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Abstract. We introduce a novel global Markov transition constraint
(MTc) to model finite state homogeneous Markov chains. We present
two algorithms to filter the variable domains representing the imprecise
probability distributions over the state space of the chain. The first filter-
ing algorithm is based on the fractional knapsack problem and the second
filtering algorithm is based on linear programming. Both of our filtering
algorithms compare favorably to the filtering performed by solvers when
decomposing an MTc into arithmetic constraints. Cases where the frac-
tional knapsack decomposition enforces bounds consistency are discussed
whereas the linear programming filtering always perform bounds consis-
tency. We use the MTC constraint to model and solve a problem of path
planning under uncertainty.

1 Introduction

We introduce a novel global markov transition constraint (MTC) to model finite
state space Markov processes with a finite number of steps T'. Markov processes
(also called Markov chains) are central to many applications. They are used in
physics to model the motion of a target in a physical environment [22] and in
computer science they are used in the Pagerank algorithm used by Google [20].
They are also used in economics and business science [§]. Markov processes even
apply to arts for the generation of melodies [I9] and lyrics [I]. They form the basis
of decision making frameworks, such as Markov decision processes and hidden
Markov decision processes which are fundamental to many artificial intelligence
applications [16].

Let = {1,...,N} be a space of N states. States are mutually exclusive
and jointly exhaustive, i.e., the process is in exactly one state of AV at any
time. Let M be the N x N transition matriz of the Markov process. That is,
the probability of moving from state 7 to state j at any step ¢t € {1,...,T} is
0<M,;; <1 (Vi,j €N), and the total probability of moving from state i € N
(given that the process is in state i) is 1, i.e., D2, M;; = 1 (Vi € N). Let
xt = [zl,...,2%] be the row vector of the probability distribution on the states
at a time t € {1,...,T} where z! is the probability that the process is in state
i € N at step t € {1,...,T}. Given an initial distribution x! over the states



such that ) .- xl =1land 0 < z! <1foralli € N, the Markov property states
that

x't =x'M, Vte{2,...,T}. (1)

That is, the state at time ¢t 4+ 1 depends on the previous state 0n1yE| Given the
distribution x¢, the distribution after k steps from step ¢, x'**, is computed as:

xtF = xtMF, vte{l,...,T},kc{0,...., T —t,}. (2)

Ezample 1. Suppose that we wish to model the motion of a lost child between
three stores (store 1, 2, and 3) of a mall with discrete time intervals of one
minute. The child’s behavior is as follows: s/he may spend time in the toys store
(number 1); after one minute, her/his probability of leaving to the candy store
(number 2) is %; from the candy store, s/he either returns to the toys store, stays
there, or goes to the food market (number 3); whenever the child is in the food
market, s/he directly returns to the candy store. The child’s motion model is a
transition matrix M:

M = (3)

O w00l
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As a first experiment, suppose that the child starts in room 1. That is, the
probability distribution at time 1 is x! = [1,0, 0]. We may, using equation (I]), in-
fer that the distribution over the Chlld s location after a minute is x% = [;, 5 0]
It is as easy to know, using equation (2| , ), the distribution over the child’s location
after a delay of k£ > 1 minutes.

As a second experiment, suppose that we have no information on the child’s
initial location, but that we want to get the best possible estimation over her/his
location after 1 minute, i.e., at time ¢ = 2. The probability distribution at time
1 is uncertain. The only thing we know is that x! is a distribution: it sums
up to 1 and the probabilities are in the interval [0,1]. By relying on linear
optimization techniques or on the fractional knapsack filtering algorithm we
present in Section [d] we find that, the probabilities of locating the child in room
1, 2 or 3 are in the intervals [0, %L [%, 1] and [0, %} respectively; a solution that
interval arithmetic alone is not able to provide. a

Clearly, filtering the uncertain probability distributions to the tightest pos-
sible intervals is not as easy in the second experiment as computing the prob-
abilities in the first example. Uncertainty on probability distributions arises in
modeling and problem solving due to external factors influencing the chain, im-
precise data, and/or uncertain knowledge. For instance, in the search operation
model presented in Section [6] the probability distributions are updated given

! Even if some generalizations allow the current state to depend on d > 1 states (e.g.,
Markov chains of order d), we restrict ourselves to previous state dependencies only,
i.e., to first-order Markov chains.



the searcher’s actions. There is no way, without knowing the entire searcher’s
path, to compute the exact probability distribution for each time step.

The introduction of a global constraint to model the evolution of the state
space enables to intuitively model a Markov chain and leads to stronger filtering
of the constrained variables when compared to a decomposition of the chain into
elementary constraints.

The paper is organized as follows. We describe the MTC global constraint
in Section 2l Section [3] discusses the literature related to similar constraints. In
Section [ we introduce two filtering algorithms: the first one based on linear
optimization and the second one inspired from a fractional knapsack algorithm.
We also discuss about the filtering of a decomposition into linear constraints.
We identify cases where the different filtering techniques achieve bounds consis-
tency. In Section [5] we conduct an empirical study of the filtering algorithms.
Section [6] presents an application of the MTC constraint to a practical problem.
We conclude in Section

2 Modeling Markov transition processes as a global
constraint

We define a new constraint that encodes a Markov transition process. As a con-
vention, we write constrained variables in italic upper case and global constraints
in small capitals. The MTC is defined as follows:

Mro([Yi,..., Yn], [X1,.. ., XN M) & Vi eN, Y XiM;; =Y;A Y X, =1.
iEN iEN

The matrix M is a known Markovian transition matrix. The vectors X =

[Xy,...,Xn] and Y = [V1,...,Yy] are probability distributions over A/. The

domains of the variables in vectors X and Y are:

dom(X;) = [X,;, X;], Vie N, (4)
where X, and X, are lower and upper bounds on variable X,; and
dom(Y;) = [Y,,Y,], VjeN, (5)

where Y, and ?j are lower and upper bounds on variable Y.

The constraint MTc(Y, X, M) applies a transition matrix M to X and ob-
tains Y, i.e., MTc(Y,X, M) states that Y = XM. Multiple MTC constraints
may be chained to compute a finite Markov chain of T steps:

Mrc(X, X1 M), Vt{2,...,T}. (6)

Other constraints may be added on the X variables to interact with the chain.

Since the constraint MTc(Y, X, M) is satisfied only if X and Y represent
probability distributions, filtering this constraint can both be seen as an appli-
cation of the theory of interval-probability and as a linear optimization prob-
lem [12124].



Definition 1 (Uncertain distribution). We call a probability distribution an
uncertain distribution if at least one of its probability is defined as an interval.

For instance, the vector [dom(X3),...,dom(X,)] is a vector of intervals which
is an uncertain distribution if and only if there exists at least an assignment to
the variables X that sums up to 1.

3 Markov constraints and related literature

Pachet and Roy [18] introduced the elementary markov constraint (EMC). The
EMC is defined as follows?t

EMC(S, S/, PS’) & Pgr = Mgg. (7)

That is, EMc(S, S, Ps/) states that the probability of moving from state S to
state S’ is Ps:. The domains of the state variables S and S’ are subsets of N.
The domain of the probability variable is the set of conditional probabilities,
computed during the generation of the model, of achieving state S’ from any
previous state: dom(Pg/) = {p | (Ji € N' | p=M;s/) }.

Using multiple EMcCs, the authors model constrained Markov processes, i.e.,
Markov processes with supplementary constraints on the generated sequence. Let
S1,...,57 be the state variables of a sequence of a first-order Markov chain. Let
Ps,, ..., Pg, be the variables that represent the probabilities. The constrained
sequence is modeled as chained EMCs:

EMC(St, Se41, Ps,. ), vte{1,...,T—1}. (8)

The Markov property, enforced by the EMCs, is a cost function to optimize
whereas supplementary constraints are used to steer the generation of the se-
quence. The approach is used on chords sequence and melody generation.

Following [18], Pachet et al. [I9] show that when the scope of the supplemen-
tary constraints does not exceed the chain’s order d, the constrained Markov
process may be recompiled into a statistically equivalent unconstrained Markov
process. The approach is illustrated on the melody generation problem. In [I],
the authors apply constrained Markov processes to the generation of lyrics.

The markov transition constraint (MTC) we introduce differs from the el-
ementary markov constraint (EMC) presented in [I8/19]. The former aims at
modeling the evolution of the state space by computing the distributions x*
defined for all ¢ € {1,...,T} while the latter aims at generating the sequence
of states in a constrained fashion, i.e., a Markov sequence with supplementary
constraints. Moreover, the MTC deals with interval-domain probabilities while
the EMC deals with finite-domain probabilities.

Markov chains with uncertain data (imprecise Markov chains) are related
to Markov constraints. Imprecise Markov chains are provided a credal set (or

2 We restraint our EMc definition to first-order Markov chains even though the defi-
nition found in [I8] is general.



probability interval) for each possible transition whereas we deal with precise
(singleton) transition probabilities and uncertain distributions. Further details
on imprecise Markov chains may be found in [5/6].

4 Filtering the Markov Transition Constraint

A filtering algorithm for the MTC prunes the values from the domains of the
variables X, and Y, that are inconsistent with the constraint.

Definition 2 (Interval support). Let C([Xy,...,X,]) be a constraint of arity
n. The assignment [Xy,..., X, ] = [zy,...2,] is an interval support if and only
if C([zq,...2,]) is satisfied and the inequalities X, < x, < X, hold.

Definition 3 (Bounds consistency). A constraint C([Xy,...,X,]) is bounds
consistent if and only if, for every variable X;, there exists an interval support
where the variable is assigned to the lower bound of its domain and a bounds
support where the variable is assigned to the upper bound of its domain.

A filtering algorithm enforces bounds consistency if and only if after being
executed, no interval supports are eliminated and the constraint is bounds con-
sistent. From now on, we simply say that an assignment has a support instead
of an interval support.

We present three filtering algorithms to filter the variables X; and Y; (Vi,j €
N) subject to an MTC constraint. The first algorithm, denoted MTC-IA, uses
the interval arithmetic [I4] that is applied on a decomposition of the constraint.
Following [24], the second algorithm, denoted MTC-LP, performs a linear opti-
mization to achieve bounds consistency. The third algorithm, denoted MTC-FK,
is a compromise between the two previous approaches. It relaxes the problem into
a set of fractional knapsack constraints on which it enforces bounds consistency.

4.1 Filtering using interval arithmetic (MTC-IA)

We decompose the global constraint MTc(Y,X,M) into linear constraints as
follows:

> XM =Y, vieN, (9)
1EN
doXi=1, (10)
1EN
Y vMT; =X, Vi e N, (11)
JEN
Y vi=1. (12)
JEN

Constraints @ and follow from the definition of the MTcC. Constraints
and are implied constraints that enhance the filtering. We call MTC-TA



the algorithm that uses the interval arithmetic to enforce bounds consistency on
the constraints @ to . This algorithm, that is already implemented in most
constraint solvers, simply enforces bounds consistency on each constraint until
a fixed point is reached. The implied constraints necessitate the inverse of the
transition matrix M. The inverse M ! is computed during the generation of the
model, prior to solving the problem. This pre-solving process is done in cubic
time.

We discuss specific cases where interval arithmetic enforces bounds consis-
tency on the constraint MTcC. These cases require new definitions.

Definition 4 (Monomial matrix). A matriz A is monomial if and only if it
has one and only one non-null element in each column and each row.

Proposition 1. A monomial transition matric M is a permutation matriz.

Proof. The rows of M sums up to 1 by definition. Because M is monomial, we
must have one element set to one in every row and all other elements are null
which result into a binary matrix. Monomial binary matrices are permutation
matrices. a

Proposition 2. The inverse of a monomial transition matriz M is a transition
matriz.

Proof. M is a permutation matrix. The inverse of a permutation matrix is its
transpose which is also a permutation matrix. O

Lemma 1. If M is monomial, then enforcing bounds consistency on the linear

constraints @ and enforces bounds consistency on Mtc(Y, X, M).

Proof. If M is monomial, it is a permutation matrix and the constraints @D are
binary equalities. Suppose that constraints @D and are bounds consistent.
Let z be an interval support for (10) then y = M is a permutation of x and,
thanks to the equality constraints, we have y; € dom(Y;). Consequently, the
upper bound and lower bounds of the domains dom(X;) have an interval support
for MTc(Y,X,M). Let 7 be the permutation encoded by M. Since the bounds
of dom(Y7(;)) are equal to the bounds of dom(Xj;), the bounds of dom(Y;) also
have an interval support for MTc(Y,X, M). O

Thanks to Proposition [2, Lemma [1| also holds when replacing constraint @ by
constraint ((11)) and/or constraint (10)) by constraint .

4.2 Filtering using linear programming (MTC-LP)

In this section, we describe our linear programming (LP) reformulation of the
filtering problem for the MTC global constraint. Even though LP has not been ap-
plied (to our knowledge) to the filtering of global constraints encoding a Markov
chain, there exist examples in the literature (e.g., [3] and [4]) where LP is used



to filter global constraints. These successes justify the application of the idea to
Markov chains.

The LP filtering algorithm solves two linear programs per variable: one for
the lower bound and one for the upper bound. To obtain a lower bound on
variable X, the LP minimizes X, subject to the constraints to .

min X (13)
subject to
> My X, =Y, VieN, (14)
ieN
ieEN
X, <X, <X, Vie N, (16)
Y, <Y, <Y, VieN. (17)

New bounds on X,, Y,, and Y, follow from a modification of the objective
function. For each state i € A/, we have the following LPs:

— X, = max X, (resp. Y; = max ;) subject to constraints (14) to;
14) to (L7).

— X, =min X, (resp. Y, = minY;) subject to constraints (14) to

Each of the 4N linear programs may be solved using the simplex method [7].
We call this filtering technique based on linear optimization MTC-LP.

If an exact LP method is used (e.g., the simplex algorithm), we obtain optimal
bounds on the domains of both X and Y.

Theorem 1. MTC-LP enforces bounds consistency on MTc(Y, X, M).

Proof. The proof is a direct consequence of using an exact method for solving
the linear programs. a

4.3 Filtering using the fractional knapsack (MTC-FK)

The last filtering algorithm we present, denoted MTC-FK, is based on the frac-
tional knapsack problem and improves on the filtering done by the interval arith-
metic. It is inspired from the global knapsack constraint [9].

We consider, for some [ € N, the pair of constraints » ..\ X; = 1 and
> ien My X, =Y. To compute an upper bound on the variable Y;, one greedily
assigns the largest possible values to the variables X, that are multiplied by the
greatest weights M;; while making sure that the constraint is satisfied. On
the other hand, to compute a lower bound on the variable Y}, one needs to assign
the largest values to the variables multiplied by the smallest weights.

Algorithm (1| propagates the constraints @D to as well as the knap-
sack constraints (3 ;.\ XiMi; = Yj, > .o Xi = 1) and (ZjeNYjMflij =
X, > JEN Y; = 1) until it reaches a precision of €. Algorithm |2 computes a lower
bound on Y; (or X;). Reversing the order of the iterations in the for loop makes
Algorithm [2 compute an upper bound on Y; (or X;).



Function MTC-FK([X1,..., Xy, [Y3, .., Yu,M,M™)

Input: A vector of variables that represents the current uncertain
distribution over N: [X1,..., Xn]; a vector of variables that
represents the resulting uncertain distribution: [Yy,...,Yy]; a
transition matrix and its inverse: M and M~!.

Output: The vectors of probability variables with filtered domain:

[X1,...,Xn], and [Y7,...,Yy].

repeat

for i € N do 2{" «+ X, — X ;

foric Ndo 9™ « YV, —Y;

Enforce bounds consistency on constraints @ to ;

foreach | € N do

Y, < Fk-FilterLowerBound ([Xi,...,Xn],Y;,[Muy,...,Mn]);
Y, + Fk-FilterUpperBound ([X1,..., X~],Y},[Miy,...,Mni]);
X, < Fk-FilterLowerBound ([Y1,..., YN],XZ,[MI_ZI, e M&ﬂ),

My;])

X, + Fk-FilterUpperBound ([Y1,...,Yn],X;,[My', ...,

until /30, (29 = X+ X2+ /S - Vi + Y2 <6
| return [Xi,..., Xy], Y1,..., Yul;

Algorithm 1: The MTC-FK filtering algorithm

Lemma 2. Let m; and m; be the greatest and smallest value in column j of
the matriz M. If [mj,mj] C dom (Yj) Vi € N then any distribution x4,..., Ty
(i.e., any assignment to the variables of vector X that sums to one) has a support
in MTc(Y, X, M).

Proof. Let M7 be the j* column of M. Since the components of X sums to
one and that none are negative, the scalar product of X and M/ is a convex
combination of the elements in M7. Consequently, the result lies in the convex
hull of M7 and it cannot be greater nor smaller than any element in M7, a

Lemma 3. Let m; and m; be the greatest and smallest value in column j of
the matriz M. If [mj,mj} C dom (Yj) Vj € N then MTC-FK enforces bounds
consistency on MTc(Y,X, M).

Proof. The algorithm MTC-FK enforces bounds consistency on the constraint
> ien X; = 1 so that the lower bound and upper bounds of the domains of
X, can each form an assignment of the variables X, that sums to one. From
Lemma any assignment that sums to 1 can be extended to a support of
MTc(Y, X, M). We now need to prove that the variables Y; are fully pruned. If
a bound of dom(Y;) is modified, this bound was computed by the Algorithm
which constructed a valid support for the constraint. If a bound of dom(Y;) is
not filtered, then either Algorithm [2| computed the same bound (in which case,
it has a support) or it computed a larger one. However, the second case cannot
occur since, as seen in Lemma [2 the scalar product of any distribution with a

column of M leads to a value in [mj,ﬁj] - dom(Yj). O



Function FK-FilterLowerBound([Uy,...,Ux],V,, [t1,...,tN])

Input: A vector of variables that represents an uncertain distribution over
N: [Uy,...,Uy]; a lower bound on the variable that represents the
probability that the process is in state [ after applying transitions:
V,; a vector of the transition probabilities to state I: [t1,...,tN].

Output: A new lower bound on state ! probability: V.

forie Ndou; + U

Ae1=30 0 Ups

for k € N in non-decreasing order of tx do

§ + min ()\7Uk —Qk);
Uk < Uk + 0;

A= A—0;

if A\ = 0 then break;

| return max (Y, 5 witi,V,);

Algorithm 2: The FK-FilterLowerBound lower bound filtering algorithm

Lemma [3] is particularly useful at the beginning of the search in a problem
where the domains of the variables Y; are the intervals [0, 1].

Theorem 2. The consistency achieved by each algorithm satisfies MTC-IA <
MTC-FK < MTC-LP.

Proof. We first prove MTC-TA < MTC-FK < MTC-LP. The MTC-FK algo-
rithm filters the same constraints as MTC-TA but the knapsack constraints con-
sider pairs of constraints which offer a filtering that is not weaker. The algorithm
MTC-LP achieves bounds consistency which is optimal. We now show two ex-
amples which prove that MTC-TA # MTC-FK, and that MTC-FK # MTC-LP.
Let N = 3. Let dom (X;) = [.3,1], and dom (X,) = dom (X3) = [0,1]. Let
dom (Y;) = dom (Y;) = dom (Y3) = [0,1]. Let the transition matrix be

0.4.6
M=|.3.43]. (18)
4.60

By Lemma [2) MTC-FK enforces bounds consistency whereas MTC-IA does not.
In fact, MTC-FK sets Y, = 0.28 whereas MTC-IA sets Y; = 0.49. Suppose that
dom (Y;) = [.1,1]. By Theorem [1} MTC-LP enforces bounds consistency which
is not the case of MTC-FK. In fact, MTC-LP sets X; = 0.75 while MTC-FK
sets X, = 0.9. O

5 Empirical experiments and discussion

We generated random domains and transition matrices to compare the three
filtering algorithms and see how much their filtering differ. For MTC-IA, we



present the results with and without the implied constraints and . The
MTC-LP enforces bounds consistency on all instances providing the optimal
bounds. Let x°!4, %°!4, y°ld and 37°!4 be the initial bounds of the filtering problem.
Let x*, X*, y* and §* be the optimal bounds found by MTC-LP. Let x, X, y
and ¥ be the bounds found by a given filtering method. We define the proportion
of optimality as the ratio of the sum of the distances traveled, in the domain

space, by a filtering method to the sum of the distances traveled by MTC-LP:

e — 4] [ — | + |y — yo

|+ |5 -7

Ind, = .
y* =y + [ - 5

e 0]+ [ =+

We generated five sets of filtering problem instances: a transition matrix M
along with random bounds on the variables of vectors X and Y. The randomly
generated bounds are feasible, i.e., the constraint MTcC is satisfiable. Table [I]
summarizes the sets’ characteristics. The first set (random) contains randomly
generated transition matrices. The second and the third sets (star and plus grids)
contain transition matrices that represents square grids, i.e., states are located
on a square grid and are only connected to their neighbors. Plus grids are grids
where a state is linked to its North, South, West and East neighbors. Star grids
also include diagonals (NW, NE, SW, SE). Let p be the conditional probability
that the process stays in state ¢ when it is in state i for any i € N, i.e., the
probability of stationarity p = My; (Vi € N). Let deg(i) be the degree of cell 4
(loops included) in the adjacency matrix of the grid. The transition matrix of a
grid instance is defined as:

1—p e .
My = @O T (20)
p if i = j.

We chose p € {.2,.4,.6,.8}. The fourth set (zero-ome-Y') contains randomly
generated transition matrices, but the domains of the variables of vector Y are
[0, 1]. That is, the information about the future (i.e., the uncertain distribution
of vector Y) comes from the present (i.e., the uncertain distribution of vector
X). This is the usual way to process Markov chains in Markov processes. The
fifth set (zero-one-X) models the converse case where the information about the
present process’ state comes from the future. Our benchmark library includes
non-singular matrices only. We generated 10 different instances for each pair of
state space size N and probability of stationarity p in each set for a total of 3690
instances.

Figures [I] and [2] show scatter plots comparing the proportion of optimality
achieved by different filtering algorithms. The higher the proportion of optimal-
ity is on a given axis, the better the filtering algorithm performs (a value of 1
represents a bounds consistent domain as obtained by the MTC-LP algorithm).
The dotted line is a visual frontier between the two compared algorithms’ per-
formance. A dot representing an instance for which both algorithms produce the
same filtering lies on this visual frontier. A dot for which the algorithm on the



Table 1: The characteristics of the instance sets

Name N M p = Mi; Set size

Random {2,...,100} Random  Random 990
Star grids {4,9...,100}  Star grids {.2, 4,.6,.8} 360
Plus grids  {4,9,...,100} Plus grids {.2, .4,.6,.8} 360
Zero-one-Y  {2,...,100} Random  Random 990
Zero-one-X  {2,...,100} Random Random 990

x-axis (y-axis) performs better than the algorithm on the y-axis (z-axis) lies on
the right (left) hand-side of the frontier. The algorithm with the highest density
of dots on its side of the frontier tends to achieve the best overall performance.
Darker blue shades are used for instances with a larger state space size (N);
lighter blue shades are used for instances with a smaller N.

As shown on Figure [I} MTC-TA (2-axis) outperforms MTC-TA without im-
plied constraints (y-axis) on all instance sets. While the performance of the two
algorithms is similar on some random instances (Figure , the importance of
implied constraints is clear as all the dots fall on the right hand side of the fron-
tier. The scatter plots of grid instance sets (Figures and favor MTC-TA.
Zero-one-Y instances represent forward in time inferences using M (Figure .
Zero-one-X instances represent backward in time inferences using M1 (Fig-
ure . On these instances, we see the benefits of the interaction between a
set of elementary constraints: the implied constraints enable the algorithm to
further filter the domains backward in time whenever knowledge on the future is
acquired by forward filtering. The difficulty of backward inferences is shown by
the fact that the distribution of the results on the Zero-one-Y instances (forward
inference) is closer to 1 when compared to the distribution of the results on the
Zero-one-X instances (backward inference). This is partly due to the negative
values in the inverse of most transition matrix M.

As shown on Figure 2, MTC-FK (z-axis) outperforms MTC-IA (y-axis) on
all instance sets. The performance of both algorithms is close on the Random
set (Figure , but still, MTC-FK performs better. The same tendency appears
for grids (Figures|2bjand . MTC-FK enforced bounds consistency on all Zero-
one-Y instances (a result of Lemma [3) whereas this is not the case for MTC-IA.
Forward inference is easier than backward inference for both algorithms: the
distribution of the optimality results is closer to 1 on the Zero-one-Y set than
on the Zero-one-X set.

6 An application to path planning under uncertainty

We illustrate the MTC constraint usage on an optimal search path (OSP) prob-
lem [I5]. A searcher moves on a graph G4 = (V(Ga),E(Ga)), within T time
steps, in order to find a lost object. In absence of search, the object would simply
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Fig. 1: Proportion of optimality achieved by MTC-TA (TA) when compared to
MTC-IA without implied constraints (IA-)

move from vertex to vertex according to a transition matrix M. The searcher,
however, influences the chain evolution by searching the vertices and by remov-
ing the object as soon as it detects it: a special “removed” state that represents
the searcher’s hands is added to the state space.

The probability that a vertex r contains the object at a time ¢ is called the
probability of containment, or poct(r). The initial distribution (poc;) is known a
priori. The distribution x, over the states is

x; = [poce(1),...,poct(N),cos—1], (21)

where cos; is the searcher’s cumulative overall probability of success linked to the
removed state at time ¢ (cosg = 0). When the searcher is located in a given vertex
r at time ¢, i.e., y; = r, s/he searches that vertex. Her/his known probability of
detection (pod) is conditional to the object’s presence. The local success of the
searcher in r at time t is defined as:

d ifr=
posy(r) = A ocelr) xpod T = (22)
0 if £ y,.
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Fig. 2: Proportion of optimality achieved by MTC-FK (FK) when compared to
MTC-IA (IA)

We split the chain to introduce a distribution X! that represents the search and
to apply the object’s motion:

%' = [pocs(1) — posi(1),. .., poci(N) — poss(N), cos] (23)
X =gt Rf ﬂ . (24)

The searcher’s goal is to maximize cos. The OSP problem is known to be NP-
hard even for stationary objects [23]. Recent examples of OSP-related researches
with a single searcher may be found in the works of [2/TTI21].

This leads to a CP model with four sets of interval-domain probability vari-
ables: the variables C'O.S; that represent the probability of finding the object up
to time ¢, and the variables POCy(r), POCbed(1) "and POS,(r) that repre-
sent the probabilities in the split Markov chain (V¢ € {1,...,T},7 € V(G4)).
A set of finite-domain variables PAT H; models the searcher’s path. The do-
mains of each path variable is a subset of vertices, i.e., dom(PATH;) CV (Ga)
(vt € {1,...,T}). POC4(r) = poci(r), and PATHy = yo are known data. The
probability of finding (removing) the object up to time ¢ is:

COSy= > max POSy(r). (25)

o<t reV(Ga)



The objective is to maximize COSt subject to the graph edges constraints:
(PATH;_1,PATH;) € £(Ga), vte {1,...,T}; (26)

the probability of success along the path of the searcher:

PATH, =r = POS(r) = POC(r)pod, vee{l,...,T},¥VreV(Ga);
(27)
PATH; #r = POSi(r) =0, vte{l,...,T},Vr e V(Ga);
(28)

the effect of searching on the chain:
POCSarbed (1) — pOC,(r) — POS,(r),  Yte{l,...,T},¥r e V(Ga); (29)

and the application of the Markovian transition matrix of the object on the split
chain:

Mrtc <Xt+1,§<t, F\é[ (I)D : Vie 1., T—1},Yr e V(Ga), (30)
where
X*! = [POC11(1),...,POC1(N),COSy|, (31)
and
)’it _ [POCtSearched(l), o ,POCtSearched(N>7 COSt} . (32)

6.1 Applied experiment and discussion

We implemented two Markov chain-based models for the OSP using Choco Solver
2.1.3 [1I0], a state-of-the-art CP solver. The first, OSP-TA-, uses a standard el-
ementary arithmetic constraints decomposition in . The second, OSP-FK,
uses fractional knapsack filtering in . We kept the model as close as possible
to the one presented in [I5] while adding the necessary variables to model the
search with MTcCs. The goal of the experiment is to show the benefits of the fil-
tering achieved by the MTC when compared to elementary arithmetic constraint
decomposition. All implementations of the application are done using the Java
programming language, the Apache Commons Math [I3] library, and the Java
Universal Network/Graph (JUNG) 2.0.1 framework [I7]. The total detection
value selection heuristic developed for the OSP problem [I5] is used.

The accessibility graphs (G4) are the following: G, a 11 x 11 plus grid,
G* a 11 x 11 star grid, and the University Laval tunnels map G [15]. We
allowed a total of T'= 17 time steps. The probability of detection are pod(r) €
{0.3,0.6,0.9} (Vr € V(G4)). The assumed Markovian object’s motion model
of the objective, i.e., its transition matrix M, is based on equation . The
probability of stationary of the object in M are p € {0.3,0.6,0.9}. We allowed a



total number of 5,000,000 backtracks and a time limit of 20 minutes. We tested
with different epsilon values and retained ¢ = 0.3 as it is sufficient in practice
for most search operations. All tests were run on an Intel(R) Core(TM) i7-2600
CPU with 4 GB of RAM.

Table [2| compares standard filtering (OSP-IA-) to the fractional knapsack
filtering (OSP-FK). We chose three performance criteria: the objective value
(COS), the time consumed to the last incumbent solution, and the total num-
ber of backtracks to obtain the last incumbent solution. The objective value
and the time to last incumbent tell us which model achieves the highest perfor-
mance on a given problem instance independently of its filtering performance.
The total number of backtracks to last incumbent and the time consumed tell us
whether the model filtering performance is good or not. For each criterion, un-
derline results belongs to the best performing techniques. We do not underline
ties. Overall, OSP-FK outperformed OSP-IA- by achieving a higher or equal
objective values while maintaining a lower number of backtracks on most in-
stances. Even though we demonstrated that the theoretical consistency achieved
by MTC-FK is better than the one achieved by MTC-TA (with and without
implied constraints), some cases may occurs where MTC-IA (with or without
implied constraints) outperforms MTC-FK on applications. This may be due to
the interaction between a heuristic (e.g., the total detection heuristic) and the
solving process. Efficient heuristics lead to smaller search trees removing some
filtering needs. As demonstrated by our positive results, thorough filtering of the
variables is beneficial in most cases. The MTC-FK filtering algorithm achieves
high quality solutions soon in the solving process while greatly reducing the total
number of backtracks when compared to a model with elementary constraints.

7 Conclusion

We introduced MTc, a global constraint that models Markov chains. We dis-
cussed cases where elementary arithmetic constraints enforce bounds consistency.
We proved that elementary arithmetic constraints, even with implied constraints,
are insufficient to enforce bounds consistency in all cases and discussed a linear
programming algorithm that always performs bounds consistency. However, a
constraint solver needs to run the filtering algorithms on an exponential number
of nodes, and linear optimization turns out to be an expensive filtering solution.
Thus, we provided, as a trade-off, a filtering algorithm based on the fractional
knapsack problem. The method is proved to achieve bounds consistency when
the transition matrix is monomial and in the case of forward reasoning. Finally,
we successfully applied the MTC global constraint on the OSP problem, a path
planning problem under uncertainty involving Markov transitions.



Table 2: Results on OSP problem instances with e = 10~3; underlined values are
better.

pod(r) p Objective (COS) Time' (s) Backtracks
IA- FK IA- FK IA- FK

GY with T = 17

0.3 0.3 0.519 0.519 1 1 1948 1
0.6 0.578 0.578 1 2 1880 2
0.9 0.738 0.738 1 1 1550 11
0.6 0.3  0.735 0.735 1 1 1980 10
0.6 0.758 0.758 1 1 1851 9
0.9 0.845 0.845 1 1 1475 35
0.9 0.3 0.810 0.810 1 1 1911 23
0.6 0.835 0.835 1 1 1832 35
0.9 0.890 0.890 1 1 1396 61
Gt with T =17
0.3 0.3 0.106 0.106 4 7 7205 1
0.6 0.165 0.165 3 5 5343 0
0.9 0.442 0.442 3 5 2236 20
0.6 0.3 0.189 0.189 4 7 7044 2
0.6  0.298 0.298 3 5 5241 0
0.9 0.551 0.551 3 5 2325 43
0.9 0.3 0.259 0.259 4 7 6946 2
0.6  0.329 0.329 3 5 5130 0
0.9 0.623 0.623 3 5 2152 73
G* with T = 17
0.3 0.3 0.131 0.131 5 9 7757 1
0.6 0.219 0.219 4 7 6444 0
0.9 0.584 0.584 3 6 3324 35
0.6 0.3 0.226 0.226 5 10 7514 6
0.6 0.314 0.348 4 7 6334 0
0.9 0.686 0.686 3 6 3344 58
0.9 0.3 0.304 0.301 5 9 7209 9
0.6  0.381 0.381 4 7 6065 2
0.9 0.734 0.734 3 6 2945 54

1 The time to last incumbent solution.
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