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Abstract

We show that some common and important global
constraints like ALL-DIFFERENT and GCC can be
decomposed into simple arithmetic constraints on
which we achieve bound or range consistency, and
in some cases even greater pruning. These de-
compositions can be easily added to new solvers.
They also provide other constraints with access to
the state of the propagator by sharing of variables.
Such sharing can be used to improve propagation
between constraints. We report experiments with
our decomposition in a pseudo-Boolean solver.

1 Introduction

Global constraints allow users to specify patterns that com-
monly occur in problems. One of the oldest and most
useful is the ALL-DIFFERENT constraint [Lauriere, 1978;
Régin, 1994]. This ensures that a set of variables are pair-
wise different. Global constraints can often be decom-
posed into more primitive constraints. For example, the
ALL-DIFFERENT constraint can be decomposed into a clique
of binary inequalities. However, such decompositions usu-
ally do not provide a global view and are thus not able to
achieve levels of local consistency, such as bound and do-
main consistency. Considerable effort has therefore been in-
vested in developing efficient propagation algorithms to rea-
son globally about such constraints. For instance, several dif-
ferent propagation algorithms have been developed for the
ALL-DIFFERENT constraint [Régin, 1994; Leconte, 1996;
Puget, 1998; Mehlhorn and Thiel, 2000; Lopez-Ortiz et al.,
2003]. In this paper, we show that several important global
constraints including ALL-DIFFERENT can be decomposed
into simple arithmetic constraints whilst still providing a
global view since bound consistency can be achieved.

There are many reasons why such decompositions are in-
teresting. First, it is very surprising that complex propagation
algorithms can be simulated by simple decompositions. In
many cases, we show that reasoning with the decompositions
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is of similar complexity to existing monolithic propagation al-
gorithms. Second, these decompositions can be easily added
to a new solver. For example, we report experiments here us-
ing these decompositions in a state of the art pseudo-Boolean
solver. We could just as easily use them in an ILP solver.
Third, introduced variables in these decompositions give ac-
cess to the state of the propagator. Sharing of such variables
between decompositions can increase propagation. Fourth,
these decomposition provide a fresh perspective to propagat-
ing global constraints that may be useful. For instance, our
decompositions of the ALL-DIFFERENT constraint suggest
learning nogoods based on small Hall intervals.

2 Formal Background

A constraint satisfaction problem (CSP) consists of a set of
variables, each with a finite domain of values, and a set of
constraints specifying allowed combinations of values for
some subset of variables. We use capitals for variables and
lower case for values. We write dom(X) for the domain
of possible values for X , min(X) for the smallest value
in dom(X), max(X) for the greatest, and range(X) for
the interval [min(X), max(X)]. A global constraint is one
in which the number of variables n is a parameter. For
instance, the global ALL-DIFFERENT([X1, . . . , Xn]) con-
straint ensures that Xi �= Xj for any i < j [Régin, 1994].
We will assume values range over 1 to d.

Constraint solvers typically use backtracking search to ex-
plore the space of partial assignments. After each assignment,
propagation algorithms prune the search space by enforc-
ing local consistency properties like domain or bound con-
sistency. A constraint is domain consistent (DC) iff when a
variable is assigned any of the values in its domain, there exist
compatible values in the domains of all the other variables of
the constraint. Such an assignment is called a support. A con-
straint is bound consistent (BC) iff when a variable is assigned
the minimum or maximum value in its domain, there exist
compatible values between the minimum and maximum do-
main value for all the other variables. Such an assignment is
called a bound support. Finally, between domain and bound
consistency is range consistency. A constraint is range con-
sistent (RC) iff when a variable is assigned any value in its
domain, there exists a bound support.

Constraint solvers usually enforce local consistency after
each assignment down any branch in the search tree. For this
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reason, it is meaningful to compute the total amortised cost
of enforcing a local consistency down an entire branch of the
search tree so as to capture the incremental cost of propaga-
tion. We will compute complexities in this way.

3 ALL-DIFFERENT constraint

The ALL-DIFFERENT constraint is one of the most useful
global constraints available to the constraint programmer. For
instance, it can be used to specify that activities sharing the
same resource take place at different times. A central concept
in propagating the ALL-DIFFERENT constraint is the notion
of a Hall interval. This is an interval of m domain values
which completely contains the domains of m variables. [a, b]
is a Hall interval iff |{i | dom(Xi) ⊆ [a, b]}| = b − a + 1.
In any bound support, the variables whose domains are con-
tained within the Hall interval consume all the values in the
Hall interval, whilst any other variables must find their sup-
port outside the Hall interval.
Example 1. Consider an ALL-DIFFERENT constraint over
the following variables and values:

1 2 3 4 5
X1 ∗ ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗ ∗
X4 ∗ ∗ ∗ ∗
X5 ∗

[1, 1] is a Hall interval of size 1 as the domain of 1 vari-
able, X5 is completely contained within it. Therefore we can
remove [1, 1] from the domains of all the other variables. This
leaves X2 with a domain containing values 2, 3, 4 and 5.

[3, 4] is a Hall interval of size 2 as it completely contains
the domains of 2 variables, X1 and X3. We can thus remove
[3, 4] from the domains of X2 and X4. This leaves the follow-
ing range consistent domains:

1 2 3 4 5
X1 ∗ ∗
X2 ∗ ∗
X3 ∗ ∗
X4 ∗ ∗
X5 ∗

Enforcing bound consistency on the same problem does not
create holes in domains. That is, it would leave X2 and X4

with the values 2, 3, 4 and 5.
To identify and prune such Hall intervals from the domains

of other variables, Leconte has proposed a RC propagator for
the ALL-DIFFERENT constraint [Leconte, 1996] that runs in
Θ(n2) time. We now propose a simple decomposition of the
ALL-DIFFERENT constraint which permits us to enforce RC.
The decomposition ensures that no interval can contain more
variables than its size. We introduce O(nd2) new 0/1 vari-
ables, Ailu to represent whether Xi takes a value in the inter-
val [l, u]. For 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d and u − l < n, we
post the following constraints:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] (1)
n∑

i=1

Ailu ≤ u − l + 1 (2)

We illustrate this decomposition on our running example.

Example 2. Consider again the last example (i.e. an
ALL-DIFFERENT constraint on X1 ∈ [3, 4], X2 ∈ [1, 5],
X3 ∈ [3, 4], X4 ∈ [2, 5] and X5 ∈ [1, 1]).

First take the interval [1, 1]. Since X5 ∈ [1, 1], (1) implies
A511 = 1. Now from (2),

∑5
i=1 Ai11 ≤ 1. That is, at most

one variable can take a value within this interval. This means
that A211 = 0. Using (1) and A211 = 0, we get X2 �∈ [1, 1].
Since X2 ∈ [1, 5], this leaves X2 ∈ [2, 5].

Now take the interval [3, 4]. From (1), A134 = A334 = 1.
Now from (2),

∑5
i=1 Ai34 ≤ 2. That is, at most 2 vari-

ables can take a value within this interval. This means that
A234 = A434 = 0. Using (1) we get X2 �∈ [3, 4], X4 �∈ [3, 4].
Since X2 ∈ [2, 5] and X4 ∈ [2, 5], this leaves X2 ∈ {2, 5}
and X4 ∈ {2, 5}. Local reasoning about the decomposi-
tion has thus made the original ALL-DIFFERENT constraint
range consistent.

We will prove that enforcing DC on the decomposition en-
forces RC on the original ALL-DIFFERENT constraint. We
find it surprising that a simple decomposition like this can
simulate a complex propagation algorithm like Leconte’s. In
addition, the overall complexity of reasoning with the decom-
position is similar to Leconte’s propagator.

Theorem 1. Enforcing DC on constraints (1) and (2) en-
forces RC on the corresponding ALL-DIFFERENT constraint
in O(nd3) down any branch of the search tree.

Proof: [Leconte, 1996] provides a necessary and sufficient
condition for RC of the ALL-DIFFERENT constraint: every
Hall interval should be removed from the domain of variables
whose domains are not fully contained within that Hall inter-
val. Let [a, b] be a Hall interval. That is, |H| = b − a + 1
where H = {i | dom(Xi) ⊆ [a, b]}. Constraint (1) fixes
Aiab = 1 for all i ∈ H . The inequality (2) with l = a and
u = b becomes tight fixing Aiab = 0 for all i �∈ H . Con-
straint (1) for l = a, u = b, and i �∈ H removes the interval
[a, b] from the domain of Xi as required for RC.

There are O(nd2) constraints (1) that can be woken O(d)
times down the branch of the search tree. Each propagation
requires O(1) time. Constraints (1) therefore take O(nd3)
down the branch of the search tree to propagate. There are
O(d2) constraints (2) that each take O(n) time to propagate
down the branch of the search tree for a total of O(nd2)
time. The total running time is given by O(nd3)+O(nd2) =
O(nd3). �

What about bound consistency of the ALL-DIFFERENT
constraint? By using a representation that can only prune
bounds [Ohrimenko et al., 2007], we can give a decompo-
sition that achieves BC in a similar way. In addition, we can
reduce the overall complexity in the case that constraints are
woken whenever their bounds change. We introduce new 0/1
variables, Bik, 1 ≤ k ≤ d and replace (1) by the following
constraints:

Bil = 1 ⇐⇒ Xi ≤ l (3)
Ailu = 1 ⇐⇒ (Bi(l−1) = 0 ∧ Biu = 1) (4)

Theorem 2. Enforcing BC on constraints (2) to (4) en-
forces BC on the corresponding ALL-DIFFERENT constraint
in O(nd2) down any branch of the search tree.
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Proof: We first observe that BC is equivalent to DC on
constraints (2) because Ailu are Boolean variables. So, the
proof follows that for Theorem 1 except that fixing Ailu = 0
prunes the bounds of dom(Xi) if and only if Bi(l−1) = 0
or Biu = 1, that is, if and only if exactly one bound of the
domain of Xi intersects the interval [l, u]. Only the bounds
that do not have a bound support are shrunk. The complexity
reduces as (3) appears O(nd) times and is woken O(d) times,
whilst (4) appears O(nd2) times and is woken just O(1) time.
�

A special case of ALL-DIFFERENT is PERMUTATION
when we have the same number of values as variables, and
the values are ordered consecutively. A decomposition of
PERMUTATION just needs to replace (2) with the following
equality where 1 ≤ l ≤ u ≤ d:

n∑

i=1

Ailu = u − l + 1 (5)

This can increase propagation. In some cases, DC on con-
straints (1) and (5) will prune values that a RC propagator for
PERMUTATION would miss.

Example 3. Consider a PERMUTATION constraint over the
following variables and values:

1 2 3
X1 ∗ ∗
X2 ∗ ∗
X3 ∗ ∗ ∗

These domains are range consistent. However, take the inter-
val [2, 2]. By DC on (1), A122 = A222 = 0. Now, from (5),
we have

∑3
i=1 Ai22 = 1. Thus A322 = 1. By (1), this sets

X3 = 2. On this particular problem instance, DC on con-
straints (1) and (5) has enforced domain consistency on the
original ALL-DIFFERENT constraint.

4 GCC constraint

A generalization of the ALL-DIFFERENT con-
straint is the global cardinality constraint,
GCC([X1, . . . , Xn], [l1, . . . , lm], [u1, . . . , um]). This
ensures that the value i occurs between li and ui times in X1

to Xn. The GCC constraint is useful in resource allocation
problems where values represent resources. For instance, in
the car sequencing problem (prob001 at CSPLib.org), we can
post a GCC constraint to ensure that the correct number of
cars of each type is put on the assembly line.

We can decompose GCC in a similar way to
ALL-DIFFERENT but with an additional O(d2) integer
variables, Nlu to represent the number of variables using val-
ues in each interval [l, u]. Clearly, Nlu ∈ [

∑u
i=l li,

∑u
i=l ui]

and N1d = n. We then post the following constraints for
1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d, 1 ≤ k < u:

Ailu = 1 ⇐⇒ Xi ∈ [l, u] (6)

Nlu =
n∑

i=1

Ailu (7)

N1u = N1k + N(k+1)u (8)

Example 4. Consider a GCC constraint with the following
variables and upper and lower bounds on the occurrences of
values:

v 1 2 3 4 5
X1 ∗
X2 ∗ ∗ ∗ ∗ ∗
X3 ∗
X4 ∗ ∗ ∗ ∗ ∗
X5 ∗ ∗ ∗ ∗ ∗
lv 1 1 0 1 1
uv 5 5 5 5 5

Enforcing RC removes 1 and 3 from X2, X4 and X5 and
leaves the other domains unchanged. We can derive this from
our decomposition. From the lower and upper bounds on the
number of occurrences of the values, we have Nii ∈ [1, 5] ex-
cept for N33 ∈ [0, 5] and we have N12 ∈ [2, 4], N13 ∈ [2, 5]
and N14 ∈ [3, 5]. By (6), A333 = 1. From (7), N33 =∑5

i=1 Ai33 ∈ [1, 4]. From N15 = N14 + N55 we have N14 ∈
[3, 4] (i.e., upper bound decreased) because N15 = 5 and
N55 ∈ [1, 5]. Similarly, we derive from N14 = N13+N44 that
N13 ∈ [2, 3] and from N13 = N12 + N33 that N12 ∈ [2, 2].
From the same constraint, we shrink N13 to [3, 3] and N33 to
[1, 1]. Finally, N12 = N11 + N22 shrinks N11 to [1, 1]. By
(6), A111 = A333 = 1, so by (7), Ai11 = 0, i ∈ {2, 3, 4, 5}
and Ai33 = 0, i ∈ {1, 2, 4, 5}. By (6), this removes 1 and 3
from X2, X4, X5. Local reasoning about the decomposition
has made the original GCC constraint range consistent.

We next show that enforcing DC on constraint (6) and BC
on constraints (7) and (8) enforces RC on the GCC con-
straint.

Theorem 3. Enforcing DC on constraint (6) and BC on con-
straints (7) and (8) achieves RC on the corresponding GCC
constraint in O(nd3) time down any branch of the search tree.

Proof: We use IV for the number of variables Xi whose
range range(Xi) intersects the set V of values, and SV for
the number of variables Xi whose range is a subset of V .
We first show that if RC fails on the GCC, DC on (6) and
BC on (7) and (8) will fail. We derive from [Quimper et al.,
2005, Lemmas 1 and 2] that RC fails on a GCC if and only
if there exists a set of values V such that SV >

∑
v∈V uv

or such that IV <
∑

v∈V lv . Suppose first a set V such that
SV >

∑
v∈V uv . The fact that domains are considered as

intervals implies that either range(V ) includes more vari-
able domains than the sum of the upper bounds (like V ),
or the union of the range(Xi) that are included in V lets
a hole of unused values in V , which implies that there ex-
ists an interval [l, u] ⊂ V such that S[l,u] >

∑
v∈[l,u] uv .

So, in any case, there exists an interval [l, u] in V with
S[l,u] >

∑
v∈[l,u] uv . By (6) we have

∑n
i=1 Ailu ≥ S[l,u]

whereas the greatest value in the domain of Nlu was set to∑
v∈[l,u] uv . So BC will fail on Nlu =

∑n
i=1 Ailu. Sup-

pose now that a set V = {v1, . . . , vk} is such that IV <∑
vi∈V lvi . The total number of values taken by Xi variables

being equal to n, the number of variables Xi with range(Xi)
not intersecting V is greater than n − ∑

vi∈V lvi
, that is,

S[1,v1−1] + S[v1+1,v2−1] + . . . + S[vk+1,d] > n−∑
vi∈V lvi

.
Thanks to (7), we know that for any l, u, Nlu ≥ S[l,u]. So,
N1(v1−1)+N(v1+1)(v2−1)+. . .+N(vk+1)d > n−∑

vi∈V lvi
.
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The initial domains of Nlu variables also tell us that for
every vi in V , Nvivi ≥ lvi . Thus, min(N1(v1−1)) +
min(Nv1v1)+min(N(v1+1)(v2−1))+. . .+min(N(vk+1)d) >
n = max(N1d). Successively applying BC on N1v1 =
N1(v1−1)+Nv1v1 , then on N1(v2−1) = N1v1+N(v1+1)(v2−1),
and so on until N1d = N1vk

+ N(vk+1)d will successively
increase the minimum of these variables and will lead to a
failure on N1d.

We now show that when DC on (6) and BC on (7) and (8)
do not fail, it prunes all values that are pruned when enforcing
RC on the GCC constraint. Consider a value v ∈ dom(Xq)
for some q ∈ 1..n such that v does not have any bound sup-
port. We derive from [Quimper et al., 2005, Lemmas 1 and
6] that a value v for a variable Xq does not have a bound sup-
port on GCC if and only if there exists a set V of values such
that either (i) SV =

∑
w∈V uw, v ∈ V and range(Xq) is not

included in V , or (ii) IV =
∑

w∈V lw, v /∈ V and range(Xq)
intersects V . In case (i), V contains v and the values it con-
tains will be taken by too many variables if Xq is in it. In case
(ii), V does not contain v and its values will be taken by not
enough variables if Xq is not in it. Consider case (i): Since
DC did not fail on (6), by a similar reasoning as above for de-
tecting failure, we derive that V is composed of intervals [l, u]
such that S[l,u] =

∑
w∈[l,u] uw. Consider the interval [l, u]

containing v. The greatest value in the initial domain of Nlu

was
∑

w∈[l,u] uw, which is exactly the number of variables
with range included in [l, u] without counting Xq because its
range is not included in V . Thus, (7) forces Aqlu = 0 and (6)
prunes value v from dom(Xq) because v ∈ [l, u] by assump-
tion. Consider now case (ii): V = {v1, . . . , vk} is such that
IV =

∑
vi∈V lvi . The total number of values taken by the Xi

variables being equal to n, the number of variables Xi with
range(Xi) not intersecting V is equal to n−∑

vi∈V lvi , that
is S[1,v1−1] +S[v1+1,v2−1] + . . .+S[vk+1,d] = n−∑

vi∈V lvi
.

Thanks to (7), we know that for any l, u, Nlu ≥ S[l,u]. So,
N1(v1−1)+N(v1+1)(v2−1)+ . . .+N(vk+1)d ≥ n−∑

vi∈V lvi
.

The initial domains of Nlu variables also tell us that for
every vi in V , Nvivi ≥ lvi . Thus, min(N1(v1−1)) +
min(Nv1v1)+min(N(v1+1)(v2−1))+. . .+min(N(vk+1)d) ≥
n = max(N1d). Successively applying BC on N1v1 =
N1(v1−1)+Nv1v1 , then on N1(v2−1) = N1v1+N(v1+1)(v2−1),
and so on until N1vk

= N1(vk−1) + Nvkvk
will increase

all min(N1(vi−1)) and min(N1vi
), to the sum of the min-

imum values of the variables in the right side of each con-
straint so that min(N1vk

) = min(N1(v1−1))+min(Nv1v1)+
min(N(v1+1)(v2−1)) + . . . + min(Nvkvk

). Then, because
max(N1d) = n, BC on N1d = N1vk

+ N(vk+1)d will de-
crease the maximum value of N1vk

and N(vk+1)d to their
minimum value, BC on N1vk

= N1(vk−1) + Nvkvk
will de-

crease the maximum value of N1(vk−1) and Nvkvk
to their

minimum value, and so on until all N(vi+1)(vi+1−1) are forced
to the singleton min(N(vi+1)(vi+1−1)) = S[vi+1,vi+1−1].
At this point, (7) forces Aj(vi+1)(vi+1−1) = 0 for every
variable Xj with range not included in the interval [vi +
1, vi+1 − 1] because that interval is saturated by variables Xp

in S[vi+1,vi+1−1], for which Ap(vi+1)(vi+1−1) = 1. By as-

sumption value v is not in V , so there exists such an interval
[vi + 1, vi+1 − 1] that contains v. Furthermore, range(Xq)
intersects V , so it is not included in [vi +1, vi+1 − 1]. There-
fore, Aq(vi+1)(vi+1−1) is forced to 0 and (6) prunes v from
dom(Xq).

There are O(nd2) constraints (6) that can be woken O(d)
times down the branch of the search tree in O(1), so a total
of O(nd3) down the branch. There are O(d2) constraints (7)
which can be woken O(n) times each down the branch for
a total cost in O(n) time down the branch. Thus a total of
O(nd2). There are O(d2) constraints (8) that can be woken
O(n) times down the branch. Each propagation takes O(1)
time to execute for a total of O(nd2) time down the branch.
The final complexity down the branch of the search tree is
therefore O(nd3) + O(nd2) + O(nd2) = O(nd3). �

What about bound consistency of the GCC constraint? As
in the case of ALL-DIFFERENT, by replacing constraints (6)
by constraints (3) and (4), the decomposition achieves BC.
Theorem 4. Enforcing BC on constraints (3), (4), (7) and
(8) achieves BC on the corresponding GCC constraint in
O(nd2) time down any branch of the search tree.
Proof: The proof follows that for Theorem 3 except that fix-
ing Ailu = 0 prunes the bounds of dom(Xi) if and only if
exactly one bound of the domain of Xi intersects the interval
[l, u]. The complexity reduces to O(nd2) as BC on (3) and
(4) is in O(nd2) (see Theorem 2) and BC on (7) and (8) is in
O(nd2) (see Theorem 3). �

The best known algorithm for BC on GCC runs in O(n)
time at each call [Quimper et al., 2005] and can be awaken
O(nd) times down a branch. This gives a total of O(n2d),
which is greater than the O(nd2) here when n > d. Our
decomposition is also interesting because, as we show in the
next section, we can use it to combine together propagators.

5 Other global constraints

Many other global constraints that count variables or val-
ues can be decomposed in a similar way. For example, the
global constraint SAME([X1, . . . , Xn], [Y1, . . . , Yn]) is satis-
fied if and only if the Yi variables are a permutation of the Xi

variables. A monolithic flow-based propagator for this con-
straint is given in [Beldiceanu et al., 2004]. The following de-
composition encodes the SAME constraint where 1 ≤ i ≤ n,
1 ≤ l ≤ u ≤ d, l ≤ k and k < u:

Ailu = 1 ⇐⇒ Xi ∈ [l, u], Bilu = 1 ⇐⇒ Yi ∈ [l, u]

Nlu =
∑n

i=1 Ailu, Nlu =
n∑

i=1

Bilu

N1u = N1k + N(k+1)u

This decomposition can be obtained by posting de-
compositions for EGCC([X1, . . . , Xn], [O1, . . . , Om]) and
EGCC([Y1, . . . , Yn], [O1, . . . , Om]) and eliminating com-
mon sub-expressions (EGCC is an extended form of the GCC
constraint in which upper and lower bounds on occurrences of
values are replaced by integer variables). This is another ar-
gument in favor of decompositions since it allows constraints
to share “internal” state through common intermediate vari-
ables. Such sharing can increase propagation.
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Example 5. Consider the following example:
1 2 3 4 5

X1 ∗ ∗
X2 ∗ ∗ ∗
Y1 ∗ ∗ ∗
Y2 ∗ ∗

If we have Oi ∈ [0, 1] for 1 ≤ i ≤ 5 then
both EGCC([X1, X2], [O1, O2, O3, O4, O5]) and
EGCC([Y1, Y2], [O1, O2, O3, O4, O5]) are BC.
However, enforcing BC on the decomposition of
SAME([X1, X2], [Y1, Y2]) removes 3 from the domain
of X2 and Y1.

In fact, we conjecture that enforcing BC on this decom-
position achieves BC on the SAME constraint itself. Similar
decompositions can be given for other global constraints like
NVALUE and COMMON.

6 Experimental Results

To test these decompositions, we ran experiments on
pseudo-Boolean encodings (PB) of CSPs containing
ALL-DIFFERENT and PERMUTATION constraints. We used
the MiniSat+ 1.13 solver on an Intel Xeon 4 CPU, 2.0 Ghz,
4G RAM with a timeout of 600 seconds for each experiment.
Our decompositions contain two types of constraints: SUM
constraints like (2) and MEMBER constraints like (1). The
SUM constraints is posted directly to the MiniSat+ solver.
To encode MEMBER constraints, we use literals Bij for the
truth of Xi ≤ j [Ohrimenko et al., 2007], and clauses of the
form (Ailu = 1) ⇔ (Bi(l−1) = 0 ∧ Biu = 1). This achieves
bound consistency (Theorem 2). To increase propagation, we
use a direct encoding with literals Zij for the truth of Xi = j
and clauses (Ailu = 0) ⇒ (Zij = 0), j ∈ [l, u]. The overall
consistency achieved is therefore between BC and RC. We
denote this encoding HI . To explore the impact of small
Hall intervals, we also tried HIk, a PB encoding with only
those constraints (2) for which u − l + 1 ≤ k. This detects
Hall intervals of size at most k. Finally, we decomposed
ALL-DIFFERENT into a clique of binary inequalities, and
used a direct encoding to convert this into SAT (denoted BI).

Pigeon Hole Problems. Table 1 gives results on pigeon
hole problems (PHP) with n pigeons and n − 1 holes. Our
decomposition is both faster and gives a smaller search tree
compared to the BI decomposition. On such problems, de-
tecting large Hall intervals is essential.

Double-Wheel Graceful Graphs. The second set of ex-
periments uses double-wheel graceful graphs [Petrie and
Smith, 2003]. We converted the CSP model in [Petrie
and Smith, 2003] into a PB formula. This model
has an ALL-DIFFERENT constraint on node labels and
a PERMUTATION constraint on edge labels. For the
PERMUTATION constraint we use (5). We strengthen the BI
decomposition with clauses to ensure that every value ap-
pears at least once. Table 2 show that our decomposition
outperforms the augmented BI decomposition on many in-
stances. Whilst detecting large Hall intervals can greatly re-
duce search, in some cases the branching heuristics appear to
be fooled by the extra variables introduced in the encodings.

n BI HI1 HI3 HI5 HI7 HI9
bt/ t bt/ t bt/ t bt/ t bt/ t bt/ t

5 30/ 0.0 28/ 0.0 4/ 0.0

7 622/ 0.0 539/ 0.0 47/ 0.0 6/ 0.0

9 16735/ 0.3 18455/ 0.7 522/ 0.0 122/ 0.0 8/ 0.0

11 998927/ 29.3665586/ 44.8 5681/ 0.3 171/ 0.0 180/ 0.0 10/ 0.1
13 -/ - -/ - 13876/ 0.9 2568/ 0.2 247/ 0.1 195/ 0.1

15 -/ - -/ - 1744765/ 188.6 24109/ 2.6 1054/ 0.2 165/ 0.1

17 -/ - -/ - -/ - 293762/ 48.0 8989/ 1.1 4219/ 0.6

19 -/ - -/ - -/ - 107780/ 21.8857175/ 368.0 39713/ 9.9

21 -/ - -/ - -/ - -/ - 550312/ 426.2 57817/ 33.5

Table 1: PHP problems. t is time and bt is the number of
backtracks to solve the problem.

DWn BI HI1 HI3 HI5 HI7 HI9
bt/ t bt/ t bt/ t bt/ t bt/ t bt/ t

3 176/ 0.1 90/ 0.1 63/ 0.1

4 30/ 0.1 14/ 0.1 212/ 0.2
5 22/ 0.2 526/ 0.4 87/ 0.3 1290/ 1.7
6 1341/ 1.0 873/ 0.9 318/ 0.7 1212/ 2.9
7 2948/ 3.6 2047/ 4.2 1710/ 3.6 1574/ 4.0 27/ 0.9

8 2418/ 5.5 724/ 2.2 643/ 2.8 368/ 2.4 3955/ 19.5
9 3378/ 8.6 1666/ 5.7 1616/ 9.0 30/ 1.8 10123/ 129.7 405/ 6.5
10 19372/ 118.3 9355/ 66.214120/ 85.9 10/ 2.1 4051/ 35.0 5709/ 71.2
11 839/ 5.4 12356/ 84.2 1556/ 13.9 14/ 2.4 7456/ 105.25552/ 92.7

Table 2: Double-wheel graceful graphs. t is time and bt is the
number of backtracks to solve the problem

Overall these experiments suggest that detecting Hall inter-
vals reduces search significantly, and focusing on small Hall
intervals may be best except on problems where large Hall
intervals occur frequently.

7 Other Related Work

The ALL-DIFFERENT constraint first appeared in the ALICE
constraint programming language [Lauriere, 1978]. Regin
proposed a DC propagator that runs in O(n2.5) time [Régin,
1994]. Leconte gave a RC propagator based on Hall intervals
that runs in O(n2) time [Leconte, 1996]. Puget then devel-
oped a BC propagator also based on Hall intervals that runs
in O(n log(n)) time [Puget, 1998]. This was later improved
by Melhorn and Thiel [Mehlhorn and Thiel, 2000] and then
Lopez-Ortiz et al. [Lopez-Ortiz et al., 2003].

The global cardinality constraint, GCC was introduced in
the CHARME language [Oplobedu et al., 1989]. Regin pro-
posed a DC propagator based on network flow that runs in
O(n2) time [Régin, 1996]. Katriel and Thiel proposed a
BC propagator for the EGCC constraint [Katriel and Thiel,
2003]. Quimper et al. proved that enforcing DC on the
EGCC constraint is NP-hard [Quimper et al., 2004]. They
also improved the time complexity to enforce DC and gave
the first propagator for enforcing RC on GCC.

Many decompositions have been given for a wide range of
global constraint. However, decomposition in general tends
to hinder propagation. For instance, [Stergiou and Walsh,
1999] shows that the decomposition of ALL-DIFFERENT
constraints into binary inequalities hinders propagation. On
the other hand, there are global constraints where decompo-
sitions have been given that do not hinder propagation. For
example, Beldiceanu et al. identify conditions under which
global constraints specified as automata can be decomposed
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into signature and transition constraints without hindering
propagation [Beldiceanu et al., 2005]. As a second example,
many global constraints can be decomposed using ROOTS
and RANGE which can themselves often be propagated ef-
fectively using simple decompositions [Bessiere et al., 2005;
2006a; 2006b]. As a third example, decompositions of the
REGULAR and CFG constraints have been given that do not
hinder propagation [Quimper and Walsh, 2006; 2007; 2008;
Bessiere et al., 2008; Katsirelos et al., 2008]. As a fourth
example, decompositions of the SEQUENCE constraint have
been shown to be effective [Brand et al., 2007]. Finally,
the PRECEDENCE constraint can be decomposed into ternary
constraints without hindering propagation [Walsh, 2006].

8 Conclusions

We have shown that some common global constraints like
ALL-DIFFERENT and GCC can be decomposed into simple
arithmetic constraints whilst still maintaining a global view
that achieves range or bound consistency. These decompo-
sitions are interesting for a number of reasons. First, we
can easily incorporate them into other solvers. Second, the
decompositions provide other constraints with access to the
state of the propagator. Third, these decompositions provide
a fresh perspective on propagation of global constraints. For
instance, our results suggest that it may pay to focus propa-
gation and nogood learning on small Hall intervals. Finally,
these decompositions raise an important question. Are there
propagation algorithms that cannot be efficiently simulated
using decompositions? In [Bessiere et al., 2009], we use cir-
cuit complexity to argue that a domain consistency propaga-
tor for the ALL-DIFFERENT constraint cannot be simulated
using a polynomial sized decomposition.
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