
Global Matrix Constraints?

George Katsirelos1, Nina Narodytska2, Claude-Guy Quimper3, and Toby Walsh2

1 LRI, Université Paris Sud 11, Paris, France, email: gkatsi@gmail.com
2 NICTA and University of NSW, Sydney, Australia, email:

{nina.narodytska,toby.walsh}@nicta.com.au
3 Université Laval. Québec, Canada, email: claude-guy.quimper@ift.ulaval.ca

Abstract. We study the propagation of constraints that apply to a whole matrix
of decision variables. We identify several cases where propagation is fixed param-
eter tractable, as well as other cases where propagation is intractable. We find that
the number of rows (or columns) in the matrix as a useful parameter in describing
the complexity of propagation of such matrix constraints.

1 Introduction

Matrices of decision variables are a common pattern in many constraint models [1, 2].
So far, research has largely focused on the role of such matrices in modelling. Here, we
launch a research programme to study their propagation. We give both general results,
that apply to families of global constraints, and specific results, that apply to some
specialized global constraints seen in a number of common matrix models.

Formal background: we will use the theory of parameterized complexity [3, 4]. A
problem is fixed-parameter tractable (FPT) if it can be solved inO(f(k)nc) time where
f is any computable function, k is a parameter, c is a constant, and n is the input
size. Above FPT, there is a hierarchy of fixed-parameter intractable problem classes:
FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ XP. The class W [t] is characterized by the depth
t of unbounded fan-in gates in a Boolean circuit specifying the problem. W [1]-hard
problems are believed to be intractable as the halting problem for non-deterministic
Turing machines is W [1]-complete in the length of the accepting computation.

2 Global matrix constraints

A matrix constraint is a global constraint posted on a matrix of decision variables. For
example, we can eliminate all row symmetry in a matrix model by posting a LEXCHAIN
matrix constraint to ensure that the rows are lexicographically ordered [5]. As a second
example, with row and column symmetry, we can post a DOUBLELEX matrix constraint
to ensure that the rows and columns are lexicographically ordered [6]. As a third ex-
ample, we can use a REGULARSUM matrix constraint in shift scheduling problems to
ensure that each row satisfies a REGULAR constraint (describing shift rules) and that

? Supported by ANR UNLOC project, ANR 08-BLAN-0289-01 and the Australian Govern-
ment’s Department of Broadband, Communications and the Digital Economy and the ARC.

each column has a given sum (representing the number of workers on duty). As a fourth
and final example, we can model many rostering, sports scheduling and timetabling
problems with the cardinality matrix constraint [7]; this is equivalent to global cardinal-
ity constraints on the individual rows and columns.

Whilst matrix constraints are used in many constraint models, our understanding of
how to propagate them is more patchy. Typically, our understanding fits one of three
cases. In the first case, we know that propagation is intractable. For example, enforcing
domain consistency on DOUBLELEX is NP-hard [10]. In the second case, we know that
propagation is tractable and we have either a specialized propagator or a decomposition
that does not hinder propagation. For example, an efficient and complete propagation
algorithms exists for the LEXCHAIN matrix constraint [5]. In the third case, we have
incomplete propagation methods and it is not yet clear under what conditions propa-
gation is tractable, or our methods are complete. For example, incomplete propagation
methods have been proposed for the cardinality matrix constraint [7]. One of our con-
tributions is to reduce the uncertainty here by proving that propagating the cardinality
matrix constraint is intractable even under some strong restrictions. Another of our con-
tributions is to identify conditions (like a bounded number of rows or columns) under
which propagation of various matrix constraints becomes tractable.

3 Some general theory

Theory can provide some general insights into the propagation of matrix constraints. To
illustrate this, we consider row-wise decomposable matrix constraints. This is the class
of matrix constraints that are logically equivalent to a set of constraints posted either
on individual rows or on pairs of rows. For example, the LEXCHAIN matrix constraint
is row-wise decomposable. On the other hand, the matrix constraint which ensures that
a matrix contains an even number of non-zero entries is not row-wise decomposable.
In general, it is not tractable to propagate a row-wise decomposable matrix constraint.
When is it polynomial? One condition is when there is a small and bounded number
of columns. For example, this holds for matrix models of prob033 (word design for
DNA computing) and prob036 (fixed length error correcting codes) in CSPLib [11].
This condition holds in matrix models where the columns represent a fixed resource
(e.g. distribution centres or production lines).

Observation 1 Enforcing domain consistency on a row-wise decomposable constraint
is fixed-parameter tractable in the number of columns.

Proof: Suppose we have n rows, m columns and domains of maximum size d. We
can channel each row into a single variable with at most dm values. The row-wise
decomposable constraint can then be replaced by a tree of constraints on these variables.
Enforcing domain consistency on the decomposition ensures domain consistency on
the original problem. Enforcing domain consistency on the channeling constraints takes
O(nd2m) time, and on the each of at mostO(n2) constraints on the introduced variables
in O(d2m) time. Hence, the total time complexity is O(n2d2m). 2

Note that this result holds even when the row-wise decomposition is intractable
to propagate. The proof only assumes that it is polynomial to check whether an assign-
ment satisfies the row-wise decomposition. Unfortunately, it is difficult to identify other

tractable cases without making assumptions about the precise semantics of the matrix
constraints. In the next section, we make such assumptions by focusing on some matrix
constraints that have appeared in the literature.

4 Some special cases

4.1 Cardinality matrix constraint

Our first case study is a strong negative result. We prove that propagating the cardinality
matrix constraint is NP-hard even in a very restricted setting. A special case of the
cardinality matrix constraint is the ALLDIFFERENT matrix constraint in which values
are not repeated along any row or column [7]. This can be used to model quasigroup
and related problems in fiber optical routing. It is already known that enforcing domain
consistency on this constraint is NP-hard [8]. Our contribution here is to show that the
constraint remains NP-hard even in the case of just 2 rows.

Theorem 1 Enforcing domain consistency on a 2 × m ALLDIFFERENT matrix con-
straint is NP -hard.

Proof: We will describe first a simple gadget that we use in the rest of the reduction,
inspired by a similar gadget in [9]. This gadget is a 2× 3 submatrix (Table 1(a)). There
exists a distinguished value i and two “copies” of i, c1 and c2. This gadget ensures that
the values c1 and c2 have to be used in the top row if i is used in the top row anywhere
outside the gadget, otherwise there exists a solution to the submatrix that uses neither
of c1 and c2 but uses i. In this sense, the gadget “destroys” the value i and creates two
copies. Note that, aside from i, c1 and c2, the other values are unique to the gadget

{i, p} {p, c1} {t2, c2} p c1 c2 i p t2

{p, t1} {q} {t1, t2} t1 q t2 p q t1

(a) (b) (c)
Table 1. 2× 3 submatrix gadget

(i.e., do not appear in any other part of the construction). If i is used elsewhere, the top
left cell has to take p, so the values c1 and c2 are necessarily used (Table 1(b)). If i is not
used elsewhere, the top left cell can consume i and leave c1 and c2 unused (Table 1(c)).

We reduce a 3-SAT formula φ onN variables andM clauses to a matrix with 2 rows
as follows. Intuitively, we use a cell in the first row for each variable and one for each
column. We represent an assignment by assigning i for true and−i for false to X1i. We
then use the gadget above to construct unique copies c1,j , c2,j , c−3,j of the values 1, 2
and −3 if the jth clause is (−1,−2, 3) and its cell has domain {c1,j , c2,j , c−3,j}. An
assignment that violates it assigns X11 = 1, X12 = 2 and X13 = −3 and therefore
consumes also the copies of these values, leaving no option for the cell of clause j.

More formally, in our construction we have 1 column for each variable. The first row
in column i has domain {−i, i}. After that, we have 2N blocks of columns, 1 for each
literal. The 2ith block uses the gadget to create 2dlog d−ie copies of the value i, where
d−i is the degree of the literal −i (the number of negative occurences of the variable
i). We copy i into ci1 , ci2 , then ci1 into ci3 , ci4 and so on (Table 2). Note that ci,1, . . .

are unique for each instance of the gadget. The (2i+ 1)th block generates di copies of
the value −i. For each clause j that contains the literal −i (resp i), there exists a value
ci,j (resp c−i,j) that must be used iff X1i = −i (resp X1i = i). The total number of
columns for these copies is O(N logM). Finally, we have a block of M columns, one
for each clause, so the cell in the first row of the kth column has domain {−x | x ∈ ck}.
For example, if the clause is (1 ∨ −2 ∨ 3), the domain of the first row is {−1, 2,−3}.
The second row has disjoint singleton domains anywhere outside instances of the gadet.

{i, p} {p, c1} {t2, c2} {c1, p′} {p′, c3} {t4, c4}
{p, t1} {q} {t1, t2} {p′, t3} {q′} {t3, t4}

Table 2. The connection between two gadgets to copy i to c1 and c2; c1 to c3 and c4

We now show that this instance of the ALLDIFFERENT matrix constraint is satis-
fiable iff the original SAT instance is satisfiable. An assignment to the variables of φ
is encoded by assigning X1i = i iff the variable i is true. Suppose there exists an as-
signment that satisfies φ. We create the assignment to the first N columns as described
above and create the value copies in the gadgets by simple propagation. Consider a col-
umn that corresponds to the clause j. Since the clause is satisfied, there exists a literal
that is true, say i. Hence, the value−i is not used. As the value c−i,j is not used, we can
assign it to the first row. Therefore, the entire matrix is filled and satisfies all constraints.
Conversely, consider a solution of the ALLDIFFERENT matrix constraint. We construct
an assignment to φ from the first N columns as described. For each clause column, we
have assigned a value c−i,j to the first row, so value i is used. Since this maps to the
variable i being true and the clause contains the literal i, the clause is satisfied. 2

4.2 REGULAR2 matrix constraint

Our next case study is a little more positive (and surprising). With a REGULAR2 matrix
constraint, we have REGULAR constraints along each row and column of a matrix. Such
a matrix constraint is used in models for the nonogram problem (prob012 in CSPLib).
We consider the restricted REGULAR2 matrix constraint in which variables are just
0/1 and the same REGULAR constraint applies to each row, and the same (but perhaps
different) REGULAR constraint to every column. We first prove that propagating the
restricted REGULAR2 matrix constraint is NP-hard. Note we cannot appeal to the result
in [12] for nonograms as this reduction uses a different REGULAR constraint for each
row and column.

Theorem 2 Enforcing domain consistency on a restricted REGULAR2 matrix constraint
is NP -hard.

Proof: Reduction from 1in3-SAT with n Boolean variables on m positive clauses. We
construct a n+1 by 2m+1 Boolean matrix. The first row represents a truth assigment,
In particular, the i + 1th entry in the first row is set to 1 iff xi is true. Each subsequent
pair of rows represents a clause. In particular, the i + 1th entry in the 2k − 1th row is

set to 1 iff xi is in the kth clause. The first column in the matrix has 0, then alternates 0
with 1. For a row that starts with 0, the row automaton accepts any value. For a row that
starts with 1, the row automaton accepts only those rows in which 2 entries are set to 1.
The column automaton records the value of the first variable, and accepts either the first
column, or any column in which the 2kth entry is set to 1 iff both the 1st and 2k − 1th
are set to 1. This restricted REGULAR2 matrix constraint has a solution iff the 1in3-
SAT problem has a model. In fact, by using additional leading rows and columns, we
can give a reduction that uses the same automaton for both the rows and the columns.
2

Naively, we can find a support for themn variables in am by n restricted REGULAR2

matrix constraint in O(dmn) time where d is the domain size. Surprisingly, assuming
without loss of generality m ≥ n, we can reduce this to O(mn r

q (qr)
2n+2m−m

n) where
q and r are the number of states in the row and column automata respectively. This is a
significant reduction as we move the mn term from an exponent to a coefficient.

Theorem 3 A support for a m by n restricted REGULAR2 matrix constraint can be
found inO(mn r

q (qr)
2m+2n−m

n) tiem where q and r are the number of states in the row
and column automata and m ≥ n.

Proof: We unfold each automaton m and n times. We then create a m + 1 × n + 1
matrix K of constrained variables. The domain of of K[i, j] is a pair giving all possible
states of the row automaton at the i− 1th step, and the column automaton at the j− 1th
step. The domains on the first row contains q pairs since the column automaton is in its
initial state. The domains on the first column contains r pairs since the row automaton
is in its initial state. All other domains have qr pairs. We have transition constraints
between K[i, j] and K[i + 1, j], and between K[i, j] and K[i, j + 1] permitting only
valid transitions. We then find a support by a divide and conquer method that recursively
tries to instantiate the middle row and middle column, leaving four m

2 ×
n
2 subproblems

to solve in order to validate the instantiation. When instantiating the middle row and
middle column, we have q choices of values for the variable on the first row, r choices
of values for the variable on the first column, and qr choices of values for them+n−1
variables that are neither on the first row nor the first column. Combined, there is a
total of (qr)m+n possible choices. Suppose the run time complexity to solve a m × n
matrix is g(m,n). Then g(m,n) = (qr)n+m4g(m2 ,

n
2) for n > 1 and m > 1 and

g(m, 1) = mr2 as the base case. To solve this recurrence, let n = 2k and m = z2k for
some value z ≥ 1 and h(k) = g(m,n). Then h(k) = 4(qr)(z+1)2kh(k − 1). That is,
h(k) = 4k(qr)(z+1)2k+1−z−1zr2. This means g(m,n) = n2(qr)2m+2n−m

n −1m
n r

2 =
mn r

q (qr)
2m+2n−m

n . 2
We next identify conditions under which propagation of the REGULAR2 is fixed

parameter tractable. We first show that if we simply bound the number of rows, the
constraint remains W [1]-hard to propagate, even when we restrict the column automata
to encode a linear inequality with unit coefficients on 0/1/-1 variables. We denote this
special case by REGULARSUM. As mentioned before, this can be used to model roster-
ing and related problems.

Theorem 4 Enforcing domain consistency on the REGULARSUM matrix constraint is
W [1]-hard when the parameter is the number of rows even with just 3 values.

Proof: We reduce from weighted 3-SAT. Let φ be a 3-SAT formula with N variables
and M clauses, which we try to satisfy with k > 0 variables set to true. We write
i for the true literal of the ith variable, −i for its false literal, cj for the jth clause.
var(i) ∈ cj is true if i or −i is in cj . f(j) is the number of false literals in cj .

We construct an instance of REGULARSUM with dlogNe + N +M + 1 columns
and k rows on the alphabet {−1, 0, 1}. The automaton has three sets of states, besides
the initial state q0. The first set encodes a choice of a true variable by treating the first
dlogNe symbols of each row as the binary representation of a variable index. We denote
these states by the term c(i, S), 0 ≤ i ≤ dlogNe where S is a set of variable indices.
In this notation, q0 ≡ c(0, [1, N]). The next N columns visit states denoted by the term
v(i, j) with i ∈ [1, N], j ∈ [1, N + 1]. The sums in these columns ensure that each
variable is chosen at most once. The final M + 1 columns visit additional states which
we denote by the pair 〈i, j〉, i ∈ [1, N], j ∈ [1,M]. The sums in these columns ensure
that each clause is satisfied. The automaton’s transition function is as follows:

δ(c(i, S), b) = c(i+ 1, {x ∈ S|(i+ 1)th bit of x is b}) for b ∈ {0, 1}
δ(c(dlogNe, {j}), 0) = v(j, 1)

δ(v(i, j), 0) = v(i, j + 1) if i 6= j

δ(v(i, i),−1) = v(i, i+ 1)

δ(v(i,N + 1), 0) = 〈i, 1〉
δ(〈i, j〉, 0) = 〈i, j + 1〉 if var(i) /∈ cj
δ(〈i, j〉, 1) = 〈i, j + 1〉 if i ∈ cj

δ(〈i, j〉,−1) = 〈i, j + 1〉 if − i ∈ cj

All other transitions lead to a rejecting absorbing state. All states 〈i,M + 1〉 are
accepting. All column sums are of the form

∑k
i=1Xij ≥ Pj . We set Pj = 0 for the

first dlogNe+ 1 columns, Pj = −1 for the next N + 1 columns and Pj = 1− f(j −
dlogNe −N − 2) for the rest.

In this reduction, each row corresponds to one variable that is assigned true and each
column after the first dlogNe+N + 2 to one clause. The first set of states encode the
variables with index whose binary encoding matches the current prefix and the bit that
will be fixed next. The second set of states encode the variable that is chosen for that
row in the first element and the current column in the second element. The third set of
states encode the variable that is chosen for that row in the first element of the tuple and
the current clause in the second. Thus, the automaton allows the choice of any variable
in the transition away from q0 but fixes it in the rest of the row.

The sums in columns [dlogNe+1, dlogNe+N+2] ensure that no variable is chosen
in two rows. If that happens, there will be two -1 entries in one column for a sum of
-2, violating the sum constraint of that column. The sums in the last M columns ensure
that either one of the clause’s positive literals is true or that not all of its negative literals
are false (i.e., the corresponding variable set to true). This is based on the well known
encoding of clauses as pseudo-Boolean constraints. For example, the clause (a∨b∨−c)
is encoded as a+ b− c ≥ 0, while (e ∨−f ∨−g) is encoded as e− f − g ≥ −1. The
only additional insight here is that a variable that is not set to true does not contribute to
this sum. Thus the constraint over a column is projected to those variables that are true.

We show that the instance φ is satisfiable iff the REGULARSUM matrix constraint
has a solution. Suppose φ is satisfiable. Then from a satisfying instance, we construct
an assignment to REGULARSUM by matching a true variable with each row (in any
manner) and encoding its id in the first dlogNe columns. For the rest of the columns,
if row i is matched to variable j, we assign values to the rows such that the automaton
visits states 〈j, 1〉, . . . , 〈j,M〉. Now consider clause j. Suppose j is satisfied by a posi-
tive literal i. Then there exists a row r such that the corresponding automaton is at state
〈i, j〉 before parsing the contents of column dlogNe+N + 2 + j. Since this state has
a unique outgoing transition, the value of Xrj is 1. The sum of all the other rows is at
most−f(j), thus the sum is greater or equal to 1−f(j). Suppose now that j is satisfied
by a negative literal −i. Then, none of the automata in any row visits state 〈i, j〉. Thus,
the sum of all rows is at least −(f(j)− 1) = 1− f(j).

Suppose the REGULARSUM matrix constraint has a solution. The corresponding
assignment of φ is constructed by setting to true all the variables i such that 〈i, j〉 is
visited by at least one automaton, and the rest to false. Assume some clause cj in φ is
not satisfied. Then, all f(j) of its negative literals are false, contributing −f(j) to the
sum. None of cj’s true literals are true, so these do not contribute a positive term and
the rest of the variables each contribute a negative term to the sum. Thus the sum of
column j is less than 1− f(j), and the column constraint is violated, a contradiction. 2

When we also consider the size of the row automata, the REGULAR2 matrix con-
straint is fixed parameter tractable. Hence, if we have both a small number of employees
and simple shift rules, reflected in an automaton with a small number of states, propa-
gation is tractable.

Observation 2 Enforcing domain consistency on the REGULAR2 matrix constraint is
fixed parameter tractable in k = n(logQ) where Q is the maximum number of states
in any row automaton and n the number of rows.

Proof: Let R1, . . . , Rn be the automata in each row with corresponding transition
functions δi, and RC1 , . . . , Rcm be the automata in each column with correspond-
ing transition functions δCi . To simplify notation we assume all column automata
and all row automata are the same, but this restriction is easily lifted. We construct
an automaton R∧ with states that are represented by the tuple 〈c, i, qC , q1, . . . , qn〉,
where c is the current column, i is the current row, qC is the current state of the
column automaton and q1 . . . qn are the current states of each of the n row au-
tomata. The initial state is 〈1, 1, qC0 , q0, . . . , q0〉, where qC0 and q0 are the initial
states of the column and row automata, respectively. The transitions are as follows:
δ(〈c, i, qC , qr1 , . . . , qri , . . . , qrn〉 , b) = 〈c, i+ 1, δC(qC , b), qr1 , . . . , δ(qri , b), . . . , qrn〉
if i < n and δ(〈c, n, qC , qr1 , . . . , qrn〉 , b) = 〈c+ 1, 1, qC0

, qr1 , . . . , δn(qrn , b)〉 if
δC(qC , b) is accepting. All other transitions lead to an absorbing rejecting state. A state
〈m+ 1, 1, qC , qr1 , . . . , qrn〉 is accepting if all the qri are accepting.

Note that in this unfolded automaton, i and c simply encode some information
about the current layer, so they do not contribute to the explosion of the number of
states. Thus, the number of states of this automaton is nmQnQC = nQCm2n(log |Q|),
where QC is the number of states of the column automaton. Therefore the con-
straint REGULAR([X11, . . . , Xn1, X12, . . . , Xnm], R∧) can be propagated in time
O(n|QC |2n(log |Q|)m), which is linear in the number of columns. 2

This construction is also a witness for REGULAR2 being in the class XP when the
parameter is only the number of rows: the size of the input is Θ(Q + nm), thus its
complexity is of the form O(nk), as required for XP . The R∧ automaton can also be
used in a weighted REGULAR constraint so that it also computes the optimal solution.
For example, in rostering the objective may minimize the number of working shifts.

5 Conclusions

Global constraints that apply to whole matrix of decision variables are a common
modelling pattern. We have studied the propagation of such matrix constraints. We
have identified a number of cases where propagation is polynomial. For example the
REGULARSUM matrix constraint is fixed parameter tractable when we bound the num-
ber of rows and states in the automaton. We have also identified other cases where
propagation is intractable. For example, the cardinality matrix constraints is NP-hard
to propagate even with just two rows. In future work, we intend to study other matrix
constraints (like the SCALARPRODUCT and REGULARGCC matrix constraint). In ad-
dition we intend to explore the pruning and the cost of propagating matrix constraints
in practice.

References
1. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix modelling. In:

Proc. of Formul’01 Workshop on Modelling and Problem Formulation, CP2001.
2. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix modelling: Exploit-

ing common patterns in constraint programming. In: Proc. of Int. Workshop on Reformulating
Constraint Satisfaction Problems, CP2002.

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
4. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.G., Walsh, T.: The parame-

terized complexity of global constraints. In: Pro. of 23rd National Conference on AI, AAAI
(2008) 235–240

5. Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering con-
straints. Tech. report T2002-18, Swedish Institute of Computer Science (2002)

6. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking
row and column symmetry in matrix models. In: 8th Int. Conf. on Principles and Practices of
Constraint Programming (CP-2002), Springer (2002)

7. Régin, J.C., Gomes, C.: The cardinality matrix constraint. In: 10th Int. Conf. on Principles
and Practice of Constraint Programming (CP 2004). (2004) 572–587

8. C. Colbourn. The complexity of completing partial latin squares. Discrete Applied Mathe-
matics, 8(1):25–30, April 1984.

9. M. Kutz, K. Elbassioni, I. Katriel, and M. Mahajan. Simultaneous matchings: Hardness and
approximation. Journal of Computer and System Sciences, 74(5):884–897, August 2008.

10. Katsirelos, G., Narodytska, N., Walsh, T.: Static constraints for breaking row and column
symmetry. In: 16th Int. Conf. on Principles and Practices of Constraint Programming (CP-
2010), Springer-Verlag (2010)

11. Gent, I., Walsh, T.: CSPLib: a benchmark library for constraints. In: 5th Int. Conf. on
Principles and Practices of Constraint Programming (CP-99).

12. Nagao, T., Ueda, N.: NP-completeness results for nonogram via parsimonious reductions.
Tech. Report TR96-0008, Dept. of CS, Tokyo Institute of Technology (1996)

