is the following:

#matchings(G) ≤
∏
v∈V

(deg(v))!
1

2deg(v) (4)

where deg(v) is the degree of the vertex v and #matchings(G) denotes the number of
matchings on the graph G. Note that in case of a bipartite graph, this bound is equivalent
to the Brégman-Minc upper bound.

The algorithm for counting the number of solutions and computing the solution densities
can be easily derived from what we proposed for the alldifferent.

Example 1. Consider a symmetric alldifferent defined on six variables x1, . . . , x6 each
one having a domain equal to {1, . . . , 6}. In Figure 1 the associated contracted value graph
is depicted (together with a possible solution to the constraint). In this case, the number of
solutions of the symmetric alldifferent can be computed as 5 ∗ 3 = 15. In the contracted
value graph each vertex is connected to each other vertex, forming a clique of size 6, therefore
all the vertices have a degree equal to 5. The upper bound proposed by Friedland is equal to:

#matchings(G) ≤
∏
v∈V

(deg(v))!
1

2deg(v) = (5!1/10)6 ≈ 17.68

In the alldifferent formulation, the related value graph has variable vertices connected to
each of the values (from 1 to 6) thus the ri’s are equal to 6. If we consider to rule out all
the edges causing degenerated assignments (xi = i) then we end up with a value graph in
which all the ri’s are equal to 5. The Brégman-Minc upper bound would give:

perm(A) ≤
n∏
i=1

(ri!)
1/ri = (5!(1/5))6 ≈ 312.62.

The result is obviously very far from the upper bound given by Formula 4 as well as from
the exact value.

4. Counting for Global Cardinality Constraints

We present in this section how to extend the results obtained in Section 3 to the Global
Cardinality Constraint (gcc), which is a generalization of the alldifferent constraint.

Definition 5 (Global Cardinality Constraint). The set of solutions of constraint gcc(X, l, u)
where X is a set of k variables, l and u respectively the lower and upper bounds for each
value, is defined as:

T (gcc(X, l, u)) = {(d1, . . . , dk) | di ∈ Di, ld ≤ |{di|di = d}| ≤ ud ∀d ∈ DX =
⋃
xj∈X

Dj}
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1

23

45

6

Figure 1: Contracted Value Graph for the constraint symmetric alldifferent of Example
1. Edges in bold represent a possible solution.

We will consider a gcc in which all the fixed variables are removed and the lower and
upper bounds are adjusted accordingly (the semantics of the constraint is unchanged). We
refer to the new set of variables as X ′ = {x ∈ X | x is not bound}; lower bounds are l′

where l′d = ld− |{x ∈ X | x = d}| and upper bounds u′ are defined similarly; we assume the
constraint maintains θ-consistency so l′d ≥ 0 and u′d ≥ 0 for each d ∈ DX .

Inspired by Quimper, Lopez-Ortiz, van Beek, and Golynski (2004) and Zanarini, Milano,
and Pesant (2006), we define Gl the lower bound graph.

Definition 6. Let Gl(X
′ ∪Dl, El) be an undirected bipartite graph where X ′ is the set of

unbounded variables and Dl the extended value set, that is for each d ∈ DX the graph has l′d
vertices d1, d2, . . . representing d (l′d possibly equal to zero). There is an edge (xi, d

j) ∈ El
if and only if d ∈ Di.

Note that a maximum matching on Gl corresponds to a partial assignment of the vari-
ables in X that satisfies the gcc lower bound restriction on the number of occurrences of
each value. This partial assignment may or may not be completed to a full assignment
that satisfies both upper bound and lower bound restrictions (here we do not take into
consideration augmenting paths as Zanarini et al., 2006 but instead we fix the variables to
the values represented by the matching in Gl).

Example 2. Suppose we have a gcc defined on X = {x1, . . . , x6} with domains D1 = D4 =
{1, 2, 3}, D2 = {2}, D3 = D5 = {1, 2} and D6 = {1, 3}; lower and upper bounds for the
values are respectively l1 = 1, l2 = 3, l3 = 0 and u1 = 2, u2 = 3, u3 = 2. Considering that
x2 = 2, the lower and upper bounds for the value 2 are respectively l′2 = 2 and u′2 = 2. The
lower bound graph is shown in Figure 2a: variable x2 is bounded and thus does not appear
in the graph, value vertex 2 is represented by two vertices because it has l′2 = 2 (although
l2 = 3); finally value vertex 3 does not appear because it has a lower bound equal to zero. The
matching shown in the figure (bold edges) is maximum. However if we fix the assignments
represented by it (x1 = 2, x4 = 2, x6 = 1) it is not possible to have a consistent solution
since both x3 and x5 have to be assigned either to 1 or 2 hence exceeding the upper bound
restriction. To compute the permanent two additional fake value vertices would be added to
the graph and connected to all the variable vertices (not shown in the figure).
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x1

x3

x4

x5

x6

1

2

2′

(a)

x1

x3

x4

x5

x6

1

3

3′

(b)

Figure 2: Lower Bound Graph (a) and Residual Upper Bound Graph (b) for Example 2

Every partial assignment that satisfies just the lower bound restriction might correspond
to several maximum matchings in Gl due to the duplicated vertices. For each partial
assignment satisfying the lower bound restriction there are exactly

∏
d∈DX l

′
d! maximum

matchings corresponding to that particular partial assignment. If we take into consideration
Example 2 shown in Figure 2a, variables x1 and x4 may be matched respectively to any
permutation of the vertices 2 and 2′, however no matter which is the permutation, this set
of matchings represents always the assignment of both x2 and x4 to the value 2.

Let Ml
5 be the set of maximum matchings in Gl. We define f : Ml → N, a function that

counts the number of possible ways a maximum matching can be extended to a full gcc
solution. As shown in Example 2, f can be possibly equal to zero. Note that the number of
the remaining variables that need to be assigned starting from a matching m ∈Ml is equal
to K = |X ′| −

∑
d∈DX l

′
d.

The total number of solutions satisfying the gcc is:

#gcc(X, l, u) =

∑
m∈Ml

f(m)∏
d∈DX l

′
d!
≤ |Ml|maxm∈Ml

(f(m))∏
d∈DX l

′
d!

≤ UB(Gl) maxm∈Ml
(f(m))∏

d∈DX l
′
d!

(5)

where UB(Gl) represents an upper bound on the permanent of the 0−1 matrix correspond-
ing to graph Gl.

Note that computing f(m) is as hard as computing the permanent. In fact if l and u
are respectively equal to 0 and 1 for each value, the result is an alldifferent constraint
and equation 5 simplifies to #gcc(X, l, u) = f(m) where m = {∅} and f(m) corresponds to
the permanent.

As computing f(m) is a #P-complete problem on its own, we focus here on upper bound-
ing f(m). In order to do that, we introduce the upper bound residual graph. Intuitively, it
is similar to the lower bound graph but it considers the upper bound restriction.

Definition 7. Let Gu(X ′ ∪Du, Eu) be an undirected bipartite graph where X ′ is the set of
unbounded variables and Du the extended value set, that is for each d ∈ DX the graph has

5. if ∀d ∈ DX , l′d = 0 then Ml = {∅} and |Ml| = 1
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u′d − l′d vertices d1, d2, . . . representing d (if u′d − l′d is equal to zero then there is no vertex
representing d). There is an edge (xi, d

j) ∈ Eu if and only if d ∈ Di and u′d − l′d > 0.

Similarly to the lower bound matching, a matching on Gu that covers K variables may
or may not be completed to a full assignment satisfying the complete gcc. Figure 2b shows
the residual upper bound graph for Example 1: value 2 disappears from the graph since
it has u′2 = l′2 i.e. starting from a matching in the lower bound graph, the constraints on
value 2 are already satisfied.

In order to compute maxm∈Ml
(f(m)), we should build

(|X|
K

)
graphs each with a com-

bination of K variables, and then choose the one that maximizes the permanent. More
practically, given the nature of the UBMB and UBLB, it suffices to choose K variables
which contribute with the highest factor in the computation of the upper bounds; this can
be easily done in O(n logK) by iterating over the n variables and maintaining a heap with
K entries with the highest factor. We write Ĝu and G̃u for the graphs in which only the
K variables that maximize respectively UBMB and UBLB are present; note that Ĝu might
be different from G̃u.

We recall here that although only K variables are chosen, the graphs Ĝu and G̃u are
completed with fake vertices in such a way to have an equal number of vertices on the two
vertex partitions. As in the lower bound graph, the given upper bound has to be scaled
down by a factor of

∏
d∈DX (u′d − l′d)!. From Equation 5, the number of gcc solutions is

bounded from above by:

#gcc(X, l, u) ≤ UB(Gl) min(UBMB(Ĝu), UBLB(G̃u))∏
d∈DX (l′d!(u

′
d − l′d)!)

(6)

Scaling and also fake vertices used with the permanent bounds are factors that degrade
the quality of the upper bound. Nonetheless, solution densities are computed as a ratio
between two upper bounds therefore these scaling factors are often attenuated.

Example 3. We refer to the gcc described in Example 2. The exact number of solutions is
19. The UBMB and UBLB for the lower bound graph in Figure 2a are both 35 (the scaling
for the two fake value vertices is already considered). In the upper bound only 2 variables
need to be assigned and the one maximizing the bounds are x1 and x4 (or possibly x6): the
resulting permanent upper bound is 6. An upper bound on the total number of gcc solutions
is then b35∗6

4 c = 52 where the division by 4 is due to l′2! = 2! and u′3! = 2!.

Figure 3 shows the lower bound and residual upper bound graph for the same constraint
where x1 = 1 and domain consistency is achieved. Vertex x1 has been removed and l′1 = 0
and u′1 = 1. The graph Gl has a permanent upper bound of 6. The number of unassigned
variables in Gu is 2 and the ones maximizing the upper bounds are x4 and x6, giving an
upper bound of 6. The total number of gcc solutions with x1 = 1 is then bounded above by
b6∗6

4 c = 9; the approximate solution density before normalizing it is thus 9/52. Note that
after normalization, it turns out to be about 0.18 whereas the exact computation of it is
5/19 ∼ 0.26.
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Figure 3: Lower Bound Graph (a) and Residual Upper Bound Graph (b) assuming x1 = 1

5. Counting for Regular and Knapsack Constraints

The regular constraint is useful to express patterns that must be exhibited by sequences
of variables.

Definition 8 (Regular Language Membership Constraint). The regular(X,Π) constraint
holds if the values taken by the sequence of finite domain variables X = 〈x1, x2, . . . , xk〉 spell
out a word belonging to the regular language defined by the deterministic finite automaton
Π = (Q,Σ, δ, q0, F ) where Q is a finite set of states, Σ is an alphabet, δ : Q × Σ → Q is
a partial transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final (or
accepting) states.

Linear equalities and inequalities are expressed as knapsack constraints.

Definition 9 (Knapsack Constraint). The knapsack(x, c, `, u) constraint holds if

` ≤ cx ≤ u

where c = (c1, c2, . . . , ck) is an integer row vector, x is a column vector of finite domain
variables (x1, x2, . . . , xk)

T with xi ∈ Di, and ` and u are integers.

We assume that l and u are finite as they can always be set to the smallest and largest
value that cx can take. Strictly speaking to be interpreted as a knapsack, the integer values
involved (including those in the finite domains) should be nonnegative but the algorithms
proposed in this section can be easily adapted to lift the restriction of nonnegative coeffi-
cients and domain values, at the expense of a larger graph in the case of the algorithm of
Section 5.1. So we are dealing here with general linear constraints.

The filtering algorithms for the regular constraint and the knapsack constraint (when
domain consistency is enforced) are both based on the computation of paths in a layered
acyclic directed graph (Pesant, 2004; Trick, 2003). This graph has the property that paths
from the first layer to the last are in one-to-one correspondence with solutions of the con-
straint. An exact counting algorithm for the former constraint is derived by Zanarini and
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Pesant (2009) — in the next section we describe an exact counting algorithm for knapsack
constraints which is similar in spirit, while in Section 5.2 we present an approximate count-
ing algorithm attuned to bounds consistency. 6

5.1 Domain Consistent Knapsacks

We start from the reduced graph described by Trick (2003), which is a layered directed
graph G(V,A) with special vertex v0,0 and a vertex vi,b ∈ V for 1 ≤ i ≤ k and 0 ≤ b ≤ u
whenever

∀ j ∈ [1, i], ∃ dj ∈ Dj such that
i∑

j=1

cjdj = b

and

∀ j ∈ (i, n], ∃ dj ∈ Dj such that `− b ≤
k∑

j=i+1

cjdj ≤ u− b,

and an arc (vi,b, vi+1,b′) ∈ A whenever

∃ d ∈ Di+1 such that ci+1d = b′ − b.

We define the following two recursions to represent the number of incoming and outgoing
paths at each node.

For every vertex vi,b ∈ V , let #ip(i, b) denote the number of paths from vertex v0,0 to
vi,b:

#ip(0, 0) = 1

#ip(i+ 1, b′) =
∑

(vi,b,vi+1,b′ )∈A

#ip(i, b), 0 ≤ i < n

Let #op(i, b) denote the number of paths from vertex vi,b to a vertex vk,b′ with ` ≤ b′ ≤ u.

#op(n, b) = 1

#op(i, b) =
∑

(vi,b,vi+1,b′ )∈A

#op(i+ 1, b′), 0 ≤ i < k

The total number of paths (i.e. the solution count) is given by

#knapsack(x, c, `, u) = #op(0, 0)

in time linear in the size of the graph even though there may be exponentially many of
them. The solution density of variable-value pair (xi, d) is given by

σ(xi, d, knapsack) =

∑
(vi−1,b,vi,b+cid)∈A #ip(i− 1, b) ·#op(i, b+ cid)

#op(0, 0)
.

6. This was originally introduced by Pesant and Quimper (2008).
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Figure 4: Reduced graph for knapsack constraint 5 ≤ 3x1 + x2 + 2x3 + x4 ≤ 8 with D1 =
{0, 1, 2}, D2 = {0, 1, 3}, D3 = {0, 1, 2}, D4 = {1, 2}. Vertex labels represent the
number of incoming and outgoing paths.

variable
value x1 x2 x3 x4

0 9/22 8/22 9/22 –
1 10/22 8/22 7/22 11/22
2 3/22 – 6/22 11/22
3 – 6/22 – –

Table 1: Solution densities for the example of Fig. 4.

In Figure 4, the left and right labels inside each vertex give the number of incoming and
outgoing paths for that vertex, respectively. Table 1 reports the solution densities for every
variable-value pair.

The time required to compute recursions #ip() and #op() is related to the number of
arcs, which is in O(kumax1≤i≤k{|Di|}). Then each solution density computes a summation
over a subset of the arcs but each arc of the graph is involved in at most one such summation,
so the overall time complexity of computing every solution density is O(kumax1≤i≤k{|Di|})
as well.

5.2 Bounds Consistent Knapsacks

Knapsack constraints, indeed most arithmetic constraints, have traditionally been handled
by enforcing bounds consistency, a much cheaper form of inference. In some situations,

187



Pesant, Quimper, & Zanarini

we may not afford to enforce domain consistency in order to get the solution counting
information we need to guide our search heuristic. Can we still retrieve such information,
perhaps not as accurately, from the weaker bounds consistency?

Consider the variable x with domain D = [a, b]. Each value in D is equiprobable. We
associate to x the discrete random variable X which follows a discrete uniform distribution
with probability mass function f(v), mean µ = E[X], and variance σ2 = V ar[X].

f(v) =

{
1

b−a+1 if a ≤ v ≤ b
0 otherwise

(7)

µ =
a+ b

2
(8)

σ2 =
(b− a+ 1)2 − 1

12
(9)

To find the distribution of a variable subject to a knapsack constraint, one needs to
find the distribution of a linear combination of uniformly distributed random variables.
Lyapunov’s central limit theorem allows us to approximate the distribution of such a linear
combination.

Theorem 1 (Lyapunov’s central limit theorem). Consider the independent random vari-
ables X1, . . . , Xn. Let µi be the mean of Xi, σ

2
i be its variance, and r3

i = E[|Xi − µi|3] be
its third central moment. If

lim
n→∞

(
∑n

i=1 r
3
i )

1
3

(
∑n

i=1 σ
2
i )

1
2

= 0,

then the random variable S =
∑n

i=1Xi follows a normal distribution with mean µS =∑n
i=1 µi and variance σ2

S =
∑n

i=1 σ
2
i .

The probability mass function of the normal distribution with mean µ and variance σ2

is the Gaussian function:

ϕ(x) =
e−

(x−µ)2

2σ2

σ
√

2π
(10)

Note that Lyapunov’s central limit theorem does not assume that the variables are taken
from identical distributions. This is necessary since variables with different domains have
different distributions.

Lemma 1 defines an upper bound on the third central moment of the expression kX
where k is a positive coefficient and X is a uniformly distributed random variable.

Lemma 1. Let Y be a discrete random variable equal to kX such that k is a positive
coefficient and X is a discrete random variable uniformly distributed over the interval [a, b].
The third central moment r3 = E[|Y − E[Y ]|3] is no greater than k3(b− a)3.

Proof. The case where a = b is trivial. We prove for b − a > 0. The proof involves simple
algebraic manipulations from the definition of the expectation.
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r3 =
kb∑
i=ka

|i− E[Y ]|3f(i) (11)

=
b∑

j=a

|kj − kE[X]|3f(j) (12)

= k3
b∑

j=a

∣∣∣∣j − a+ b

2

∣∣∣∣3 1

b− a+ 1
since k > 0 (13)

=
k3

b− a+ 1

 a+b
2∑

j=a

(
a+ b

2
− j
)3

+

b∑
j=a+b

2

(
j − a+ b

2

)3

 (14)

=
k3

b− a+ 1

 b−a
2∑
j=0

j3 +

b−a
2∑
j=0

j3

 (15)

≤ 2k3

b− a

b−a
2∑
j=0

j3 since b− a > 0 (16)
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Let m = b−a
2 .

r3 ≤ k3

m

m∑
j=0

j3 (17)

≤ k3

m

(
1

4
(m+ 1)4 − 1

2
(m+ 1)3 +

1

4
(m+ 1)2

)
(18)

≤ k3

m

(
m4

4
+
m3

2
+
m2

4

)
(19)

≤ k3

m

(
m4

4
+m4 +m4

)
since m ≥ 1

2 (20)

≤ 9

4
k3m3 (21)

Which confirms that r3 ≤ 9
32k

3(b− a)3 ≤ k3(b− a)3.

Lemma 2 defines the distribution of a linear combination of uniformly distributed ran-
dom variables.

Lemma 2. Let Y =
∑n

i=1 ciXi be a random variable where Xi is a discrete random variable
uniformly chosen from the interval [ai, bi] and ci is a non-negative coefficient. When n tends
to infinity, the distribution of Y tends to a normal distribution with mean

∑n
i=1 ci

ai+bi
2 and

variance
∑n

i=1 c
2
i

(bi−ai+1)2−1
12 .

Proof. Let Yi = ciXi be a random variable. We want to characterize the distribution of∑n
i=1 Yi. Let mi = bi−ai

2 . The variance of the uniform distribution over the interval [ai, bi]

is σ2
i = (bi−ai+1)2−1

12 =
(mi+

1
2

)2

3 − 1
12 . We have V ar[Yi] = c2

iV ar[Xi] = c2
iσ

2
i . Let r3

i be the
third central moment of Yi. By Lemma 1, we have r3

i ≤ c3
i (bi − ai)3. Let L be the term

mentioned in the condition of Lyapunov’s central limit theorem:

L = lim
n→∞

(∑n
i=1 r

3
i

) 1
3(∑n

i=1 c
2
iσ

2
i

) 1
2

(22)

Note that the numerator and the denominator of the fraction are non-negative. This
implies that L itself is non-negative. We prove that L ≤ 0 as n tends to infinity.
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Figure 5: The histogram is the actual distribution of the expression 3x+4y+2z for x, y, z ∈
[0, 5]. The curve is the approximation given by the Gaussian curve with mean
µ = 22.5 and variance σ2 = 84.583.

L ≤ lim
n→∞

(∑n
i=1 8c3

im
3
i

) 1
3(∑n

i=1 c
2
i

(
(mi+

1
2

)2

3 − 1
12

)) 1
2

(23)

≤ lim
n→∞

(
8
∑n

i=1 c
3
im

3
i

) 1
3(

1
3

∑n
i=1 c

2
im

2
i

) 1
2

(24)

≤ lim
n→∞

2
√

3 6

√√√√(∑n
i=1 c

3
im

3
i

)2(∑n
i=1 c

2
im

2
i

)3 (25)

≤ lim
n→∞

2
√

3 6

√ ∑n
i=1

∑n
j=1(cicjmimj)3∑n

i=1

∑n
j=1

∑n
k=1(cicjckmimjmk)2

(26)

Note that in the last inequality, the terms (cicjmimj)
3 and (cicjckmimjmk)

2 are of the
same order. However, there are n times more terms in the denominator than the numerator.
Therefore, when n tends to infinity, the fraction tends to zero which proves that L = 0 as
n tends to zero.

By Lyapunov’s central limit theorem, as n tends to infinity, the expression Y =
∑n

i=1 Yi
tends to a normal distribution with mean E[Y ] =

∑n
i=1 ciE[Xi] =

∑n
i=1 ci

ai+bi
2 and variance

V ar[Y ] =
∑n

i=1 c
2
iV ar[Xi] =

∑n
i=1 c

2
i

(bi−ai+1)2−1
12 .

Consider the knapsack constraint ` ≤
∑n

i=1 cixi ≤ u. Let xn+1 be a variable with domain

Dn+1 = [`, u]. We obtain xj = 1
cj

(xn+1 −
∑j−1

i=1 cixi −
∑n

i=j+1 cixi). Some coefficients in

this expression might be negative. They can be made positive by setting c′i = −ci and
D′i = [−max(Di),−min(Di)]. When n grows to infinity, the distribution of xj tends to
a normal distribution as stated in Lemma 2. In practice, the normal distribution is a
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good estimation even for small values of n. Figure 5.2 shows the actual distribution of the
expression 3x+ 4y + 2z for x, y, z ∈ [0, 5] and its approximation by a normal distribution.

Given a variable xi subject to a knapsack constraint, Algorithm 2 returns the assignment
xi = ki with the highest solution density. The for loop computes the average mean µj and
the variance σ2

j of the uniform distribution associated to each variable xj . Lines 4 and 5
compute the mean and the variance of the distribution of xn+1 −

∑n
j=1 cjxj while Lines 6

and 7 compute the mean and the variance of xi = 1
ci

(xn+1 −
∑i−1

j=1 cjxj −
∑n

j=i+1 cjxj).
Since this normal distribution is symmetric and unimodal, the most likely value ki in the
domain Di is the one closest to the mean µi. The algorithm finds and returns this value as
well as its density di. The density di is computed using the normal distribution. Since the
variable xi must be assigned to a value in its domain, the algorithm normalizes on Line 9
the distribution over the values in the interval [min(Di),max(Di)].

for j ∈ [1, n] do1

µj ← min(Dj)+max(Dj)
2 ;2

σ2
j ←

(max(Dj)−min(Dj)+1)2−1
12 ;3

M ← l+u
2 −

∑n
j=1 cjµj ;4

V ← (u−l+1)2−1
12 +

∑n
j=1 c

2
jσ

2
j ;5

m← M+ciµi
ci

;6

v ← V−c2i σ2
i

c2i
;7

ki ← arg mink∈Di |k −m|;8

di ← e−
(ki−m)2

2v /
∑max(Di)

k=min(Di)
e−

(k−m)2

2v ;9

return 〈xi = ki, di〉10

Algorithm 2: xi = ki with the highest density as well as its density di for knapsack
constraint ` ≤

∑n
i=1 cixi ≤ u.

Lines 1 through 5 take O(n) time to execute. Line 8 depends on the data structure
used by the solver to encode a domain. We assume that the line takes O(log |Di|) time to
execute. The summation on Line 9 can be computed in constant time by approximating
the summation with Φm,v(max(Di) + 1

2) − Φm,v(min(Di) + 1
2) where Φm,v is the normal

cumulative distribution function with average m and variance v. The constant 1
2 is added for

the continuity correction. Other lines have a constant running time. The total complexity
of Algorithm 2 is therefore O(n + log |Di|). Note that Line 1 to Line 5 do not depend
on the value of i. Their computation can therefore be cached for subsequent calls to the
function over the same knapsack constraint. Using this technique, finding the variable xi ∈
{x1, . . . , xn} which has an assignment xi = ki of maximum density takes O(

∑n
i=1 log |Di|)

time.

A source of alteration of the distribution are values in the interval which are absent
from the actual domain. Bounds consistency approximates the domain of a variable with
its smallest covering interval. In order to reduce the error introduced by this approximation,
one can compute the actual mean and actual variance of a domain Di on Lines 2 and 3
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instead of using the mean and the variance of the covering interval, at a revised overall cost
of O(

∑n
i=1 |Di|).

6. Generic Constraint-Centered Counting-based Heuristics

The previous sections provided algorithms to retrieve solution counting information from
many of the most frequently used constraints. That information must then be exploited
to guide search. The solving process alternates between propagating constraints to filter
domains and branching by fixing a variable to a value in its domain. The crucial choice of
variable and value is made through a search heuristic. We considered many search heuristics
based on counting information, which we describe briefly in the next paragraph. We will
experiment extensively with one of the most successful ones in Section 7, so we present it
in more detail. In the following, we denote by C(xi) the set of constraints whose scope
contains the variable xi. All the heuristics proposed assume a lexicographical ordering as
tie breaking. Counting information is gathered at a search tree node once a propagation
fixed point is reached: it is recomputed only on constraints for which a change occurred to
the domain of a variable within its scope, and otherwise cached information is reused. That
cached counting information is stored in trailing data structures (also known as reversible
data structures) so that it can be retrieved upon backtracking. The heuristics considered
fall into four broad categories:

Combined choice of variable and value Those that select directly a variable-value pair
without an explicit differentiation of variable and value ordering, based on the aggregation,
through simple functions, of the counting information coming from different constraints.
Such heuristics iterate over each variable-value pair, aggregating solution densities from the
relevant constraints and selecting the pair exhibiting the maximum aggregated score. The
type of aggregation used is e.g. the maximum, minimum, sum, or average. For instance:

• maxSD: maxc∈C(xi)(σ(xi, d, c)) – selects the maximum of the solution densities.

• maxRelSD: maxc∈C(xi)(σ(xi, d, c) − (1/|Di|)) – selects the maximum of the solution
densities subtracting the average solution density for that given variable (i.e. 1/|Di|).
It smoothes out the inherent solution densities differences due to domain cardinalities
(as also the following aggregation function).

• maxRelRatio: maxc∈C(xi)(
σ(xi,d,c)
(1/|Di|) ) – selects the maximum of the ratio between the

solution density and the average solution density for that given variable.

• aAvgSD:

∑
c∈C(xi)

σ(xi,d,c)

|C(xi)| – computes the arithmetic average of the solution densities.

• wSCAvg:

∑
c∈C(xi)

(#cσ(xi,d,c))∑
c∈C(xi)

#c – computes the average of the solution densities weighted

by the constraints’ solution count. The weights tend to favor branchings on variable-
value pairs that keep a high percentage of solutions on constraints with a high solution
count.
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Choice of constraint first Those that focus first on a specific constraint (e.g. based on
its solution count) and then select a variable-value pair (as before) among the variables in
the preselected constraint’s scope. For instance, minSCMaxSD first selects the constraint
with the lowest number of solutions and then restricts the choice of variable to those involved
in this constraint, choosing the variable-value pair with the highest solution density. The
rationale behind this heuristic is that the constraint with the fewest solutions is probably
among the hardest to satisfy.

Restriction of variables Those that preselect a subset of variables with minimum do-
main size and then choose among them the one with the best variable-value pair according
to counting information.

Choice of value only Those using some other generic heuristic for variable selection and
solution densities for value selection.

Heuristic maxSD The heuristic maxSD (Algorithm 3) simply iterates over all the variable-
value pairs and chooses the one that has the highest density; assuming that the σ(xi, d, c)
are precomputed, the complexity of the algorithm is O(qm) where q is the number of
constraints and m is the sum of the cardinalities of the variables’ domains. Interestingly,
such a heuristic likely selects a variable with a small domain, in keeping with the fail-first
principle, since its values have on average a higher density compared to a variable with
many values (consider that the average density of a value is σ(xi, d, c) = 1

|Di|). Note that
each constraint is considered individually.

max = 0;1

for each constraint c(x1, . . . , xk) do2

for each unbound variable xi ∈ {x1, . . . , xk} do3

for each value d ∈ Di do4

if σ(xi, d, c) > max then5

(x?, d?) = (xi, d);6

max = σ(xi, d, c);7

return branching decision “x? = d?”;8

Algorithm 3: The Maximum Solution Density search heuristic (maxSD)

7. Experimental Analysis

We performed a thorough experimental analysis in order to evaluate the performance of the
proposed heuristics on eight different problems.7 All the problems expose sub-structures
that can be encapsulated in global constraints for which counting algorithms are known.
Counting-based heuristics are of no use for random problems as this class of problems do not
expose any structure; nonetheless real-life problems usually do present structure therefore
the performance of the heuristics proposed may have a positive impact in the quest to
provide generic and efficient heuristics for structured problems. The problems on which
we experimented have different structures and different constraints with possibly different

7. The instances we used are available at www.crt.umontreal.ca/∼quosseca/fichiers/20-JAIRbenchs.tar.gz.
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arities interconnected in different ways; thus, they can be considered as good representatives
of the variety of problems that may arise in real life.

7.1 Quasigroup Completion Problem with Holes (QWH)

Also referred to as the Latin Square problem, the QWH is defined on a n × n grid whose
squares each contain an integer from 1 to n such that each integer appears exactly once per
row and column (problem 3 of the CSPLib maintained in Gent, Walsh, Hnich, & Miguel,
2009). The most common model uses a matrix of integer variables and an alldifferent

constraint for each row and each column. So each constraint is defined on n variables and
is of the same type; each variable is involved in two constraints and has the same domain
(disregarding the clues). This is a very homogeneous problem. We tested on the 40 hard
instances used by Zanarini and Pesant (2009) with n = 30 and 42% of holes (corresponding
to the phase transition), generated following Gomes and Shmoys (2002).

7.2 Magic Square Completion Problem

The magic square completion problem (problem 19 of CSPLib) is defined on a n × n grid
and asks to fill the square with numbers from 1 to n2 such that each row, each column and
each main diagonal sums up to the same value. In order to make them harder, the problem
instances have been partially prefilled (half of the instances have 10% of the variables
set and the other half, 50% of the variables set). The 40 instances (9 × 9) are taken
from the work of Pesant and Quimper (2008). This problem is modeled with a matrix
of integer variables, a single alldifferent constraint spanning over all the variables and
a knapsack constraint for each row, column and main diagonal. The problem involves
different constraints although the majority are equality knapsack with the same arity.

7.3 Nonograms

A Nonogram (problem 12 of CSPLib) is built on a rectangular n×m grid and requires filling
in some of the squares in the unique feasible way according to some clues given on each row
and column. As a reward, one gets a pretty monochromatic picture. Each individual clue
indicates how many sequences of consecutive filled-in squares there are in the row (column),
with their respective size in order of appearance. For example, “2 1 5” indicates that there
are two consecutive filled-in squares, then an isolated one, and finally five consecutive ones.
Each sequence is separated from the others by at least one blank square but we know little
about their actual position in the row (column). Such clues can be modeled with regular

constraints. This is a very homogeneous problem, with constraints of identical type defined
over m or n variables, and with each (binary) variable involved in two constraints. These
puzzles typically require some amount of search, despite the fact that domain consistency
is maintained on each clue. We experimented with 180 instances8 of sizes ranging from
16× 16 to 32× 32.

8. Instances taken from http://www.blindchicken.com/∼ali/games/puzzles.html
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7.4 Multi Dimensional Knapsack Problem

The Multi dimensional knapsack problem was originally proposed as an optimization prob-
lem by the OR community. We followed the same approach as Refalo (2004) in transforming
the optimization problem into a feasibility problem by fixing the objective function to its op-
timal value, thereby introducing a 0-1 equality knapsack constraint. The other constraints
are upper bounded knapsack constraints on the same variables. We tested on three differ-
ent set of instances for a total of 25 instances: the first set corresponds to the six instances
used by Refalo, the second set and the third set come from the OR-Library (Weish[1-13]
from Shi, 1979; PB[1,2,4] and HP[1,2] from Freville & Plateau, 1990). The first instance set
have n, that is the number of variables, ranging from 6 to 50 and m, that is the number of
constraints, from 5 to 10; in the second and third instance set n varies from 27 to 60 and
m from 2 to 5. The problem involves only one kind of constraint and, differently from the
previous problem classes, all the constraints are posted on the same set of variables.

7.5 Market Split Problem

The market split problem was originally introduced by Cornuéjols and Dawande (1999)
as a challenge to LP-based branch-and-bound approaches. There exists both a feasibility
and optimization version. The feasibility problem consists of m 0-1 equality knapsack

constraints defined on the same set of 10(m−1) variables. Even small instances (4 ≤ m ≤ 6)
are surprisingly hard to solve by standard means. We used the 10 instances tested by Pesant
and Quimper (2008) that were generated by Wassermann (2007). The Market Split Problem
shares some characteristics with the Multi Dimensional Knapsack problem: the constraints
are of the same type and they are posted on the same set of variables.

7.6 Rostering Problem

The rostering problem was inspired by a rostering context. The objective is to schedule
n employees over a span of n time periods. In each time period, n − 1 tasks need to be
accomplished and one employee out of the n has a break. The tasks are fully ordered 1 to
n − 1; for each employee the schedule has to respect the following rules: two consecutive
time periods have to be assigned to either two consecutive tasks (in no matter which order
i.e. (t, t+1) or (t+1, t)) or to the same task (i.e. (t, t)); an employee can have a break after
no matter which task; after a break an employee cannot perform the task that precedes the
task prior to the break (i.e. (t, break, t−1) is not allowed). The problem is modeled with one
regular constraint per row and one alldifferent constraint per column. We generated 2
sets of 30 instances with n = 10 each with 5% preset assignments and respectively 0% and
2.5% of values removed.

7.7 Cost-Constrained Rostering Problem

The cost-constrained rostering problem was borrowed from Pesant and Quimper (2008)
and the 10 instances as well. It is inspired by a rostering problem where m employees
(m = 4) have to accomplish a set of tasks in a n-day schedule (n = 25). No employee can
perform the same task as another employee on the same day (alldifferent constraint on
each day). Moreover, there is an hourly cost for making someone work, which varies both
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across employees and days. For each employee, the total cost must be equal to a randomly
generated value (equality knapsack constraint for each employee). Finally, each instance
has about 10 forbidden shifts i.e. there are some days in which an employee cannot perform
a given task. In the following, we refer to this problem also as KPRostering. This problem
presents constraints of different types that have largely different arities.

7.8 Traveling Tournament Problem with Predefined Venues (TTPPV)

The TTPPV was introduced by Melo, Urrutia, and Ribeiro (2009) and consists of finding
an optimal single round robin schedule for a sport event. Given a set of n teams, each
team has to play against every other team. In each game, a team is supposed to play
either at home or away, however no team can play more than three consecutive times at
home or away. The particularity of this problem resides on the venue of each game that
is predefined, i.e. if team a plays against b it is already known whether the game is going
to be held at a’s home or at b’s home. A TTPPV instance is said to be balanced if the
number of home games and the number of away games differ by at most one for each team;
otherwise it is referred to as non-balanced or random. The problem is modeled with one
alldifferent and one regular constraint per row and one alldifferent constraint per
column. The TTPPV was originally introduced as an optimization problem where the sum
of the traveling distance of each team has to be minimized, however Melo et al. (2009)
show that it is particularly difficult to find a single feasible solution employing traditional
integer linear programming methods. Balanced instances of size 18 and 20 (the number of
teams denotes the instance size) were taking from roughly 20 to 60 seconds to find a first
feasible solution with Integer Linear Programming; non-balanced instances could take up to
5 minutes (or even time out after 2 hours of computation). Furthermore six non-balanced
instances are infeasible but the ILP approach proposed by Melo et al. were unable to prove
it. Hence, the feasibility version of this problem already represents a challenge.

For every problem (unless specified otherwise): domain consistency is maintained during
search9, the counting algorithm for the alldifferent constraint is UB-FC (upper bounds
with forward checking as the consistency level enforced), the search tree is binary (i.e.
xi = j ∨ xi 6= j), and traversed depth-first. All tests were performed on a AMD Opteron
2.2GHz with 1GB and Ilog Solver 6.6; the heuristics that involve some sort of randomization
(either in the heuristic itself or in the counting algorithms employed) have been run 10 times
and the average of the results has been taken into account. We set a timeout of 20 minutes
for all problems and heuristics. We present the results by plotting the percentage of solved
instances against time or backtracks.

7.9 Comparing Counting-Based Search Heuristics

We first compare several of the proposed search heuristics based on counting with respect
to how well they guide search, measured as the number of backtracks required to find a
solution. The important issue of overall runtime will be addressed in the following sections.

9. Even for knapsack constraints, comparative experimental results on the same benchmark instances,
originally reported by Pesant and Quimper (2008), indicated that maxSD performed better with domain
consistency and the associated counting algorithm.
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Figure 6: Percentage of solved instances with respect to the number of backtracks for the
eight benchmark problems. The search heuristics compared are all based on
solution counting.

198



Counting-Based Search

Figure 6 plots the number of solved instances against backtracks for our eight bench-
mark problems. On the Nonogram, Multi-Knapsack, and Market Split problems, maxSD,
maxRelSD, and maxRelRatio correspond to the same heuristics because domains are binary.
Restricting the use of solution densities to the choice of a value once the variable has been se-
lected by the popular domain size over dynamic degree heuristic (domDeg;maxSD) generally
achieves very poor performance compared to the others. One disappointment which came as
a surprise is that selecting first the constraint with the fewest solutions left (minSCMaxSD)
often behaves poorly as well. For the Multi-Knapsack Problem aAvgSD, which takes the
arithmetic average of the solution densities, performs about one order of magnitude better
than the others. We believe that this might be explained by the fact that all the constraints
share the same variables (in the Latin Square and Nonogram problems constraints overlap
on only one variable): therefore branching while considering all the constraint information
pays off. The maxSD and maxRelSD search heuristics stand out as being more robust on
these benchmarks. They are quite similar but each performs significantly better than the
other on one problem domain. Because it is slightly simpler, we will restrict ourselves to
the former in the remaining experiments.

7.10 Comparing with Other Generic Search Heuristics

The experimental results of the previous section suggest that the relatively simple maxSD
heuristic guides search at least as well as any of the others. We now compare it to the
following ones (see Section 2 as a reference) which are good representatives of the state of
the art for generic search heuristics:

• dom - it selects among the variables with smallest remaining domain uniformly at
random and then chooses a value uniformly at random;

• domWDeg - it selects the variable according to the dom/wdeg heuristic and then the
first value in lexicographic order;

• IBS - Impact-based Search with full initialization of the impacts; it chooses a subset
of 5 variables with the best approximated impact and then it breaks ties based on the
node impacts while further ties are broken randomly; (ILOG, 2005)

Figure 7 and 8 plot the number of solved instances against backtracks and time for our
eight benchmark problems. For the moment we ignore the curves for the heuristics with
restarts.

The maxSD heuristic significantly outperforms the other heuristics on the Latin Square,
Magic Square, Multi Dimensional Knapsack, Cost-Constrained Rostering (KPRostering in
the figure), and TTPPV problems (5 out of 8 problems), both in terms of number of
backtracks and computation time. For the Nonogram Problem it is doing slightly worse
than domWDeg and is eventually outperformed by IBS. The sharp improvement of the latter
around 1000 backtracks suggests that singleton consistency is very powerful for this problem
and not too time consuming since domains are binary. Indeed IBS’s full initialization of
the impacts at the root node achieves singleton consistency as a preprocessing step. This
behavior is even more pronounced for the Rostering Problem (see the IBS curves). On that
problem maxSD’s performance is more easily compared to domWDeg, which dominates it.
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Figure 7: Percentage of solved instances with respect to the number of backtracks and to
time (in seconds) for the first four benchmark problems. The search heuristics
compared are maxSD, dom, IBS, and domWDeg, both with and without restarts.
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Figure 8: Percentage of solved instances with respect to the number of backtracks and to
time (in seconds) for the last four benchmark problems. The search heuristics
compared are maxSD, dom, IBS, and domWDeg, both with and without restarts.
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For the Market Split Problem the differences in performance are not as striking: maxSD
is doing slightly better in terms of backtracks but not enough to outperform domWDeg in
terms of runtime.

For the Magic Square plot against time, there is a notable bend at about the 50% mark
in most of the curves which can be explained by the fact that half of the instances only
have 10% of their cells prefilled and present a bigger challenge. Interestingly, the simpler
dom heuristics performs better than IBS and domWDeg, the latter being unable to solve
half the instances in the allotted time. In contrast with the Nonogram Problem, here the
full impact initialization is a very heavy procedure due to the high number of variable-value
pairs to probe (≈ n4 that is in our instances 94 = 6561). It is also worth noting that
on the Cost-Constrained Rostering Problem, maxSD solves seven out of the ten instances
backtrack-free and is the only heuristic solving every instance. Similarly for the TTPPV
Problem, almost 90% of the instances are solved backtrack-free by that heuristic. Moreover
six instances happen to be infeasible and maxSD exhibits short proof trees for five of them,
every other heuristic timing out on them.

7.11 Adding Randomized Restarts

It has been remarked that some combinatorial search has a strictly positive probability to
reach a subtree that requires exponentially more time than the other subtrees encountered
so far (so called “heavy-tail” behavior). Nonetheless, heavy tails can be largely avoided
by adding randomized restarts on top of the search procedure (Gomes, Selman, & Kautz,
1998). This technique is orthogonal to the search heuristic employed and it systematically
restarts the search every time a limit (typically a bound on the number of backtracks) is
reached; obviously, in order to be effective, randomized restarts must be employed along
with a heuristic that presents some sort of randomization or learning such that at each
restart different parts of the search tree are explored. We tested the same heuristics to
assess their performance with randomized restarts. The maxSD and IBS heuristics have
been randomized: particularly, one variable-value pair is chosen at random with equal
probability between the best two provided by the heuristic. Note that, as pointed out by
Refalo (2004), impact information is carried over different runs to improve the quality of the
impact approximation. As for domWDeg, the learned weights are kept between restarts. We
implemented a slow geometric restart policy (Walsh, 1999) (that is 1, r, r2, . . . with r = 2)
with a scale parameter optimized experimentally and separately for each problem type and
search heuristic.

We turn again to Figure 7 and 8 but this time we also consider the curves for the
heuristics with restarts. Restarts generally help a less informed heuristic such as dom,
sometimes spectacularly so as for the Rostering Problem, but not always as indicated by
the results on the Market Split Problem. For the other heuristics their usefulness is mixed: it
makes little difference for maxSD except for Market Split where it degrades performance and
Rostering where it improves its performance very significantly, now solving every instance
very easily; for IBS it helps on the most difficult instances for half of the problems but for
three others it degrades performance; for domWDeg it is generally more positive but never
spectacular. Note that heavy-tail behavior of runtime distribution is conjectured to depend
both on the problem structure and on the search heuristic employed (Hulubei & O’Sullivan,
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2006). The Market Split Problem stands out as one where randomized restarts hurt every
search heuristic considered.

7.12 Using Limited Discrepancy Search

Another way to avoid heavy tails is to change the order in which the search tree is traversed,
undoing decisions made at the top of the search tree earlier in the traversal. A popular
way of doing this is by applying limited discrepancy search (LDS) that visits branches in
increasing order of their number of “discrepancies”, which correspond to branching decisions
going against the search heuristic (Harvey & Ginsberg, 1995). As for restarts, it can be
combined with any search heuristic and may cause dramatic improvements in some cases
but this less natural traversal comes with a price. Figure 9 illustrates the impact of LDS
on two of our benchmark problems, using maxSD as the search heuristic. Either the usual
depth-first search traversal is used (“maxSD” curve) or limited discrepancy search, grouping
branches that have exactly the same number of discrepancies (“LDS 1”), by skips of 2 (“LDS
2”), or by skips of 4 (“LDS 4”) discrepancies. On the rostering problem LDS undoes bad
early decisions made by our heuristic and now allows us to solve every instance very quickly.
However on the Magic Square problem the impact of LDS on the number of backtracks is
low and it actually significantly slows down the resolution because LDS must revisit internal
nodes, thus repeating propagation steps: the smaller the skip, the larger the computational
penalty.

The same behavior could have been observed on other search heuristics and other prob-
lems. So LDS does not necessarily add robustness to our search.

7.13 Analyzing Variable and Value Selection Separately

One may wonder whether the success of counting-based search heuristics mostly depends
on informed value selection, the accompanying variable selection being accessory. In order
to investigate this, we introduce some hybrid heuristics:

• maxSD; random - selects a variable as in maxSD but then selects a value in its domain
uniformly at random;

• IBS; maxSD - selects a variable as in IBS but then selects a value in its domain
according to solution densities;

• domWDeg; maxSD - selects a variable as in domWDeg but then selects a value in its
domain according to solution densities;

Figure 10 and 11 plot the number of solved instances against backtracks and time for
our eight benchmark problems. Comparing maxSD and maxSD; random indicates that most
of the time value selection according to solution densities is crucial, the Rostering Problem
being an exception. Interestingly value selection by solution density improves the overall
performance of IBS; for domWDeg it improves for the Latin Square and Magic Square
problems but not for the rest, often decreasing performance. However such improvements
do not really tip the balance in favor of other heuristics than maxSD, thus indicating that
variable selection according to solution densities is also very important to its success.
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Figure 9: Percentage of solved instances with respect to the number of backtracks and to
time (in seconds) for two of the benchmark problems. The maxSD search heuristic
is used for every curve but the search tree traversal order is different.
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Figure 10: Percentage of solved instances with respect to the number of backtracks and to
time (in seconds) for the first four benchmark problems. The search heuristics
compared use solution densities either for variable or for value selection.
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Figure 11: Percentage of solved instances with respect to the number of backtracks and to
time (in seconds) for the last four benchmark problems. The search heuristics
compared use solution densities either for variable or for value selection.
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8. Conclusion

This paper described and evaluated counting-based search to solve constraint satisfaction
problems. We presented some algorithms necessary to extract counting information from
several of the main families of constraints in cp. We proposed a variety of heuristics based
on that counting information and evaluated them. We then compared one outstanding
representative, maxSD, to the state of the art on eight different problems from the literature
and obtained very encouraging results. The next logical steps in this research include
designing counting algorithms for some of the other common constraints and strengthening
our empirical evaluation by considering new problems and comparing against application-
specific heuristics. The next two paragraphs describe less obvious steps.

Users often need to introduce auxiliary variables or different views of the models that are
linked together by channeling constraints. It is very important to provide all the counting
information available at the level of the branching variables or at least at some level where
direct comparison of solution densities is meaningful. For example in the case of the TTPPV
an earlier model, in which two sets of variables each received solution densities from different
constraints, did not perform nearly as well. Channeling constraints that express a one-to-
many relation (such as the one present in the TTPPV) can be dealt with by considering value
multiplicity in counting algorithms (Pesant & Zanarini, 2011). More complex channeling
constraints represent however a limitation in the current framework.

Combinatorial optimization problems have not been discussed in this paper but are very
important in operations research. Heuristics with a strong emphasis on feasibility (such as
counting-based heuristics) might not be well suited for problems with a strong optimization
component, yet may be very useful when dealing with optimization problems that involve
hard combinatorics. Ideally, counting algorithms should not be blind to cost reasoning.
One possibility that we started investigating not only counts the number of solutions that
involve a particular variable-value pair but also returns the average cost of all the solutions
featuring that particular variable-value pair. Another has shown promise when the cost is
linear and decomposable on the decision variables (Pesant & Zanarini, 2011).

To conclude, we believe counting-based search brings us closer to robust automated
search in cp and also offers efficient building blocks for application-specific heuristics.

Acknowledgments

Financial support for this research was provided in part by the Natural Sciences and Engi-
neering Research Council of Canada and the Fonds québécois de la recherche sur la nature
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