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Abstract. Energetic reasoning is a strong filtering technique for the CUMULATIVE

constraint. However, the best algorithms process O(n2) time intervals to perform
the satisfiability check which makes it too costly to use in practice. We present
how to apply the energetic reasoning by processing only O(n logn) intervals. We
show how to compute the energy in an interval in O(logn) time. This allows us
to propose a O(n log2 n) checker and a filtering algorithm for the energetic rea-
soning with O(n2 logn) average time complexity. Experiments show that these
two algorithms outperform their state of the art counterparts.

1 Introduction

There exist many filtering rules for the CUMULATIVE constraint. Among them, the en-
ergetic reasoning rule [3, 7, 14] dominates the overload check [8, 23], the time-tabling [4],
the edge-finder [15], and the time-tabling-edge-finder [22]. To apply the energetic rea-
soning, one needs to process O(n2) time intervals, which might be too slow in practice.

We introduce a technique based on Monge matrices to explicitly process onlyO(n log n)
of the O(n2) intervals. The remaining intervals are processed implicitly. This allows us
to propose the first subquadratic checker for the energetic reasoning, with aO(n log2 n)
running time. We also propose a new filtering algorithm that filters all tasks with an av-
erage running time complexity ofO(n2 log n) and a worst case running time complexity
of O(n2 log2 n). However, we do not know whether the bound O(n2 log2 n) is tight as
we did not succeed in finding an instance requiring that much time to filter.

The next section formally presents the CUMULATIVE constraint and the energetic
reasoning rule. Section 3 presents some algorithmic background, including the Monge
matrices that we use to design our algorithms. Section 4 introduces an adaptation of the
range trees that is used in Section 5 to compute the energy in a time interval. Section 6
presents the subquadratic checker, and Section 7, the O(n2 log n) filtering algorithm.
Section 8 shows the performance of these algorithms on classic benchmarks.

2 Scheduling Background

Let I = {1, . . . , n} be the set of task indices. Each task i is defined with four integer
parameters: the earliest starting time esti, the latest completion time lcti, the processing



time pi, and the resource consumption rate hi. From these parameters, one can compute
the earliest completion time ecti = esti +pi, the latest starting time lsti = lcti−pi, and
the energy ei = pihi of the task. The horizon spans from time estmin = mini∈I esti
to time lctmax = maxi∈I lcti. A task i starts executing at time Si and executes for pi
units of time without interruption. The starting time Si is unknown but must belong
to the time interval dom(Si) = [esti, lsti]. The task is necessarily executing during
the time interval [lsti, ecti) if lsti < ecti. This time interval is called the compulsory
part. A cumulative resource can simultaneously execute multiple tasks as long as the
total resource consumption rate of the tasks executing at any time t does not exceed the
capacity C of the resource. The constraint CUMULATIVE [1] ensures that the starting
times of the tasks do not overload the capacity of the resource.

CUMULATIVE([S1, . . . , Sn], [p1, . . . , pn], [h1, . . . , hn], C) ⇐⇒ ∀t
∑

i:Si≤t<Si+pi

hi ≤ C

Deciding whether the constraint CUMULATIVE is satisfiable is NP-Complete. For
that reason, there are no polynomial time filtering algorithms that can achieve bounds
consistency for this constraint. However, there exist multiple filtering rules that partially
remove the inconsistent values from the domains of the starting variables. The overload
check [8, 23], the time-tabling [4], the edge-finder [15], the time-table-edge-finder [22],
and the not-first not-last [10, 17, 18] are popular filtering rules. With the exception of
not-first not-last, all these rules are dominated by the energetic reasoning that detects
more inconsistencies and filters more values [3]. The energetic reasoning is incompara-
ble to the not-first not-last.

A task i that starts at its earliest starting time spends, during the time interval [l, u),
an amount of energy equal to LS(i, l, u) = hi max(min(ecti−l, pi, u− l), 0). This en-
ergy is called the left-shift. If task i starts at its latest completion time, it spends, during
the time interval [l, u), an amount of energy equal to RS(i, l, u) = hi max(min(u −
lsti, pi, u − l), 0). This energy is called the right-shift. Finally, regardless of its start-
ing time, a task i must spend during the time interval [l, u) an amount of energy called
left-shift/right-shift and denoted LSRS(i, l, u).

LSRS(i, l, u) = min(LS(i, l, u), RS(i, l, u)) (1)
= hi max(min(ecti−l, u− lsti, pi, u− l), 0) (2)

By abuse of notation, we define the left-shift/right-shift for a set of tasksΘ:LSRS(Θ, l, u) =∑
i∈Θ LSRS(i, l, u). The slack S(Θ, l, u) is the amount of remaining energy, for a cu-

mulative resource of capacityC over an interval [l, u), after spending the left-shift/right-
shift of a set of tasks Θ.

S(Θ, l, u) = C · (u− l)− LSRS(Θ, l, u) (3)

The energetic reasoning tests [3], for every time interval [l, u), whether the slack is
non-negative: S(I, l, u) ≥ 0.



Baptiste et al. [3] showed that not all time intervals [l, u) need to be tested. Let O1,
O2, and O(t) be such that

O1 = {esti | i ∈ I} ∪ {ecti | i ∈ I} ∪ {lsti | i ∈ I}
O2 = {lcti | i ∈ I} ∪ {ecti | i ∈ I} ∪ {lsti | i ∈ I}

O(t) = {esti + lcti−t | i ∈ I}

Only the time intervals [l, u) that fall into one of these three situations are considered
of interest: 1) l ∈ O1 and u ∈ O2; 2) l ∈ O1 and u ∈ O(l); 3) l ∈ O(u) and u ∈ O2.

The energetic reasoning filtering consists in increasing esti and decreasing lcti to
ensure that the energetic reasoning check would pass if the tasks was executed at its
earliest starting time or latest starting time. The filtering rule for the est states that if
the left-shift of the task i is greater than the slack of the remaining tasks in an interval
[l, u), esti must be adjusted to

⌈
u− S(I\{i},l,u)

hi

⌉
.

S(I \ {i}, l, u) < LS(i, l, u) =⇒ est′i =

⌈
u− S(I \ {i}, l, u)

hi

⌉
(4)

Derrien and Petit [7] show that it is sufficient to test a subset of the intervals of
Baptiste et al. to reach the fix point. To filter the est of a task i, one has to apply the
filtering rule on all intervals in OC ∪ Li. The set OC contains at most two intervals
for each pair of tasks and thus has a cardinality in O(n2). The set Li contains 2n + 1
intervals. Similarly, to filter the lct of a task, one has to apply the filtering rules on
intervals in OC ∪ Ri, where Ri is symmetric to Li. The definitions of OC , Li, and Ri
are based on a long enumeration of cases, but are straightforward to compute. By lack
of space, we refer the reader to [7] for a complete definition of these sets.

While the energetic reasoning achieves a strong level of filtering, it is not commonly
used in practice due to its slow computation time. Baptiste et al. [3] proposed a checker
with a running time complexity of O(n2). Their algorithm asymptotically remains the
fastest checker in the literature. Nevertheless, Derrien and Petit [7] reduced the number
of intervals to check by a constant. This improvement led to a checker with equivalent
running time complexity, but faster in practice.

Baptiste et al. [3] also present an algorithm in O(n3) to filter the constraint. Boni-
fas [5] introduced an algorithm that filters at least one task inO(n2 log n) time. Tesch [21]
presents an algorithm that achieves a weaker level of filtering inO(n2 log n) time which
is later improved to perform an exact filtering in O(n2 log2 n) time [20].

3 Algorithmic Background

We present algorithms and data structures that will be used to design a subquadratic
checker for the Energetic Reasoning.



3.1 Partial sums

Let A[1..n] be an array of n integers. A partial sum query is defined such as

Partial-Sum(A, i, j) =

j∑
k=i

A[k] (5)

To efficiently answer such a query, one preprocesses in O(n) time the array A by
creating an arrayB[0..n] such thatB[0] = 0 andB[i] = B[i−1]+A[i]. Partial-Sum(A, i, j)
returns B[j]−B[i− 1] in constant computation time.

3.2 Range trees

Consider a set of n weighted points P in a two-dimensional Cartesian plan. Each point
i has two coordinates, xi and yi, and a weight wi. A sum query Qpoints(χ, γ, P ) com-
putes the weighted sum of all points delimited by the quater-plane χ ≤ x and y ≤ γ.

Qpoints(χ, γ, P ) =
∑

{i∈P |χ≤xi∧yi≤γ}

wi (6)

Such queries can be answered by two-dimensional range-trees [6] . If the fractional
cascading technique is used, each query can be answered online inO(log |P |) time after
a O(|P | log |P |) pre-processing time of P is completed.

Each node of a range tree is associated to a set of points that serves as its label.
The root P of a range tree contains all the points in P . The set of points of a node
v is partitioned into two subsets left(v) and right(v), one for the left subtree and one
for the right subtree. For each node v, the points contained in the left child have an
abscissa smaller than or equal to the abscissa of the points contained in the right child:
i ∈ left(v)∧ j ∈ right(v)⇒ xi ≤ xj . Each node v of a range-tree has an attribute xmidv

such xmidv = maxi∈left(v) xi is the largest abscissa of a point in the left subtree.
Each node v of the range-tree has a vector Yv of dimension |v| which contains the

ordinates yi of the points i ∈ v sorted in non-decreasing order. Three other vectors
characterize the nodes. The vector Wv is a partial sum such that Wv[i] is the sum of the
weights of the i points in v with the smallest ordinates. The vector Lv and Rv link the
points in v with the points in the left and right subtrees. There are Lv[i] points in left(v)
whose ordinate is no greater than Yv[i]. Similarly, there are Rv[i] points in right(v)
whose ordinate is no greater than Yv[i].

If v is a leaf, v contains a single point i. Thus, the vectors Yv , Wv , Lv , and Rv have
length 1. The vectors Yv = [yi] and Wv = [wi] contain the ordinate and the weight of
that point. The vectors Lv = Rv = [0] are the null vectors. The value xmidv is undefined.

Range-trees are built using a bottom-up approach similar to the merge sort. By
definition, the leaves of range-tree are sorted in non-decreasing order of abscissa xi.
Therefore, one sorts the points in P by abscissa which gives the leaves of the tree. Then
the upper level is computed by merging the vectors Yv , Wv , Lv , and Rv from the lower
level. Since creating the node v can be done in O(|v|) time, building the range-tree is
done in O(|P | log |P |) times.



The query Qpoints(χ, γ, P ) can be answered by traversing the tree from the root
to a leaf. Let v be the current node initialized to the root. Let i be an index such that
Yv[i] ≤ γ < Yv[i+ 1]. This index is initialized by doing a binary search over the vector
YP . If χ > xmidv , then Qpoints(χ, γ, v) = Qpoints(χ, γ, right(v)). The current node
v becomes right(v) and the index i becomes Rv[i]. If χ ≤ xmidv , Qpoints(χ, γ, v) =
Qpoints(χ, γ, left(v)) + Wright(v)[Rv[i]]. The current node v becomes left(v) and the
index i becomes Lv[i]. When the current node v = {j} is a leaf, we return wj if xj ≥ χ
and yj ≤ γ and zero otherwise. This computation is done in O(log |P |) time.

3.3 Monge matrices

A Monge matrix M is an n×m matrix such that for any pair of rows 1 ≤ i1 < i2 ≤ n
and any pair of columns 1 ≤ j1 < j2 ≤ m, the inequality (7) holds.

M [i2, j2]−M [i2, j1] ≤M [i1, j2]−M [i1, j1] (7)

An inverse Monge matrix satisfies the opposite inequality: M [i2, j2] − M [i2, j1] ≥
M [i1, j2]−M [i1, j1].

Consider the functions: fi(x) = M [i, x]. Inequality (7) imposes the slopes of these
functions to be monotonic. By choosing i1 = i, i2 = i+ 1, j1 = x, and j2 = x+ 1 and
substituting in (7), one can observe the monotonic behavior of the slopes.

fi+1(x+ 1)− fi+1(x)

(x+ 1)− x
≤ fi(x+ 1)− fi(x)

(x+ 1)− x
. (8)

It follows that the functions of two distinct rows of a Monge matrix cross each other at
most once. Monge matrices satisfy many more properties [19].

Property 1. The submatrix obtained from a subset of rows and columns of a Monge
matrix is a Monge matrix.

Property 2. The transpose of a Monge matrix is a Monge matrix.

Property 3. IfM is a Monge matrix, v and w are two vectors, thenM ′[i, j] = M [i, j]+
v[i] + w[j] is a Monge matrix.

Properties 1 to 3 also hold for inverse Monge matrices.

Property 4. M is a Monge matrix if and only if −M is an inverse Monge matrix.

Sethumadhavan [19] presents a survey about Monge matrices.
The envelope of a Monge matrix M is a function l∗(j) = arg miniM [i, j] that

returns the row i on which appears the smallest element on column j. The envelope
l∗(j) of a (inverse) Monge matrix is non-increasing (non-decreasing).

A partial Monge matrix is a Monge matrix with empty entries. Empty entries are
not subject to the inequality (7) and are ignored when computing the envelope. In this
paper, we only consider partial (inverse) Monge matrices where M [i, j] is empty if and
only if i > j. The envelope of such an n ×m partial (inverse) Monge matrix is non-
increasing (non-decreasing) on the interval [1, i] and non-decreasing (non-increasing)
on the interval [i,m] where M [i, l∗(i) − 1] is empty. Kaplan et al. [11] compute the
envelope of a n×m partial (inverse) Monge matrix inO(n logm) time. Their algorithm
uses binary searches over the columns to find the intersection of the row functions fi(x).



4 Adapting the Range-trees

We adapt the range-tree data structure to perform a query on a set of weighted segments
S instead of a set of points. Such an adaptation is required for the algorithms we present
in the next sections. A segment i of weight wi, noted 〈xi, x′i, yi, wi〉, spans from coor-
dinates xi to x′i on the abscissa, at yi on the ordinate. The query Qsegments(χ, γ,S)
computes the weighted sum of all segment parts inside the quater-plane of the query. A
segment accounts for its weight times the length of the sub-segment that is within the
query range.

Qsegments(χ, γ,S) =
∑

〈xix
′
i
,yi,wi〉∈S
yi≤γ

wi(max(x′i − χ, 0)−max(xi − χ, 0))

We can simplify the problem by replacing each segment by two rays i′ and i′′:
〈−∞, x′i, yi, wi〉 and 〈−∞, xi, yi,−wi〉. Since ray i′′ cancels ray i′ when i begins, the
result of the query is unchanged.

We adapt the range-tree data structure to answer queries on weighted rays instead
of weighted points. We add an attribute xv to each node v of the tree that represents the
smallest abscissa of a ray 〈−∞, xi, yi, wi〉 in v. In other words, each ray in v ends at x or
after. We also add a vectorΣv to each node v such thatΣv[i] = Qsegments(xv, Yv[i], v)
is a precomputed result of a query. If rays in v are sorted by ordinates, we have Σv[i] =
Σv[i− 1] + wi(xi − xv).

Similar to the original range-tree, the query Qsegments(χ, γ,S) is computed by
traversing the tree from the root S to a leaf. Let v be the current node initialized to
the root. Let i be an index such that Yv[i] ≤ γ < Yv[i + 1]. This index is initialized
by doing a binary search over the vector YS . If χ > xmidv , then Qsegments(χ, γ, v) =
Qsegments(χ, γ, right(v)). The current node v becomes right(v) and the index i be-
comesRv[i]. If χ ≤ xmidv ,Qsegments(χ, γ, v) = Qsegments(χ, γ, left(v))+Σv[Rv[i]]+
(x−χ) ·Wv[Rv[i]]. The current node v becomes left(v) and the index i becomes Lv[i].
When the current node v = {j} is a leaf, we return (xj − χ) · wj if yi ≤ γ and 0
otherwise. This computation is done in O(log |S|) time.

5 Computing the left-shift right-shift in O(logn) time

We want to preprocess n tasks inO(n log n) time in order to compute the left-shift/right-
shift LSRS(I, l, u) of any time interval [l, u), upon request, in O(log n) time. We de-
compose the problem as follows. For every task i, we let ci = max(0, ecti− lsti) be
the length of the task’s compulsory part. For every task i, we define pi weighted semi-
open intervals partitioned into two sets: the ci compulsory intervals CIi that lie within
the compulsory part [lsti, ecti) of the task and the pi− ci free intervals FIi that embed
the compulsory part. The weight of all intervals is hi.

CIi = {〈[lsti +k, lsti +k + 1), hi〉 | 0 ≤ k < ci} (9)
FIi = {〈[esti +k, lcti−k), hi〉 | 0 ≤ k < pi − ci} (10)
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Fig. 1: a) The intervals of two tasks: task A in gray with estA = 0, lctA = 5, pA = 3,
hA = 1 and task B in black with estB = 1, lctB = 9, pB = 5, hB = 1. b) The
representation of the intervals on a Cartesian plan with lower bounds on the abscissa
and upper bounds on the ordinate. c) First transformation. d) Second transformation. In
all figures, the gray rectangle represents the query [l, u) = [1, 5) that contains exactly 3
intervals of weight 1, hence LSRS({A,B}, 1, 5) = 3.

For a set of tasks, we have: CIΩ =
⋃
i∈Ω CIi and FIΩ =

⋃
i∈Ω FIi. Computing

LSRS(I, l, u) consists of counting the weight of the intervals nested in [l, u).

LSRS(I, l, u) =
∑

〈[a,b),w〉∈CII
[a,b)⊆[l,u)

w +
∑

〈[a,b),w〉∈FII
[a,b)⊆[l,u)

w (11)

Figure 1a shows two tasks and their intervals as well as a request interval [l, u)
shown in gray. The number of intervals nested in [l, u) gives the amount of processing
time the tasks must spend executing in [l, u). When the number of intervals is weighted
by the task heights, we obtain the left-shift/right-shift. Compulsary intervals have length
1 since the time at which compulsary energy is spent is known. Free intervals are longer
and nested into [l, u) only if the unit of processing time it corresponds to belongs both
to the left-shift and the right-shift of the task. Equation (11) counts all intervals nested
in [l, u) and weighted by the task heights.

Figure 1b represents an interval [a, b) by a point (a, b) on the Cartesian plane
with the corresponding weight. The sums in (11) can be computed with the queries
Qpoints(l, u, CII) and Qpoints(l, u, FII) as explained in Section 3.2. These queries
are represented as gray rectangles on Figures 1a and 1b. Since the points associated to
the intervals in FIi form segments with a slope of -1 and that points in CIi form a seg-
ment on the line y = x+1, we can design efficient algorithms to compute these queries
with O(n log n) processing time and O(log n) query time. Section 5.1 shows how to
achieve these time bounds when computing the first summation in (11) that we call the
compulsory energy while Section 5.2 shows how to compute the second summation that
we call the free energy.

5.1 Computing the compulsory energy

We compute the compulsory energy that lies within an interval [l, u) as follows. Let
T = {ecti | i ∈ I} ∪ {lsti | i ∈ I} be the sorted time points where the compulsory



energy can increase or decrease over time. Let Yt be the amount of compulsory energy
spent at time Tt. We compute Yt using an intermediate vector Y ′t initialized to zero. For
each task i, we increase by hi the component Y ′t such that Tt = lsti and decrement by
hi the component Y ′t such that Tt = ectt. We obtain these relations:

Y ′t =
∑

i∈I|lsti=Tt

hi −
∑

i∈I|ecti=Tt

hi, Y0 = Y ′0 , Yt = Yt−1 + Y ′t .

Let Zt be the amount of compulsory energy in the time interval [Tt, Tt+1), i.e. Zt =
Yt(Tt+1 − Tt). Let t1 and t2 be such that Tt1−1 < l ≤ Tt1 and Tt2 ≤ u < Tt2+1. The
amount of compulsory energy within the time interval [l, u) is given below.

Qpoints(l, u, CII) =
∑

〈[a,b),w〉∈CII
[a,b)⊆[l,u)

w = Yt1−1(Tt1 − l) +

t2∑
t=t1

Zt + Yt2(u− Tt2) (12)

Once the tasks are sorted, in O(n log n) time, by ect and lst, the vector Y ′ can be
computed in linear time. The vectors Y , and Z can also be computed in linear time. The
vector Z is preprocessed as a partial sum in linear time (see Section 3.1). Overall, the
preprocess time is O(n log n).

To answer a query Qpoints(l, u, CII), a binary search finds the indices t1 and t2
in O(log n) time. Equation (12) is computed in constant time since the vector Z was
preprocessed as a partial sum. Overall, the query time is O(log n).

5.2 Computing the free energy

We use our adaptation of range trees to answer the query Qpoints(l, u, FII). Since
range trees process segments that are parallel to the x-axis, we use a geometric trans-
formation to align the points in a set FCi with the x-axis.

We transform an interval [a, b) ∈ FII into an interval [a, a + b). The weights
of the intervals remain unchanged. The intervals in FII , when transformed, form the
following weighted segments.

T 1
I = {〈esti, esti +pi − ci, esti + lcti, hi〉 | i ∈ I}

We proceed to a second transformation where each interval [a, b) ∈ FII is transformed
into [−b,−a− b). The intervals from FII become the following weighted segment.

T 2
I = {〈− lcti,− lcti +pi − ci,− esti− lcti, hi〉 | i ∈ I}

Figures 1c and 1d show the first and second transformations.

Lemma 1. Qpoints(l, u, FII) = Qsegments(l, l + u, T 1
I ) +Qsegments(−u,−l − u−

1, T 2
I )

Proof. Sketch: Qsegments(l, l + u, T 1
I ) computes the weights of the points inside the

gray box and under the dotted line in Figure 1b or inside the gray box in Figure 1c. The
query Qsegments(−u,−l − u − 1, T 2

I ) computes weights of the points inside the gray
box and above the dotted line in Figure 1b or inside the gray box in Figure 1d.



From Lemma 1, it follows that two range trees can be constructed in O(n log n)
time with the segments in T 1

I and T 2
I . Computing the free energy within the interval

[l, u) is performed online in O(log n) time.

6 A Checker That Analyzes O(n logn) Time Intervals

We show that even though the energetic reasoning can fail in any of the O(n2) time
intervals mentioned in Section 2, this number of intervals can be reduced to O(n log n)
during the online computation. After analyzing a subset of O(n log n) intervals, it is
safe to conclude whether the check passes for all O(n2) intervals.

We define the matrix E such that E[l, u] is the left-shift/right-shift energy contained
in the interval [l, u) for estmin ≤ l < u ≤ lctmax. If the interval [l, u) is reversed
(l > u), the left-shift/right-shift is null. The matrix S[l, u] contains the slack for the
interval [l, u), i.e. the remaining amount of energy in that interval.

E[l, u] =
∑
i∈I

LSRS(i, l, u) S[l, u] = C · (u− l)− E[l, u]

Theorem 1. The matrix E is a Monge matrix.

Proof. Let estmin ≤ l1 < l2 ≤ lctmax and estmin ≤ u1 < u2 ≤ lctmax. The quantity
E[l2, u2] − E[l2, u1] is the amount of left-shift/right-shift energy that we gain by en-
larging the interval [l2, u1) to [l2, u2). By analyzing (2), we deduce that the quantities
u − lsti and u − l increase at the same rate when enlarging [l2, u1) to [l2, u2) than
when enlarging [l1, u1) to [l1, u2). However, the terms ecti−l and pi might prevent the
left-shift/right-shift to increase when the interval is enlarged. It turns out that ecti−l
increases and pi remains constant as l decreases. Consequently, the increase of energy
from [l1, u1) to [l1, u2) is less limited than when enlarging [l2, u1) to [l2, u2). Hence
E[l2, u2]− E[l2, u1] ≤ E[l1, u2]− E[l1, u1]. ut

Corollary 1. The matrix S is an inverse Monge matrix.

Proof. Follows from S[l, u] = v[u] − v[l] − E[l, u] where v[i] = iC, Theorem 1,
Property 4, and Property 3. ut

The energetic reasoning test fails if and only if there exists a non-empty interval
[l, u) such that S[l, u] < 0. Inspired from [11], we design an algorithm that finds the
smallest entry S[l, u] for any l < u by checking only O(n log n) entries in S. The
algorithm assumes that the matrix S is not precomputed, but that any entry can be com-
puted upon request. Since in Section 5, we show how to compute S[l, u] for any inter-
val [l, u) in O(log n) time, we obtain an algorithm with a running time complexity of
O(n log2 n). Moreover, we do not need to process the whole matrix S but submatrices
containing a subset of rows and columns from S. These submatrices contain all intervals
of interest described in Section 2 and by Property 1, are inverse Monge matrices.

We need to execute Algorithm 1 twice to correctly apply the energetic reasoning
rule. The first execution processes all intervals of the formO1×O2∪

⋃
l∈O1

O(l). To do
so, we call Algorithm 1 with the parameters O1, O2, and O′ := O(0) = {esti + lcti |



Algorithm 1: MongeChecker(S,O1, O2, O
′)

P1 ← ∅, P2 ← {〈[minO2,maxO2],minO1〉}, F ← ∅;
for l ∈ O1 \ {minO1} in increasing order do
〈[u1, u2], l

∗〉 ← Top(P2);
1 while S(l, u2) ≤ S(l∗, u2) do
2 Pop(P2);

〈[u1, u2], l
∗〉 ← Top(P2);

3 b← max({u | u1 ≤ u ≤ u2 ∧ u ∈ O2 ∧ S(l, u) < S(l∗, u)} ∪ {−∞});
4 c← max({u | b ≤ u ≤ min(u2, succ(b,O2)) ∧ u+ l ∈ O′ ∧ S(l, u) <

S(l∗, u)} ∪ {−∞});
u← max(b, c);
ul ← min(succ(u,O2), succ(u+ l, O′)− l);
ul∗ ← min(succ(u,O2), succ(u+ l∗, O′)− l∗);

5 d←⌊
(ul−u)(S(l∗,u)·(ul∗−u)−u(S(l,ul∗ )−S(l∗,u)))−(ul∗−u)(S(l,u)(ul−u)−u(S(l,ul)−S(l,u)))

(ul∗−u)(S(l,ul)−S(l,u))−(ul−u)(S(l∗,ul∗ )−S(l∗,u))

⌋
;

if d > min(ul, ul∗) then d← max(b, c) ;
if d > l + 1 then PushInterval(P1, P2, l, d) ;

for 〈[u, u], l〉 ∈ P1 ∪ P2 in increasing order do
u1 ← u;
if S(l, u1) < 0 then F ← F ∪ {[l, u1)};
u3 ← min{u ∈ O2 | u > u1};
while u3 ≤ u do

if S(l, u3) < 0 then F ← F ∪ {[l, u3)};
6 Find u2 such that u2 + l ∈ O′, u1 < u2 < u3, and

S(l, u2 − 1) ≥ S(l, u2) < S(l, u2 + 1);
if such a u2 exists and S(l, u2) < 0 then F ← F ∪ {[l, u2)};
u1 ← u3;
u3 ← min{u ∈ O2 | u > u1};

if F = ∅ then return (Success, ∅) else return (Fail, F ) ;

i ∈ I}. Moreover, we pass the function S := (l, u) 7→ S(I, l, u) that returns the slack
in the interval [l, u). The setsO1,O2, andO′ containO(n) elements (see Section 2) and
are computed in linear time. For the second execution, we execute the checker on the
reversed problem, processing intervals of the formO1∪O′×O2. Thus, the algorithm is
called with S := (l, u) 7→ S(I,−u,−l), O1 := {−u | u ∈ O2}, O2 := {−l | l ∈ O1},
andO′ := {−(esti + lcti) | i ∈ I}. If neither execution leads to a failure, the constraint
is consistent according to the energetic reasoning rule.

Algorithm 1 is built around the data structure P that encodes the envelope of the
inverse Monge matrix S[l, u]. The algorithm proceeds in two phases. The first phase
initializes the data structure P while the second phase uses it to perform the check.

Let P be a set of tuples such that 〈[u, u], l〉 ∈ P indicates that the smallest element
on any column u ∈ [u, u] occurs on row l (we ignore rows greater than or equal to u as
they correspond to empty time intervals). The intervals [u, u] in P are sorted, disjoint,



and contiguous. Upon the insertion of a tuple 〈[u, u], l〉, the intervals in P must be
altered in order to be disjoint from [u, u]. Intervals in P that are nested in [u, u] must be
deleted from P . Intervals that partially overlap with [u, u] must be shrunk. An interval
that embeds [u, u] needs to be split.

Consider the sequence of tuples 〈[u, u], l′〉 ∈ P sorted by intervals. By property of
the envelope of an inverse Monge matrix, the rows l′ in the sequence increase up to a
maximum and then decrease. We store in a stack P1 the first tuples of the sequence up to
the tuple with the largest row (exclusively). We store in a stack P2 the remaining tuple,
i.e. the decreasing slice of the sequence. The ends of the sequence are at the bottom of
the stacks, the tuple with the largest row l′ is at the top of P2 and the tuple before is at the
top of P1. Algorithm 2 details the process of inserting an interval in the data structure
while maintaining the invariant. Lines 1-2 move intervals smaller than the current row
l from P2 to P1. Lines 3-4 remove overlapping intervals in P2. The remainder of the
algorithm splits the top interval of P2 and insert the new interval between it. A tuple is
always pushed onto P2 before being moved to P1 and is never moved once in P1. Since
Algorithm 2 pushes two tuples onto P2, it has a constant time amortized complexity.

The intervals inserted into P are computed as follows. First, all columns of S are as-
sociated to the first row minO1. Therefore,P is initialized to {〈[estmin, lctmax],minO1〉}.
We process the next rows in increasing order in the first for loop. Each time we pro-
cess a row, we update the envelope function l∗ encoded with the data structure P . Let
fl(x) = S(I, l, x) and fl∗(x) = S(I, l∗(x), x) be two functions. Because S is an
inverse Monge matrix, we know that these two functions intersect at most once. We
search for the greatest value d where fl(d) < fl∗(d). Once the value d is computed for
a row l, if d > l + 1, we insert the tuple 〈[l + 1, d], l〉 in P . If d ≤ l + 1, the functions
do not intersect or intersect on an empty interval [l, d) which is not of interest.

We compute d by proceeding in four steps. The while loop on line 1 searches the
tuple 〈[u, u], l∗〉 in P2 such that fl(x) and fl∗(x) intersect in [u, u]. This tuple can not
be in P1 because l is greater than all intervals in P1 and we want d to be greater than
l. The intervals in which fl(x) is smaller than the functions of the previous rows are
removed from P on line 2. On line 3, we perform a binary search over the elements
of O2 within [u, u] to find the greatest column b ∈ O2 for which fl(b) < fl∗(b). Let
succ(a,A) = min{a′ ∈ A | a′ > a) be the successor of a ∈ A when A is sorted
in increasing order. Once b is found, we narrow the search for the intersection of the
functions fl(x) and fl∗(x) to the interval [b,min(u2, succ(b,O2))]. On line 4 we find
the greatest column c ∈ O(l) that lies in [b,min(u2, succ(b,O2))] where fl(c) < fl∗(c).
In order not to compute O(l) for each row l, we perform the search in O′ = O(0). We
have that c ∈ O(l) if and only if c + l ∈ O′. Therefore, rather than searching for the
greatest c ∈ O(l), line 4 searches for the greatest c+ l ∈ O′.

Using the values b and c, we find the value d where fl(x) and fl∗(x) intersect.
The function fl(x) is piecewise linear with inflection points in O2 ∪O(l). The function
fl∗(x) is piecewise linear with inflections points inO2∪O(l∗). Let d̄l = succ(max(b, c), O2∪
O(l)) and d̄l∗ = succ(max(b, c), O2 ∪ O(l∗(max(b, c))). We know that max(b, c) ≤
d ≤ min(d̄l, d̄l∗), that fl(x) is linear over the interval [max(b, c), d̄l), and that fl∗(x) is
linear over [max(b, c), d̄l∗). We let d be the intersection point of these segments, or let



Algorithm 2: PushInterval(P1, P2, l, d)
〈[u, u], l∗〉 ← Top(P2);

1 while l + 1 > u do
Push(P1, Pop(P2));

2 〈[u, u], l∗〉 ← Top(P2);

if d > u then
3 u′ ← u;

l′ ← l∗;
while d > u do

Pop(P2);
4 〈[u, u], l∗〉 ← Top(P2);

Push(P1, 〈[u′, l], l′〉);
else
〈[u, u], l∗〉 ← Pop(P2);
Push(P1, 〈[u, l], l∗〉);

Push(P2, 〈[d+ 1, u], l∗〉);
Push(P2, 〈[l + 1, d], l〉);

d = max(b, c) if that intersection point does not satisfy max(b, c) ≤ d ≤ min(d̄l, d̄l∗).
Once d is computed, we insert 〈[l + 1, d], l〉 into P .

In the second part of the algorithm, we iterate on each tuple 〈[a, d], l〉 ∈ P found
in the first part. The while loop processes the columns in O2 that are within the current
interval. After checking that the slack of two consecutive columns in O2, u1 and u3,
does not yield a negative slack, we try to find a column u2 ∈ O(l) such that u2 is
between u1 and u3 and has a negative slack.

Derrien and Petit [7] showed that the slope of the slack increases at elements in
O(l). Therefore, there is a global minimum between u1 and u3 that can be found using
a binary search. If S[l, t] < S[l, t + 1], the global minimum is before t. Otherwise, it
is at t or after t. Hence, the binary search finds the element in O(l) between u1 and
u3 where the slope of the slack shift from negative to positive. If all columns in each
interval are processed without causing a failure, we return success.

Lines 3, 4, and 6 are executed O(n) times and perform binary searches over O(n)
columns of the matrix leading to O(n log n) comparisons. Each comparison requires
the computation of two entries of the matrix S which is done in O(log n) times (see
Section 5). This leads in anO(n log2 n) running time complexity. The space complexity
of the algorithm is dominated by the complexity of the range-trees, which isO(n log n).

7 Filtering algorithm

We present a filtering algorithm for the energetic reasoning with average complexity of
O(n2 log n) based on the checker we presented in Section 6 and inspired by Derrien and
Petit’s filtering algorithm [7]. We only show how to filter the est of the tasks. To filter the
lct, one can create the reversed problem by multiplying by -1 the values in the domains.



Algorithm 3: MongeFilter(I)
est′i ← esti ∀i ∈ I;
for i ∈ I do

S1
i ← (l, u) 7→ S(I, l, u) + LSRS(i, l, u)− LS(i, l, u);

S2
i ← (l, u) 7→ S(I,−u,−l) + LSRS(i,−u,−l)− LS(i,−u,−l);

(r1, F1)← MongeChecker(S1
i , O1, O2, {esti + lcti | i ∈ I});

(r2, F2)← MongeChecker(S2
i , {−u | u ∈ O2}, {−l | l ∈ O1}, {−(esti + lcti) |

i ∈ I});
1 for [l, u) ∈ F1 ∪ {[l, u) | [−u,−l) ∈ F2} do

est′i ← min(est′i, du− S(I,l,u)+LSRS(i,l,u)
hi

e)

Filtering the est in the reversed problem filters the lct in the original problem. We define
the function S1

i (l, u) to be the amount of slack in the interval [l, u) if i was assigned
to its earliest starting time, i.e. S1

i (l, u) = S(I, l, u) + LSRS(i, l, u) − LS(i, l, u).
Similarly, S2

i (l, u) = S1
i (−u,−l) represents the same concept on the reversed problem.

Algorithm 3 filters each task i by running the checker presented in Section 6 with S1
i

and S2
i rather than S. We execute Algorithm 1 twice for each task. The first execution

handles intervals of the form O1 × O2 ∪
⋃
l∈O1

O(l) and the second, intervals of the
form O1∪

⋃
u∈O2

O(u)×O2. On line 1, for each interval [l, u) whose slack is negative
when i starts at its earliest starting time, we filter esti using the energetic reasoning rule.

Algorithm 3 reaches the same fix point as [7]. A task i needs to be filtered if
S(I \ {i}, l, u) − LS(i, l, u) is negative on an interval [l, u). If such intervals exist,
our algorithm finds at least one since it necessarily processes the interval with the mini-
mum value. If not all negative intervals are found or if the filtering creates new negative
intervals, our algorithm processes them at the next iteration.

7.1 Running time analysis

Algorithm 3 makes 2n calls to the checker that each makes O(n log n) slack queries
answered in O(log n) time, hence a running time in O(n2 log2 n). However, we use a
memorization based on virtual initialization [13] with a space complexity ofO(maxi lct2i ).
A hash table could also work with O(n log n) space. When S(I, l, u) is computed, we
store its value so that further identical queries get answered in O(1). There are O(n2)
intervals of interest. On line 5 of Algorithm 1, the slack for intervals that are not of
interest is computed O(n) times in the checker, hence O(n2) in the filtering algorithm.
For these O(n2) intervals, a total of O(n2 log n) time is spent thanks to memorization.

Line 4 performs a binary search over the elements u ∈ O(l) ∩ [b, succ(b,O2)]
and computes the slack S(l∗, u) which might not be an interval of interest. The binary
search could perform up toO(log n) slack evaluations and therefore lead toO(n2 log n)
distinct evaluations in the filtering algorithm. However, having n elements in O(l) that
occurs between two consecutive elements in O2 (namely b and succ(b,O2)) seldomly
happens. Suppose that |O2| = 3n and |O(l)| = n and that the time points in these sets
are evenly spread. We obtain an average of 1

3 elements inO(l) between two consecutive
elements in O2. This number can vary depending on the cardinalities of O2 and O(t),



but in practice, we rather observe an average of 0.141 elements when n = 16 and this
number decreases as n increases. To reach the worst time bound of O(n2 log2 n), one
would need to construct an instance that triggers O(n2) binary searches on line 4, each
time over O(n) elements. We did not succeed to construct such an instance. Assuming
that the number of elements in the search is bounded, in average, by a constant, we
obtain an average running time of O(n2 log n). Under these assumptions, the binary
search might as well be substituted by a linear search.

7.2 Optimization

As Derrien and Petit in [7], we improve the practical performance of Algorithm 3 by
processing, for each task i, only intervals in OC and Li. We partition OC into two
sets: O1

C contains the intervals in OC with lower bound in O1 and O2
C contains the

intervals in OC with lower bound in
⋃
u∈O2

O(u). Let lbs(A) = {s · a | [a, b) ∈ A}
and ubs(A) = {s · b | [a, b) ∈ A} be the lower bound and upper bounds of the intervals
in A, multiplied by s. We execute Algorithm 3 as usual, but the first call to the checker
is done with parameters O1 := lb1(O1

C) and O2 := up1(O1
C) while the second call is

made with parameters O1 := ub−1(O2
C) and O2 := lb−1(O2

C). The set O′ is empty
and S is unchanged. Since we do not process all elements in O2, we can’t use a binary
search at line 6 of Algorithm 1 anymore and we must search linearly leading to a worse
case complexity of O(n3 log n) when there are O(n2) upper bounds in OC . However,
this seldom happens and the reduced constant outweighs the increased complexity.

To process intervals in Li for i ∈ I, we do as Derrien and Petit [7] by applying
the filtering rule on each of the O(n) intervals in Li. Since we compute the slack in
O(log n), we obtain a running time of O(n2 log n) for all tasks.

8 Experiments

We implemented the algorithms in the solver Choco 4 [16] with Java 8. We ran the
experiments on an Intel Core i7-2600 3.40GHz. We used both BL [2] and PSPLIB [12]
benchmarks of the Resources Constrained Project Scheduling Problems (RCPSP). An
instance consists of tasks, subject to precedences, that need to be simultaneously exe-
cuted on renewable resources of different capacities. We model this problem using one
starting time variable Si for each task i and a makespan variable. We add a constraint of
the form Si + pi ≤ Si to model a precedence and use one CUMULATIVE constraint per
resource. For these constraints, we do not use other filtering algorithms than the algo-
rithms being tested. We minimize the makespan. All experiments are performed using
the Conflict Ordering Search [9] search strategy with a time limit of 20 minutes.

Figure 2 shows the time to optimally solve instances of benchmark BL using the
checker from Section 6 (on the y axis) and Derrien and Petit’s checker [7] (on the x
axis). The Monge Checker is faster for most instances and takes, in average, 77% of the
time required by Derrien and Petit’s checker to solve an instance to optimality.

Figure 3 shows the time to optimally solve instances using the filtering algorithm
from Section 7 and Derrien and Petit’s filtering algorithm [7], for BL (left) and PSPLIB
(right) benchmarks. While our algorithm is only marginally faster on BL instances,



Benchmark n instances solved % time
BL 20 20 0.92
BL 25 20 0.89
PSPLIB 30 445 0.94
PSPLIB 60 371 0.57
PSPLIB 90 369 0.44
PSPLIB 120 197 0.48

Table 1: Percentage of the time taken by
Monge Filter to optimally solve instances
of n tasks, compared to Derrien and Petit’s
filtering algorithm.
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Fig. 2: Comparison of the time to optimally
solve instances of the benchmark BL. Der-
rien et al.’s checker vs the Monge Checker.
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Fig. 3: Comparison of the time to solve to optimality instances of BL (left) and PSPLIB
(right) benchmarks for Derrien and Petit’s filtering algorithm and Monge Filter.

where the number of tasks is small (between 20 and 25), the difference significantly
increases as the number of tasks increases, as shown in Table 1. This shows the impact
of decreasing the complexity of the energetic reasoning from O(n3) to O(n2 log n).

9 Conclusion

We introduced a new method to explicitly process only O(n log n) intervals for the
energetic reasoning using Monge matrices. We showed how to compute the energy in
an interval in O(log n). We proposed a checker in O(n log2 n) and a filtering algorithm
in O(n2 log n). Experiments showed that these algorithms are faster in theory and in
practice. Future work will focus on extending these algorithms to produce explanations.

Acknowledgment: In memory of Alejandro López-Ortiz (1967 – 2017) who intro-
duced me to research, algorithm design, and even Monge matrices. – C.-G. Q
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