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Abstract. Context-free grammar constraints enforce that a sequence of variables
forms a word in a language defined by a context-free grammar. The constraint
has received a lot of attention in the last few years as it represents an effective
and highly expressive modeling entity. Its application has been studied in the
field of Constraint Programming, Mixed Integer Programming, and SAT to solve
complex decision problems such as shift scheduling. In this theoretical study we
demonstrate how the constraint can be linearized efficiently. In particular, we pro-
pose a lifted polytope which has only integer extreme points. Based on this result,
for shift scheduling problems we prove the equivalence of Dantzig’s original set
covering model and a lately introduced grammar-based model.

Keywords: grammar constraints, polytope.

1 Introduction

Global constraints capture natural substructures of common combinatorial optimization
or satisfaction problems. They facilitate the modeling process and, at the same time,
offer the solver awareness of structures that it can exploit to boost performance. In con-
straint programming, global constraints allow greater filtering effectiveness. In integer
programming, they offer the possibility to linearize specific structures more effectively
than a non-expert is able to achieve. Systems like SCIP [1] and SIMPL [12] linearize
entire substructures automatically and effectively.

In this short theoretical study, we show how context-free grammar constraints can
be linearized effectively. We prove that the linearization proposed in [3] results in a
polytope which has integer feasible corners only, thus giving us the convex hull of all
integer feasible points and allowing us to obtain tight linear relaxation models when
grammar constraints are used in combination with other constraints.
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2 Basic Concepts

We start by reviewing some well-known definitions from the theory of formal languages
and the existing algorithm for filtering context-free grammar constraints. For a full in-
troduction, we refer the interested reader to [5] and [11] where all the proofs that are
omitted in this paper can be found.

Definition 1 (Alphabet and Words). Given sets Z , Z1, and Z2, with Z1Z2 we denote
the set of all sequences or strings z = z1z2 with z1 ∈ Z1 and z2 ∈ Z2, and we call
Z1Z2 the concatenation of Z1 and Z2. Then, for all n ∈ IN we denote by Zn the set
of all sequences z = z1z2 . . . zn with zi ∈ Z for all 1 ≤ i ≤ n. We call z a word of
length n, and Z is called an alphabet or set of letters. The empty word has length 0 and
is denoted by ε. It is the only member of Z0. We denote the set of all words over the
alphabet Z by Z∗ :=

⋃
n∈IN Zn. In case that we wish to exclude the empty word, we

write Z+ :=
⋃

n≥1 Zn.

Definition 2 (Context-Free Grammars). A grammar is a tuple G = (Σ, N, P, S0)
where Σ is the alphabet, N is a finite set of non-terminals, P ⊆ (N ∪ Σ)∗N(N ∪
Σ)∗ × (N ∪ Σ)∗ is the set of productions, and S0 ∈ N is the start non-terminal. We
will always assume that N ∩ Σ = ∅. Given a grammar G = (Σ, N, P, S0) such that
P ⊆ N× (N ∪Σ)∗, we say that the grammar G and the language LG are context-free.
A context-free grammar G = (Σ, N, P, S0) is said to be in Chomsky Normal Form if
and only if for all productions (A→ α) ∈ P we have that α ∈ Σ1 ∪N2. Without loss
of generality, we will then assume that each literal a ∈ Σ is associated with exactly
one unique non-literal Aa ∈ N such that (B → a) ∈ P implies that B = Aa and
(Aa → b) ∈ P implies that a = b.

Remark 1. Throughout the paper, we will use the following convention: Capital letters
A, B, C, D, and E denote non-terminals, lower case letters a, b, c, d, and e denote
letters in Σ, Y and Z denote symbols that can either be letters or non-terminals, u, v,
w, x, y, and z denote strings of letters, and α, β, and γ denote strings of letters and
non-terminals. Moreover, productions (α, β) in P can also be written as α→ β.

Definition 3 (Derivation and Language).

– Given a grammar G = (Σ, N, P, S0), we write αβ1γ ⇒
G

αβ2γ if and only if there

exists a production (β1 → β2) ∈ P . We write α1
∗⇒
G

αm if and only if there exists

a sequence of strings α2, . . . , αm−1 such that αi ⇒
G

αi+1 for all 1 ≤ i < m. Then,

we say that αm can be derived from α1.
– The language given by G is LG := {w ∈ Σ∗ | S0

∗⇒
G

w}.

2.1 Context-Free Grammar Constraints

Based on the concepts above, we review the definition of context-free grammar con-
straints introduced in [11]:
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Definition 4 (Grammar Constraint). For a given grammar G = (Σ, N, P, S0) and
variables X1, . . . , Xn with domains D1 := D(X1), . . . , Dn := D(Xn) ⊆ Σ, we say
that GrammarG(X1, . . . , Xn) is true for an instantiation X1 ← w1, . . . , Xn ← wn

if and only if it holds that w = w1 . . . wn ∈ LG ∩ D1 × · · · × Dn. We denote a
given grammar constraint GrammarG(X1, . . . , Xn) over a context-free grammar G

in Chomsky Normal Form by CFGCG(X1, . . . , Xn).

The filtering algorithm for CFGCG presented in [11] is based on the parsing algorithm
from Cooke, Younger, and Kasami (CYK). CYK works as follows: Given a word w ∈
Σn, let us denote the subsequence of letters starting at position i with length j (that
is, wiwi+1 . . . wi+j−1) by wij . Based on a grammar G = (Σ, N, P, S0) in Chomsky
Normal Form, CYK determines iteratively the set of all non-terminals from which we
can derive wij , i.e. Sij := {A ∈ N | A ∗⇒

G
wij} for all 1 ≤ i ≤ n and 1 ≤ j ≤ n− i.

It is easy to initialize the sets Si1 just based on wi and all productions (A→ wi) ∈ P .
Then, for j from 2 to n and i from 1 to n− j + 1, we have that

Sij =
j−1⋃

k=1

{A | (A→ BC) ∈ P with B ∈ Sik and C ∈ Si+k,j−k}. (1)

Then, w ∈ LG if and only if S0 ∈ S1n. From the recursion equation it is simple to
derive that CYK can be implemented to run in time O(n3|G|) = O(n3) when we treat
the size of the grammar as a constant.

The filtering algorithm for CFGCG that we sketch in Algorithm 1 works bottom-up
by computing the sets Sij for increasing j after initializing Si1 with all non-terminals
that can produce in one step a terminal in the domains of Xi. Then, the algorithm works
top-down by removing all non-terminals from each set Sij which cannot be reached
from S0 ∈ S1n. In [11], we showed:

Theorem 1. Algorithm 1 achieves generalized arc-consistency for the CFGC and re-
quires time and space cubic in the number of variables.

Example 1. Assume we are given the following context-free, normal-form grammar
G = ({], [}, {A, B, C, S0}, {S0 → AC, S0 → S0S0, S0 → BC, B → AS0, A →
[ , C → ] }, S0)that gives the language LG of all correctly bracketed expressions (like,

Algorithm 1. CFGC Filtering Algorithm
1. We run the dynamic program based on recursion equation (1) with initial sets Si1 :=

{A | (A → v) ∈ P, v ∈ Di}.
2. We define the directed graph Q = (V, E) with node set V := {vijA | A ∈ Sij} and arc

set E := E1 ∪ E2 with E1 := {(vijA, vikB) | ∃ C ∈ Si+k,j−k : (A → BC) ∈ P} and
E2 := {(vijA, vi+k,j−k,C) | ∃ B ∈ Sik : (A → BC) ∈ P} (see Figure 1).

3. Now, we remove all nodes and arcs from Q that cannot be reached from v1nS0 and denote the
resulting graph by Q′ := (V ′, E′).

4. We define S′
ij := {A | vijA ∈ V ′} ⊆ Sij , and set D′

i := {v | ∃ A ∈ S′
i1 : (A → v) ∈

P}.
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Fig. 1. The picture shows sets Sij in Algorithm 1
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Fig. 2. The left picture shows the sets S′
ij in Algorithm 1. We see that the constraint filtering

algorithm determines that the word may not start with a closing, nor end with an opening bracket.

for example, “[[][]]” or “[][[]]”). In Figures 1 and 2, we illustrate how Algorithm 1
works when the initial domain of all domains are D1 = · · · = D4 = {[, ]}: First, we
work bottom-up, adding non-terminals to the sets Sij if they allow to generate a word
in Di × · · · × Di+j−1. Then, in the second step, we work top-down and remove all
non-terminals that cannot be reached from S0 ∈ S1n.

3 Linearization of Context-Free Grammar Constraints

In [9] an And/Or representation of the graph constructed in Algorithm 1 was given. The
idea is to split each node vijA1 in the original graph into one Or-node Nor

ijA1 which re-
ceives all incoming arcs of the original node. This Or-node then connects to And-nodes
Nand

ijA1A2A3k for all productions (A1 → A2A3) ∈ P and k < j. Each Nand
ijA1A2A3k

then connects to Nor
ikA2 and Nor

i+k,j−k,A3 . For Or-nodes Nor
i1Aa

on the lowest level, we

add one And-node Nand
i1a , whereby we assume that the only production in P with non-

terminal Aa on the left-hand side and a on the right is (Aa → a). In Figure 3 we show
how the graph in Figure 2 is transformed in this way.
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Fig. 3. The picture shows the modified And/Or-graph. The solid nodes denote And-nodes.

Based on this And/Or representation, in [3] a linearization of context-free grammar
constraints was introduced which works as follows. A boolean variable is introduced
for each node (AND/OR) of the graph, taking a value of 1 when the associated node is
true. In the following, Nor and Nand respectively refer to the sets of all Or-nodes and
And-nodes. Letting u ∈ Nor (resp. v ∈ Nand) be an Or-node (resp. And-node) then ou

(resp. av) refers to its associated 0-1 variable. We also define p(u) the set of u’s parent
nodes and, when not considering a leaf node, c(u) the set of u’s children nodes. The
constraint in the associated MIP model was formulated as:

∑

v∈c(u)

av = ou ∀u ∈ Nor (2)

∑

v∈p(u)

av = ou ∀u ∈ Nor (3)

a1,n,S0 = 1 (4)

ou, av ∈ {0, 1} ∀u ∈ Nor, v ∈ Nand (5)

The main difference between the MIP model and the AND/OR graph is that if there
exist more than one parsing tree for a sequence, all nodes in the AND/OR graph that
belong to at least one parsing tree are set to true, while for the MIP, one parsing tree is
arbitrarily selected and only its variables are set to one. All other variables, including
those that belong to other parsing trees, are set to zero. Choosing an arbitrary parsing
tree simplifies the MIP without changing the solution space. Indeed, only one parsing
tree is necessary to prove that a sequence belongs to a context-free language.

This model can however be simplified: we can remove the variable associated with
Or-nodes (since (2) and (3) can be combined) and use non-negative variables instead of
binary ones (as (4) imposes an upper bound on all variables). These changes will also
significantly simplify the proof that all extreme points of the defined polytope are integer.
The new model becomes:
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∑

v∈c(u)

av =
∑

v∈p(u)

av ∀u ∈ Nor (6)

a1,n,S0 = 1 (7)

av ≥ 0, ∀v ∈ Nand (8)

It is also possible to define the grammar polytope directly from the signature of the
constraint, that is without referring to the AND/OR graph. The polytope is then defined
as follows:

IP− CF = min
∑

cijABCkaijABCk +
∑

ci1aai1a (9)

s.t.

∑

(A→BC)∈P

1≤k<j

aijABCk =
∑

(B→AC)∈P

j<k<n

aikBACk+
∑

(B→CA)∈P

j<k<n

ai+j−k,k,BCAk

∀ i, j≥1
∀ A∈Sij

i+j ≤ n+1
(10)

∑

(Aa→a)∈P

ai1a =
∑

(B→AaC)∈P

1<k<n

aikBACk +
∑

(B→CAa)∈P

1<k<n

ai+1−k,k,BCAk
∀ i ∈ 1..n

∀Aa ∈ Si1
(11)

1 =
∑

(S0→BC)∈P

1≤k<n

a1nS0BCk (12)

0 ≤ aijABCk, ai1a

∀ Aa ∈ Si1

∀ i, j ≥ 1
i + j ≤ n

(13)

Example 2. Continuing with the bracketing example (Example 1), we illustrate the lin-
earization of the corresponding grammar constraint. For the graph depicted in Fig-
ure 3, among other constraints, according to Equation 6, we enforce

a14S0BC3 + a32S0AC1 = a41],

and according to Equation 4, we enforce

a14S0BC3 + a14S0S0S02 = 1.

4 The Context-Free Grammar Polytope

We now state and prove the main result of this theoretical study. Given a grammar
constraint, the polytope defined by (6)-(8) has the following property:
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Theorem 2. The linearization IP-CF of a given context-free grammar constraint has
integer-feasible corners only.

Proof. We can write IP-CF in the form minimize cT a such that Aa = b, a ≥ 0. Let a1

denote an optimal solution to IP-CF, and u1 the corresponding optimal dual solution.
According to the well-known complementary slackness conditions, we know that all
a with Aa = b and aT (AT u1 − c) = 0 are optimal. The complementary slackness
conditions ensure that at optimality, we have aT

i = 0 or AT
i u1 − ci = 0 for every i. It

is therefore sufficient to construct an integer-feasible solution a0 to Aa = b for which
AT

i u1 < ci implies a0
i = 0. In particular, we want to construct an integer-feasible

solution a0 for which a0
i is greater than zero only if the non-integer solution satisfies

a1
i > 0 or equivalently AT

i u1 = ci. That is, it is sufficient to construct an integer-
feasible solution a0 to Aa = b whose support (the set of variables that take non-zero
values) is a subset of the support of a1.

Let us consider any node in cell S1n for which a1
1nS0BCk > 0 (at least one such

node must exist according to Equation 12), and set a0
1nS0BCk = 1. Now, since the

Or-nodes o1kB and ok,n−k,C received a positive “flow” according to a1, according to
Equations 10 there must exist some And-nodes for which a1

1kBDEh, a1
k,n−k,CFGl > 0.

Again, we set a1
1kBDEh = 1 and a1

k,n−k,CFGl = 1 and continue until we fade out at the
bottom level. All other variables are set to zero. The tree of And-nodes which we con-
structed obeys all constraints in IP-CF. Moreover, we only utilized And-nodes that were
already used in the fractional solution a1. Consequently, a0 obeys the complementary
slackness conditions with respect to u1 and is thus optimal. �

The result applies to models where costs are associated with variables taking specific
values as studied in [6], but also models where using certain productions incurs specific
costs as studied in [7].

5 Implication for Shift Scheduling Problems

We illustrate the use of grammar constraints in the domain of shift scheduling. Given
a planning horizon divided into periods of equal length, a set of employees and a de-
mand for different activities (work activities, lunch, break, rest) at each period, the shift
scheduling problem consists in assigning one activity to each employee in each period
in such a way that the demands are met. In this context, a shift is a sequence of activities
corresponding to a continuous presence at work (that may include lunch and break, but
not rest periods). The original objective (introduced by Dantzig in [2]) is to build a set
of shifts that minimize labor costs while meeting labor regulations.

Given that Ω is the set of legal shifts, T the set of all time periods, di the required
number of employees at time i, cs the cost of shift s (equal to a weighted sum of the
number of periods it covers), ais an indicator specifying whether s covers time period
i, and xs is an integer variable that represents the number of employees assigned to s,
we can state the original model of [2] as follows:
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SC = min
∑

s∈Ω

csxs (14)

s.t.
∑

s∈Ω

aisxs ≥ di ∀i ∈ T (15)

xs ≥ 0, integer ∀s ∈ Ω (16)

The most common methods used to solve this problem ([4]) are various set covering
heuristics, which select from a set of potentially good shifts, the ones that together
generate the best schedule. In order to generate an optimal solution the set covering
model has to be defined over the entire set of possible shifts and solved through branch
and price when Ω is too large.

For the purpose of comparison (and also many other practical issues that involve
the need to track individual employees) this model can be disaggregated to identify the
shift performed by each employee in set E. The boolean decision variable xse indicates
whether employee e performs shift s.

SCe = min
∑

s∈Ω,e∈E

csxse (17)

s.t.
∑

s∈Ω,e∈E

aisxse ≥ di ∀i ∈ T (18)

∑

s∈Ω

xse = 1 ∀e ∈ E (19)

xse ∈ {0, 1} ∀s ∈ Ω, e ∈ E (20)

In [3] Coté et al. showed that one could express implicitly the set of all shifts using
a simple context-free grammar imposed on the sequence of fine grained decisions yie

(employee e works at time i). At a high level, the model was:

SCg = min
∑

i∈T,e∈E

ciyie (21)

s.t.
∑

e∈E

yie ≥ di ∀i ∈ T (22)

grammar(G, yi∈T,e) ∀e ∈ E (23)

yie ∈ {0, 1} ∀i ∈ T, e ∈ E (24)

where ci is the cost of having an employee working at time i and G is the grammar
defining how the shifts in Ω can be assembled. Note that even though Models SC
and SCe could encapsulate more sophisticated costs than the weighted sum of the
worked periods, it would also be possible to impose costs on the variables associated to
the And-nodes of the grammar constraint formulations allowing for substantial flexibil-
ity in modeling.

Corollary 1. Given that the cs =
∑

i∈T aisci ∀s ∈ Ω then models SCe and SCg are
equivalent.
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Proof. From Theorem 2, the linearization of (23) yields a polytope that admits only
integer extreme points which are, by definition of G, all the pairs (valid shifts s ∈ Ω,
employee e ∈ E). Thus any feasible solution y.e associated to one employee can be
written as a convex combination of the extreme points (s,e). If we associate a Boolean
variable to each of these extreme points, say xse, we can convert any solution vector
given in terms of the extreme points x back to the original variable y by applying

yie =
∑

s∈Ω

aisxse ∀i ∈ T, ∀e ∈ E (25)

Using (25), we can rewrite the yie variables in SCg (where (23) is no longer necessary)
as a convex combination of the extreme point variables xse:

SCg = min
∑

i∈T,e∈E

ci

∑

s∈Ω

aisxse (26)

s.t.
∑

e∈E

∑

s∈Ω

aisxse ≥ di ∀i ∈ T (27)

∑

s∈Ω

aisxse = 1 ∀i ∈ T, e ∈ E (28)

xse ∈ {0, 1} ∀s ∈ Ω, e ∈ E (29)

Given that cs =
∑

i∈T aisci ∀s ∈ Ω and that (28) is derived from (12), this is exactly
SCe. �

6 Conclusion

Grammar constraints have received much attention in last few years, as they have been
studied in the context of Constraint Programming [6,9,11], SAT [10], Mixed Integer
Programming [3], and Large Neighborhood Search [8]. In this paper we studied the lin-
earization of this global constraint and showed that it is possible to generate a polytope
that possesses only integer feasible extreme points. We believe this result is fundamental
as it means that the use of grammar constraints in the context of Mixed Integer Program-
ming does not introduce any integrality gap. We know that the grammar constraint can
be very useful to solve shift scheduling problems [8], and we plan to investigate other
areas where these structures can be useful.
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