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Abstract. Precise constraint satisfaction modeling requires specific knowl-
edge acquired from multiple past cases. We address this issue with a gen-
eral branch-and-bound algorithm that learns the parameters of a given
global constraint from a small set of positive solutions. The idea is to
cleverly explore the possible combinations taken by the constraint’s pa-
rameters without explicitly enumerating all combinations. We apply our
method to learn parameters of global constraints used in timetabling
problems such as Sequence and SubsetFocus. The later constraint is
our adaptation of the constraint Focus to timetabling problems.
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1 Introduction

Modeling a constraint satisfaction problems requires specific knowledge acquired
from multiple past cases, each model being different from the last. For example,
CSPs of nurse timetabling problems for two different hospitals most likely use
similar constraints but with different parameters. A hospital might require to
work in the emergency ward no more than 3 days out of 7 while another hospital
might set the limit to no more than 4 days out of 9. A system able to determine
the parameters that created a set of existing solutions would greatly speedup
the modeling process. This explains the popularity of modeling automation in
the recent years.

A global constraint has variables, encoding solutions, and known parameters
that define the relation between the variables. In our context, we are given a
global constraint and example solutions, so the variables are known but the
parameters are unknown. We want to learn the parameters that generated the
examples.

The main contribution of this paper is an algorithm that learns the param-
eters of given global constraints from a small pool of examples. This algorithm
can be applied to constraints such as Among and Sequence, commonly used in
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timetabling. We use a branch-and-bound to quickly and cleverly travel through
all the combinations of parameters of the constraint and to determine which
combination best describes the given examples.

We also introduce SubsetFocus, a constraint useful in the modelization of
timetabling problems, and we show how to learn its parameters from examples.

2 Background

We present the global constraints that are studied in this paper. We then report
important past contributions related to the automation of constraint modeling
and to the learning of parameters for global constraints.

2.1 Global constraints

Let C(X,a) be a global constraint where X = [X1, . . . , Xn] are integer variables
denoted in upper case and a = [a1, . . . , am] are parameters denoted in lower
case. Let SC(a) be the solution set for C with parameters a and let SCi

(x,a) =
SC(a1, . . . , ai−1, x, ai+1, . . . , am), where all aj in a are fixed except for ai.

We present global constraints that are studied in this paper. Let sij = {i, i+
1, . . . , j} be a sequence. The constraint Focus(X, Y, l, k) [28] is satisfied if and
only if X and Y are such that there exists a set S of disjoint sequences sij such
that

1. |S| ≤ Y
2. Xb > k ⇐⇒ ∃sij ∈ S s.t. b ∈ sij , ∀b ∈ [1, . . . , n]
3. j − i+ 1 ≤ l, ∀sij ∈ S

Focus controls the number and the length of subsequences of variables greater
than k.

Example 1. Suppose we have Focus([X1, . . . , X7], Y, l = 2, k = 1) with dom(Xi) =
{1, 2, 3, 4} and dom(Y ) = {2, 3}. Then, [2, 1, 3, 3, 1, 1, 1] and [2, 3, 4, 1, 1, 2, 1]
are solutions because S = {s11, s34} and S = {s12, s33, s66} are valid sets.
[2, 1, 2, 1, 2, 1, 2] is not a solution because the cardinality of the only possible
set S = {s11, s33, s55, s77} is greater than max(dom(Y )).

Some global constraints are applied to a subset of values in their original
definition. We choose to encode this set with a vector z. zv = 1 if the value
v is in the set and zv = 0 otherwise. In other words, the vector z is the bitset
encoding of a set. By abuse of notation, we will consider z sometimes as a binary
vector, sometimes as a set of values.

We propose a new constraint SubsetFocus(X, l,m, z) (SF), a generaliza-
tion of Focus, that controls the number and the length of subsequences of
variables that belong to a set of values. SubsetFocus(X, l,m, z) is satisfied if
X is such that there exists S, a set of disjoint sequences sij , such that:

1. |S| ≤ m
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2. Xb = v ∧ zv = 1 ⇐⇒ ∃sij ∈ S s.t. b ∈ sij , ∀b ∈ [1, . . . , n]
3. j − i+ 1 ≤ l, ∀sij ∈ S
4. sij ∈ S ⇒ sj+1,j′ /∈ S, ∀j′ ≥ j + 1.

In other words, SubsetFocus(X, l,m, z) is satisfied if the assignment X
has fewer than m stretches of maximum length l with values in the set defined
by z. SubsetFocus can be used to limit the number of stretches of night shifts
to m while limiting the length of the stretches to l in a medical timetabling
problem.

We introduce SubsetFocus to fulfill a request from PetalMD, the company
financing this research, to create medical schedules with clusters of night shifts.
The set S represents sequences of consecutive night shifts. In our context, two
consecutive night shifts should not be considered as two separate stretches of
work as it could be with Focus. Hence the fourth condition of SubsetFocus.

Example 2. Suppose we have SubsetFocus([X1, . . . , X7], l = 2,m = 2, z =
[0, 1, 1, 1]) with dom(Xi) = {1, 2, 3, 4}. Then, [2, 1, 3, 3, 1, 1, 1] is a solution be-
cause S = {s11, s34} is a valid set. [2, 3, 4, 1, 1, 1, 1] is not a solution because s13 is
not a valid sequence according to condition 3 and all other combinations would
violate condition 4.

Among(X, l, u, z) [4] ensures that at most u and at least l variables take
values in z. Sequence(X, l, u, w,z) (Seq) [4] ensures that for every subset of
w consecutive variables in [X1, . . . , Xn] Among([Xi, . . . , Xi+w−1], l, u,z) holds.

Let occv = |{i : Xi = v}| be the number of occurrences of value v in X.
GCC(X, [l1, . . . , lm], [u1, . . . , um]) (or GlobalCardinality constraint) [30] en-
sures that occv ∈ [lv, uv], for each value v ∈ {1, . . . ,m}. AtMostNValue(X, k)
(AtLeastNValue(X, k)) [26] ensures that the variables take at most (at least)
k different values.

Balance(X, b) [9] ensures that the balance b is the difference between the
most occurring value and the least occurring value, among assigned values only.

b = max
v∈{Xi}ni=1

occv − min
v∈{Xi}ni=1

occv .

The constraint AtMostBalance(X, b) [16] ensures that the balance is at
most b. The variant AtMostBalance*(X, b) also takes into consideration non-
occurring values, i.e.: b ≥ maxv occv −minv occv.

Pesant et al. [27] count the solutions for multiple global constraints. In par-
ticular, they propose a dynamic programming approach to count the solutions
satisfying Regular([X1, . . . , Xn],A), that ensures the word [X1, . . . , Xn] be-
longs to the regular language described by the finite automaton A. The idea is
to encode Regular as a layered graph and then recursively count all paths,
from the last layer to the first.

2.2 Constraint Acquisition

There exist multiple approaches to learn, from a set of solutions, which con-
straints form a model. The model seeker [8, 5] learns a CSP from positive exam-
ples. It lists the global constraints satisfied by all examples using the constraint
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seeker [6, 7], which uses multiple criteria to order the constraints according to
pertinence. One criterion is the number of assignments that satisfy the con-
straint. If this number is small, that indicates that the solution come from a
small subset of possible assignments. This is more likely to occur if the con-
straint was imposed.

Many propose interactive constraint acquisition systems learning a com-
plete CSP from examples by asking queries to the user. Among the most re-
cent publications : Bessiere et al. [10, 15, 14], Daoudi et al. [20], and Arcangi-
oli and Lazaar [1].

Bessiere et al. [12, 13], Bartak et al. [2], and Charnley et al. [19] study the
acquisition of implied constraints from a CSP in order to improve the resolution
time. Bessiere et al. [11] use the examples to remove redundant constraints from
the model during the constraint acquisition phase.

Kiziltan et al. [21], Little et al. [23], and Lopez and Lallouet [25] study the
translation of a problem description written in natural language into a formal
model.

Machine learning techniques can also be used to learn part of a model. Bonfi-
etti et al. [17], Bartolini et al. [3], and Lombardi et al. [24] train neural networks
or decision trees to recognize a solution to a problem and then embed the trained
neural network or the trained decision trees into a global constraint.

Campigotto et al. [18] and Kolb [22] study the acquisition of the utility
function of the optimization model.

Suraweera et al. [31] propose a system that learns parameters for template
constraints previously defined from historical schedules. The quality of a param-
eter set is the distance to the real set of parameters that created the examples.
They choose the parameters with the highest quality.

2.3 Learning parameters of a global constraint

Picard-Cantin et al. [29] consider a global constraint C(X,a) whose scope X
is known and want to learn its parameters a from a small set of examples
E = {e1, . . . , eq}. Each parameter ai must take a value from a predefined set of
values called domain denoted dom(ai). They list all combinations of parameters
satisfied by the examples and choose the combination with the lowest proba-
bility of being satisfied, since it has the highest chance of being imposed by a
mathematical model. Let GC(a) be the probability that a random assignment
X satisfies C(X,a). The goal is to solve the following optimization problem.

min
a

GC(a)

s.t.
∧
e∈E

C(e,a)

ai ∈ dom(ai)

The method assumes that the domains of Xi ∈ X are identical. Let pv =
P [Xi = v], the probability of assigning the value v to any variable. Recall that
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SC(a) is the solution set for C with parameters a. Therefore, P [e] =
∏n
i=1 pei

and GC(a) is the sum of the probabilities of each solution.

GC(a) =
∑

e∈SC(a)

P [e] =
∑

e∈SC(a)

n∏
i=1

pei (1)

Picard-Cantin et al. encode the constraints using an automaton that they
transform into a Markov chain by adding on each transition the probability of
reading the associated value. The Markov chain efficiently computes the proba-
bility GC(a). To solve the optimization problem, they iterate over all combina-
tions of parameters a while avoiding dominated parameters.

With this method, Picard-Cantin et al. [29] learn the parameters of global
constraints that can be encoded as Regular, such as Sequence and Among.
The drawback is that listing all combinations of parameters for a global con-
straint quickly becomes infeasible, specifically when a parameter is a set. For

example, there are n2

2

∑k
i=1

(
k
i

)
combinations of parameters for

SubsetFocus([X1, . . . , Xn], l,m, [z1, . . . , zk]). In this case, having a clever way
to explore those combinations becomes crucial.

3 Methodology

We present a more refined approach to explore the space of parameters. We also
show how to compute GC(a) for the constraints described in Section 2.1.

We propose a general branch-and-bound to explore the values that can be
given to the parameters. The objective of the algorithm is to find the parame-
ter values minimizing the probability function G for a given global constraint.
Therefore, the bounding algorithm needs to compute a lower bound on G.

The branch-and-bound is presented in Algorithm 1 and it requires two sub-
algorithms specific to the global constraint for which we wish to learn the
parameters. The first, FilterParametersC([dom′(a1), . . . ,dom′(am)], E), fil-
ters the domains of the parameters using the given examples. The second,
ComputeLowerBoundC([dom′(a1), . . . ,dom′(am)]), computes an optimist lower
bound on the probability function G. Those two are called at each node of the
search tree.

3.1 Monotonicity

We also identify a situation where a subset of parameters can be fixed to their
extreme values for the computation of the lower bound on G, simplifying bound
computation. These parameters are such that the probability functionG is mono-
tonic w.r.t. those parameters (see Section 3.1).

Let F : Dn → R be a multivariate function. F is said to be monotonic w.r.t.
ai if and only if Fi(x,a) = F (a1, . . . , ai−1, x, ai+1 . . . , am) is monotonic.
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Algorithm 1: BranchAndBound(C, [dom(a1), . . . ,dom(am)], E)

1 S ← {〈0, [dom(a1), . . . , dom(am)]〉}
2 BestSolution← null
3 BestBound←∞
4 while min{lb | 〈lb, [dom(a1), . . . , dom(am)]〉 ∈ S} < BestBound do
5 〈lb, [dom(a1), . . . , dom(am)]〉 ← arg min

〈lb,[dom(a1),...,dom(am)]〉∈S

lb

6 Remove 〈lb, [dom(a1), . . . , dom(am)]〉 from S
7 if | dom(ai)| = 1 ∀i ∈ {1, . . . ,m} then
8 BestSolution← [dom(a1), . . . , dom(am)]
9 BestBound← lb

10 else
11 Choose ai such that | dom(ai)| > 1
12 for v ∈ dom(ai) do
13 for j ∈ {1, . . . ,m}\{i} do
14 dom′(aj) = dom(aj)

15 dom′(ai) = {v}
16 FilterParametersC([dom′(a1), . . . , dom′(am)], E)
17 lb′ ← ComputeLowerBoundC([dom′(a1), . . . , dom′(am)])
18 S ← S ∪ {〈lb′, [dom′(a1), . . . , dom′(am)]〉}

19 return BestSolution,BestBound

Theorem 1. A global constraint C(X,a) has a monotonic probability function
GC(a) w.r.t. ai if either

x ≤ y ⇒ SCi
(x,a) ⊆ SCi

(y,a), ∀x, y ∈ dom(ai)

or

x ≤ y ⇒ SCi(y,a) ⊆ SCi(x,a), ∀x, y ∈ dom(ai).

Proof. Suppose that for all x, y ∈ dom(ai), x ≤ y implies SCi(x,a) ⊆ SCi(y,a).
Then, for all x, y ∈ dom(ai) such that x ≤ y.

GC(a1, . . . , ai−1, y, ai+1, am)

=
∑

e∈SCi
(y,a)

P [e]

=
∑

e∈SCi
(x,a)

P [e] +
∑

e∈SCi
(y,a)\SCi

(x,a)

P [e]

≥GC(a1, . . . , ai−1, x, ai+1, am)

A similar argument holds when x ≤ y ⇒ SCi(y,a) ⊆ SCi(x,a),∀x, y ∈
dom(ai). ut
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If GC(a) is monotonic w.r.t ai for all i ∈ {1 . . . ,m}, then we can easily
compute the lower bound on GC(a) at each node of the branch-and-bound.
We only need to fix the parameters to their extreme values. To ensure that
the examples satisfy the constraint, we apply filtering techniques to prune the
domains of the parameters. Note that the parameter n is always known in our
case.

Corollary 1. GSubsetFocus(n, l,m, z) is monotonic w.r.t l and m, but not z.

Proof. For all l1 ≤ l2, we have j − i + 1 ≤ l1 ≤ l2 for all sij ∈ S, therefore
SSubsetFocus(n,X, l1,m,z) ⊆ SSubsetFocus(n,X, l2,m,z). For all m1 ≤ m2, we
have |S| ≤ m1 ≤ m2, so SSubsetFocus(n,X, l,m1, z) ⊆ SSubsetFocus(n,X, l,m2, z).
By Theorem 1, GSF(n, l,m, z) is monotonic w.r.t parameters l and m.

Let p1 = 0.73, p2 = 0.23, and n = 3. We haveGSubsetFocus(3, 3, 1, [1, 1]) = 1.0,
GSubsetFocus(3, 3, 1, [1, 0]) ≈ 0.8561, GSubsetFocus(3, 3, 1, [0, 1]) ≈ 0.9468, and
GSubsetFocus(3, 3, 1, [0, 0]) = 1.0. Therefore, GSubsetFocus(n, l,m, z) is not mono-
tonic w.r.t. any zi. ut

Corollary 2. GAmong(n, l, u, z) is monotonic w.r.t. l and u, but not z.

Proof. For all l1, l2 such that 0 ≤ l1 ≤ l2 ≤ u, if
∑
v∈z occv ≥ l2 then we have∑

v∈z occv ≥ l1. Therefore, SAmong(n,X, l2, u,z) ⊆ SAmong(n,X, l1, u,z). For
all u1, u2 such that u1 ≤ u2 ≤ n, if

∑
v∈z occv ≤ u1 then we have

∑
v∈z occv ≤

u2. Meaning that SAmong(n,X, l, u1, z) ⊆ SAmong(n,X, l, u2, z). Therefore, by
Theorem 1 GAmong(n, l, u, z) is monotonic w.r.t. l and u.

Let p1 = 0.73, p2 = 0.23, and n = 3. We have GAmong(3, 2, 2, [1, 0]) ≈ 0.2878,
GAmong(3, 2, 2, [1, 1]) = 0.0,GAmong(3, 3, 3, [1, 1]) = 1.0 andGAmong(3, 3, 3, [1, 0]) ≈
0.389. Therefore, GAmong(n, l, u, z) is not monotonic w.r.t. any zi. ut

Corollary 3. GSeq(n, l = 0, u, w, z) is monotonic w.r.t. u and w, but not z.

Proof. For all 0 ≤ u1, u2 s.t. u1 ≤ u2 ≤ n, if
∑
v∈z occv ≤ u1 then

∑
v∈z occv ≤

u2 and SSeq(n,X, 0, u1, w,z) ⊆ SSeq(n,X, 0, u2, w,z). If
∑
v∈z occv ≤ u for

all subsequences of length w2 and if w1 ≤ w2, then
∑
v∈z occv ≤ u for all

subsequences of length w1 and SSeq(n,X, 0, u, w2, z) ⊆ SSeq(n,X, 0, u, w1, z).
Therefore, by Theorem 1 GSeq(n, 0, u, w, z) is monotonic w.r.t. u and w. By
Corollary 2, GSeq(n, 0, u, w, z) is not monotonic w.r.t. z when n = w = 3. ut

Corollary 4. GSeq(n, l, u = n,w,z) is monotonic w.r.t. l and w, but not z.

Proof. For all l1, l2 such that 0 ≤ l1 ≤ l2 ≤ n, if
∑
v∈z occv ≥ l2 for all

subsequences of length w then
∑
v∈z occv ≥ l1 and SSeq(n,X, l2, u, w, z) ⊆

SSeq(n,X, l1, u, w, z). If w1 ≤ w2 and if
∑
v∈z occv ≥ l for all subsequences of

length w1, then we have
∑
v∈z occv ≥ l for all subsequences of length w2 and

SSeq(n,X, l, u, w1, z) ⊆ SSeq(n,X, l, u, w2, z). Therefore, GSeq(n, l = 0, u, w, z)
is monotonic w.r.t. u and w by Theorem 1. GSeq(n, l, u = n,w,z) is not mono-
tonic w.r.t. z by Corollary 2 using n = w = 3. ut

Corollary 5. GGCC(n, l,u) is monotonic w.r.t. each li and each ui.
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Proof. For any v ∈ {1, . . . ,m}, if lv ≤ l′v and uv ≤ u′v, then lv ≤ l′v ≤ occv ≤
uv ≤ u′v1. Therefore, SGCC(n, l,u) ⊆ SGCC(n, [l1, . . . , lv−1, l

′
v, lv+1, . . . , lm],u)

and SGCC(n, l,u) ⊆ SGCC(n, l, [u1, . . . uv−1, u
′
v, uv+1, . . . um]). ut

Corollary 6. Both GAtMostNValue(n, k) and GAtLeastNValue(n, k) are monotonic
w.r.t. k.

Proof. Solutions with at most k values form a subset of the solutions with at
most k + 1 values. A symmetric argument holds for AtLeastNValue. ut

Corollary 7. Both GAtMostBalance(n, b) and GAtMostBalance*(n, b) are mono-
tonic w.r.t. b.

Proof. Solutions with a balance no greater than b form a subset of solutions with
a balance no greater than b+ 1, regardless of how the balance is computed. ut

The previous theorem and corollaries are used in the computation of the
bound on G in the branch-and-bound algorithm. These results show that we can
temporarily fix the monotonic parameters to their extreme values to compute
an optimist bound.

3.2 Bounding and filtering specific constraints

We show how to implement the functions FilterParametersC and
ComputeLowerBoundC for the constraints Among, Sequence, SubsetFo-
cus, GCC, AtMostNValue, AtLeastNValue, AtMostBalance, and At-
MostBalance*.

SubsetFocus We define the function ComputeLowerBoundSubsetFocus that
computes a lower bound on the probability GSubsetFocus(n, l,m, z) . To take into
consideration the other parameters, we consider the probability p that a variable
Xi is assigned to a value v such that zv = 1. During the branch-and-bound, the
set z is only partially defined depending on which parameter zv is assigned.
However, this partial assignment allows bounding of the probability p as follows.
The summations apply on instantiated parameters.

α :=
∑
v:zv=1

pv, β := 1−
∑
v:zv=0

pv, α ≤ p ≤ β

A solution e can be mapped to a binary vector y such that yi = 1 ⇐⇒
ei = v ∧ zv = 1. The satisfiability of the constraint can be tested simply by
checking the number and the length of the stretches of ones in the vector y. Let
γ(e) = |{i | ei = v ∧ zv = 1}| =

∑n
i=1 yi be the number of variables assigned

to a value in the considered set for a given solution e. Let A(n, l,m, k) be the
number of vectors y of size n with exactly k components set to 1 that satisfies
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the constraint with parameters l and m. The probability GSubsetFocus(n, l,m, z)
can be computed as follows.

GSF(n, l,m, z) =
∑

e∈SSF(a)

P [e] =
∑

e∈SSF(a)

pγ(e)(1− p)n−γ(e) (2)

=

n∑
k=0

A(n, l,m, k)pk(1− p)n−k. (3)

Therefore, the probability GSubsetFocus(n, l,m, z) can be bounded with

GSF(n, l,m, z) ≥
n∑
k=0

A(n, l,m, k) min
α≤p≤β

pk(1− p)n−k.

Differentiating xk(1 − x)n−k yields the optima k/n, 0, 1. Since 0 ≤ α ≤ β ≤ 1
and since k/n is a maximum, the bound used in the branching algorithm is

n∑
k=0

A(n, l,m, k) min
p∈{α,β}

pk(1− p)n−k. (4)

We now have to show how to compute the functionA(n, l,m, k). LetD(l, k,m)
be the number of ways to split a sequence of length k into exactly m subsequences
of length at most l. The function D(l, k,m) can be recursively computed.

D(l, k,m) =


1 if k = m = 0
0 if m = 0 ∧ k > 0
0 if m > 0 ∧ k = 0
min(k,l)∑
j=1

D(l, k − j,m− 1) otherwise

To count the number of feasible binary vectors y, we count how many ways
we can segment a sequence of k 1s into exactly i sequences using the function
D(l, k, i). We insert i− 1 zeros, one between each segment. There exist

(
n−k+1

i

)
ways to insert the remaining n − k − (i − 1) zeros before or after the segments
to obtain a vector of length n. Finally, we let the number of segments i vary
between 1 and m.

A(n, l,m, k) =

m∑
i=1

D(l, k, i)

(
n− k + 1

i

)
.

Since GSF(n, l,m, z) is monotonic w.r.t. m and l by Corollary 1, the function
ComputeLowerBoundSubsetFocus returns the bound (4) by setting l and m to
their smallest value in their domains.

During the branch-and-bound, we apply a minimal filtering to the domains
of parameters l and m. Here is how we define FilterParametersSubsetFocus.
We suppose that all uninstantiated variables zi could be instantiated to zero. In
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that situation, we compute the length of the largest stretch in an example e ∈ E
and set this length as a lower bound on dom(l). To compute a lower bound on
dom(m), for each example e ∈ E, we create a binary vector y by setting yi = zei

if zei
is instantiated. When zei

is uninstantiated, we greedily assign a value to yi
to minimize the number of stretches in y. We set min(dom(m)) to the maximum
number of stretches observed in one example. The parameters z are not filtered.

Lemma 1. The bound on GSubsetFocus(n, l,m, z) from (4) is tight when vari-
ables are instantiated.

Proof. Since z are fixed, then
∑
v:zv=1 pv = α = β = p. Therefore, (4) is equal

to (3) and the bound is tight. ut

Sequence Consider the Sequence constraint whose parameter l is known
to be 0. We therefore need to learn parameters u, w, and z. The probability
GSeq(n, u,w, z) can be bounded in a similar way as we did for SubsetFocus.
Let B(n, u,w, k) be the number of binary vectors y of length n such that exactly
k components are set to one and the sum of any subsequence of w components
is at most u. Therefore, the function ComputeLowerBoundSequence returns
the following lower bound on GSeq(n, u,w, z).

GSeq(n, u,w, z) =

n∑
k=0

B(n, u,w, k)pk(1− p)n−k (5)

≥
n∑
k=0

B(n, u,w, k) min
p∈{α,β}

pk(1− p)n−k (6)

Since GSeq(n, u,w, z) is monotonic w.r.t. u and w by Corollary 3, we com-
pute B(n, u,w, k) with u fixed to its minimal value and w fixed to its maximal
value. We use dynamic programming to compute the function B(n, u,w, k). Let
F (n, u,w, k, [s1, . . . , sw]) be the number of feasible binary vectors y of length
n with exactly k components set to one and whose last w components are
[s1, . . . , sw].

F (n, u, k, [s1, . . . , sw]) =


0 if

∑n
i=1 si > min(u, k)

0 if n− w +
∑n
i=1 si < k

1 if n = w
F (n− 1, u, k − sw, [0, s1, . . . , sw−1])
+F (n− 1, u, k − sw, [1, s1, . . . , sw−1]) otherwise

B(n, u,w, k) = F (n+ w, u, k, [0, . . . , 0︸ ︷︷ ︸
w times

])

The two first cases in function F occur when there are too many or two few
ones in the sequence [s1, . . . , sw] to be extended to a feasible sequence of length
n. The third case occurs when n = w and [s1, . . . , sw] is a feasible solution.
The last case computes the number of solutions with one fewer component. The
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function B(n, u,w, k) gives the number of sequences of length n+ w whose last
w components are null.

We define FilterParametersSequence. Once the parameter w is instanti-
ated, the parameter u can be filtered. For every solution e ∈ E and for every
subsequence of length w in e, we count the number of variables that must belong
to z. The largest encountered value gives a lower bound on u.

Lemma 2. The bound on GSeq(n, u,w, z) from (6) is tight when variables are
instantiated.

Proof. Since z are fixed, then
∑
v:zv=1 pv = α = β = p. Therefore, (6) is equal

to (5) and the bound is tight. ut

Among The probability that a random assignment has exactly k variables
assigned to a value v such that zv = 1 follows a binomial distribution. The
probability to satisfy the constraint Among with parameters l, u, and z is
therefore

GAmong(n, l, u, z) =

u∑
k=l

(
n

k

)
pk(1− p)n−k (7)

As we did for SubsetFocus, the function ComputeLowerBoundAmong re-
turns the following lower bound.

GAmong(n, l, u, z) ≥
u∑
k=l

(
n

k

)
min

p∈{α,β}
pk(1− p)n−k (8)

By Corollary 2, we can simply fix u to its minimal value and l to its maximal
value for the bound computation.

During the search, one can filter the parameters l and u using the function
FilterParametersAmong. Let M = {v | zv = 1} be the set of values that are
considered and C = {v | zv = 1 ∨ zv is uninstantiated} be the set of values that
might be considered. One can set the lower bound of dom(l) to mine∈E |{i | ei ∈
M}| and the upper bound of dom(u) to maxe∈E |{i | ei ∈ C}|.
Lemma 3. The bound on GAmong(n, l, u, z) from (8) is tight when variables are
instantiated.

Proof. Since z are fixed, then
∑
v:zv=1 pv = α = β = p. Therefore, (8) is equal

to (7) and the bound is tight. ut

Other constraints Unlike with SubsetFocus, Sequence, and Among, the
parameters for GCC, AtMostNValue, AtLeastNValue, AtMostBalance,
and AtMostBalance* are all monotonic and independent. This means that
the branch-and-bound finds the optimal solution for these last constraints with-
out backtracking. For the GCC for example, the optimal choice is always min(dom(li))
when branching on a li parameter and max(dom(ui)) when branching on a ui
parameter by Corollary 5. The algorithm finds the optimal solution on the first
try with the help of the filtering algorithm for the parameters.
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4 Experiments

We test our branch-and-bound algorithm on two different benchmarks, one for
SubsetFocus and one for Sequence, both solved on an Intel Core i7 3.40GHz
with 4 Gb of RAM running Linux. All the code was written in Python, except
for the brute force algorithm that learns the parameters of Sequence, for which
Picard-Cantin et al. [29] provided their code written in R.

Since Among is a specific case of Sequence, we do not experiment on this
constraint. Furthermore, we do not need to experiment on GCC, AtMost-
NValue, AtLeastNValue, AtMostBalance or AtMostBalance* since
the solution is found without backtracks.

Random timetables were generated for the benchmark. A sequence is the
schedule of an employee where each component of the sequence corresponds to a
task for a given time slot. The task 0 is a special task that corresponds to a day
off. This value is known not to belong to the considered set and therefore z0 = 0
for both experiments: the one with SubsetFocus and the one with Sequence.

Note that the generated example have no particular structure as they are cho-
sen uniformly among solutions that satisfy either SubsetFocus or Sequence
with the given parameters and therefore they have maximal entropy. The ex-
amples are not real, but they are possibly not tight, meaning that they satisfy
constraints stricter than the one imposed.

4.1 SubsetFocus

The benchmark for SubsetFocus is composed of 600 randomly generated in-
stances. An instance is composed of a set of d + 1 values {0, . . . , d}, a vector
of assignment probability for the values p = [p0, . . . , pd] (pv = P [Xi = v]),
a horizon n, and the set of parameters (l,m, z). We generated instances with
d ∈ {10, 30}, l ∈ {1, . . . , 10}, m ∈ {1, . . . , 10}, and n ∈ {100, 200, 300}. The vec-
tor p is generated such that

∑
v pv = 1 and

∑
v:zv=1 pv ∈ {0.2, 0.8}. Finally, for

each instance defined by (d, z,p, l,m, n), we generate ten (10) solutions that sat-
isfy SubsetFocus with parameters l,m, z and whose task occurrences are pro-
portional to their probabilities p. The learning algorithms are given {0, . . . , d},
p, n, and a subset of the ten solutions (according to the experiment). Their goal
is to learn the parameters (l,m, z) that generated the solutions.

We compare the branch-and-bound algorithm described earlier with a brute
force algorithm that lists all possible sets z (with z0 = 0), that computes lower
bounds on l and m from examples, that uses the monotonicity to fix l and m
to their minimums, and that finally computes the probability of each resulting
combination of parameters for SubsetFocus. This later technique is equivalent
to the one proposed by Picard-Cantin et al. [29].

Figure 1 shows the resolution time to learn the parameters of SubsetFocus
from a single solution. The branch-and-bound dominates the brute force by
solving every instance in fewer than 73 seconds while the brute force sometimes
reaches the 6-minute timeout. Figure 2 compares the number of times that the
probability of the constraint for given parameters is computed using (3). That is
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once per node for the branch-and-bound and once per parameter combination for
the brute force. Once again, the branch-and-bound dominates the brute force.
Figure 3 shows how many times, in percentages, the algorithms correctly predict
the parameters given the number of examples that are provided. Since both
algorithms return the same parameters when they solve an instance under the
time limit, we only consider the branch-and-bound algorithm for this analysis.
The low success rates are not alarming since the initial constraints were overly
permissive in many cases. Therefore, the examples produced tend to satisfy more
restrictive constraints that the algorithms detect.
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More details are given in Table 1 on the prediction quality of the learning
algorithm according to the number of examples considered. For this compari-
son, we keep the three best predictions for each instance, meaning we keep the
three sets of parameters for SubsetFocus satisfying the examples and with
the lowest probability GSubsetFocus. The rank of an instance is the place of the
initial constraint in the prediction list. If the initial constraint was not in the
best three sets of parameters returned by the algorithm, then we consider the
rank to be ∞. The results of the first column are represented in Figure 3. From
these results, we can say that if the learning algorithm has to give a short list of
candidates from which the user would choose to add to the mathematical model,
it would return the correct constraint in the first two choices 63% of the time,
considering ten (10) examples. Moreover, the correct constraint seldom takes the
third position.

4.2 Sequence

The benchmark for Sequence is composed of 84 randomly generated instances.
An instance is composed of a set of values {0, . . . , d}, a vector of assignment
probability for the values p = [p0, . . . , pd] (pv = P [Xi = v]), a horizon n, and
the set of parameters (u,w, z). We fix l = 0 for all instances.
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Rank of
initial constraint

Num. of examples 1 2 3 ∞ Num. of instances

1 8 46 1 545 600
2 42 119 0 439 600
3 78 148 0 374 600
4 105 172 0 323 600
5 139 170 0 291 600
10 261 117 0 222 600

Table 1: Results for SubsetFocus. Number of instances for which the initial
constraint was ranked first, second, third or was not found.

We generated instances with d ∈ {10, 30}, w ∈ {5, 6, 7}, u ∈ {1 + 3k |
1+3k ≤ w∧k ∈ N}, and n ∈ {100, 200, 300}. The vectors z and p are generated
such that

∑
v pv = 1 and

∑
v:zv=1 pv ∈ {0.2, 0.8}. Finally, for each instance

defined by (d, z, p, u, w, n), we generate ten (10) solutions that satisfy Sequence
with parameters u,w,z and whose task occurrences are proportional to their
probabilities p.

Figure 4 shows the computation times. We can separate the instances into
two subsets according to the number of values d ∈ {10, 30}. When the number
of values is small, the brute force algorithm is faster because it does not have
to keep track of partial problems like the branch-and-bound does. When the
number of values is large, the brute force algorithm has too many combinations
to test and the branch-and-bound is faster. Therefore, the branch-and-bound
algorithm for Sequence is more useful when the problem to solve is large.
Figure 5 explains why the branch-and-bound is faster on larger instances as it
shows that the number of probability computations is smaller for the branch-
and-bound algorithm. Figure 6 shows how many times the algorithms correctly
predict the parameters given the number of examples that are provided. As for
SubsetFocus, we give more information about the prediction quality of the
algorithm in Table 2. For Sequence, we observe that the correct constraint is
returned by the learning algorithm among the first two choices 59.5% of the time
when we consider ten examples.

Rank of
initial constraint

Num. of examples 1 2 3 ∞ Num. of instances

1 19 7 0 58 84
2 29 7 0 48 84
3 32 8 0 44 84
10 48 2 0 34 84

Table 2: Results for Sequence. Number of instances for which the initial con-
straint was ranked first, second, third or was not found.
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4.3 Discussion

The proposed branch-and-bound is more efficient than the state-of-the-art algo-
rithms and it can be applied to multiple global constraints. We explained how
to compute a lower bound on GC for eight global constraints.

A drawback of the technique is that it does not detect overly permissive
constraints with either algorithm, the branch-and-bound or the brute force. This
is due to the fact that a permissive constraint has a lot of solutions and those
solutions might satisfy more restrictive constraints. To avoid overfitting and
therefore learning constraints that are too restrictive, one needs to increase the
number of examples. In our experiments, we obtained satisfying results with only
ten examples. We didn’t test overly permissive constraints as we are certain not
to find them as the most probable constraints and probably not even in the
top 3. Having prediction errors on permissive constraints is not as important as
missing tight constraints since the former have a smaller impact on the solutions.

5 Conclusion

We showed how a branch-and-bound can be used to learn the parameters of
global constraints from positive examples. We showed how the monotonicity can
be exploited to obtain tight bounds on the probability that a random assignment
satisfies a constraint. Some constraints have for parameter a set of values z. The
set is used to limit the number of occurrences of its values. This parameter is not
monotonic. Nevertheless, we presented a technique to bound the probability by
counting the number of solutions that satisfy the constraint with a fixed number
of values belonging to a set. Experiments show that the new technique is more
time efficient than the state of the art algorithms, based on benchmarks inspired
from timetabling problems.
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