Constraint Programming for Path Planning with Uncertainty

Solving the Optimal Search Path Problem

Michael Morin¹ Anika-Pascale Papillon² Irène Abi-Zeid³ François Laviolette¹ Claude-Guy Quimper¹

¹Department of Computer Science and Software Engineering ²Department of Mathematics and Statistics ³Department of Operations and Decision Systems Université Laval, Québec, Qc, Canada Michael.Morin.3@ulaval.ca

October 9, 2012

Outline

- Introduction
- 2 The OSP Problem
- A CP Model for the OSP
- 4 The Total Detection Heuristic
- Experimentation
- 6 Results and Discussion
- Conclusion

Introduction

The Optimal Search Path Problem

- Find a path that maximizes the probability of locating a survivor, a robber, an object, etc.
- Uncertain object detectability and location
- Markovian motion model
- Search theory (Stone [2004])
- \bullet \mathcal{NP} -hard problem (Trummel and Weisinger [1986])

Definitions

• $G_A = (\mathcal{V}(G_A), \mathcal{E}(G_A))$ where $\mathcal{V}(G_A)$ is a set of discrete regions.

Definitions

- $\mathcal{T} = \{1, \dots, T\}$ is the set of time steps available to search G_A .
- $y_t \in \mathcal{V}(G_A)$ is the searcher's location at time $t \in \mathcal{T}$.
 - When $y_t = r \in \mathcal{V}(G_A)$, the vertex r is searched at time t.
- $P = [y_0, y_1, \dots, y_T]$ is the search path (plan).
 - $y_0 \in \mathcal{V}(G_A)$ is the searcher's starting location.
 - For all $t \in \mathcal{T}$, $(y_{t-1}, y_t) \in \mathcal{E}(G_A)$.

Definitions

- The object's movements are independent of the searcher's actions.
- M is the Markovian motion model matrix.

$$\mathbf{M} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ \frac{1}{5} & \frac{2}{5} & \frac{1}{5} & \frac{1}{5}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{5} & \frac{2}{5} & \frac{1}{5} \end{pmatrix}.$$

Blue terms are a priori known probabilities.

Definitions

- The initial probability of containment distribution: *poc*₁.
- The local probability of success ($\forall t \in \mathcal{T}$):

$$\overbrace{\textit{pos}_t(r)}^{\text{Prob. of success}} = \underbrace{\frac{\textit{poc}_t(r)}{\textit{poc}_t(r)} \times \frac{\textit{pod}(r)}{\textit{prob. of containment}}}_{\text{Prob. of detection}}$$

 The probability of detection (conditional to the presence of the object):

$$pod(r) \in (0,1],$$
 if $y_t = r$; $pod(r) = 0,$ otherwise.

• The local probability of containment $(\forall t \in \{2, ..., T\})$:

$$poc_t(r) = \sum_{s \in \mathcal{V}(G_A)} \mathbf{M}(s, r) \left[poc_{t-1}(s) - pos_{t-1}(s) \right].$$

Problem Statement

Find an optimal search plan $P = [y_0, y_1, \dots, y_T]$ maximizing the cumulative overall probability of success (COS) defined as:

$$COS(P) = \sum_{t \in \mathcal{T}} \sum_{r \in \mathcal{V}(G_A)} pos_t(r).$$

Example

Example

• Let T=5, $y_0=3$, $poc_1(4)=1.0$, $pod(y_t)=0.9$ ($\forall t\in \mathcal{T}$), and assume a uniform Markovian motion model between accessible vertices.

Example

- Let T=5, $y_0=3$, $poc_1(4)=1.0$, $pod(y_t)=0.9$ ($\forall t\in \mathcal{T}$), and assume a uniform Markovian motion model between accessible vertices.
- P^* is the optimal search plan:

$$P^* = [y_0, y_1, \dots, y_5] = [3, 6, 7, 7, 7, 7].$$

Example

$$P^* = [y_0, y_1, \dots, y_5] = [\mathbf{3}, 6, 7, 7, 7, 7].$$

$$P^* = [y_0, y_1, \dots, y_5] = [3, \mathbf{6}, 7, 7, 7, 7].$$

Example

$$P^* = [y_0, y_1, \dots, y_5] = [3, 6, 7, 7, 7, 7].$$

Example

$$P^* = [y_0, y_1, \dots, y_5] = [3, 6, 7, 7, 7, 7].$$

Example

Example

A CP Model for the OSP

- The *variables* and the *constraints* are given by the problem definition.
- Two equivalent objective functions with a different performance:
 - First choice: The double sum definition

$$\max COS$$
, $COS = \sum_{t \in \mathcal{T}} \sum_{r \in \mathcal{V}(G_A)} POS_t(r)$.

Second choice: The sum and max definition

$$\max COS$$
,
$$COS = \sum_{t \in \mathcal{T}} \max_{r \in \mathcal{V}(G_A)} POS_t(r).$$

VARIABLES are displayed in UPPER case and *constants* are displayed in lower case.

A CP Model for the OSP

Two equivalent objective functions

- The searcher searches one vertex per time step.
- Thus, there is only one vertex r such that $POS_t(r) \neq 0$.
- Consequently,

$$\max \sum_{t \in \mathcal{T}} \sum_{r \in \mathcal{V}(G_A)} POS_t(r) \equiv \max \sum_{t \in \mathcal{T}} \max_{r \in \mathcal{V}(G_A)} POS_t(r).$$

A CP Model for the OSP

A different performance

• First choice: Poor filtering = poor bound:

$$\begin{aligned} \max \textit{COS} &= \sum_{t \in \mathcal{T}} \sum_{r \in \mathcal{V}(\textit{G}_{A})} \textit{POS}_{t}(r), \\ \lceil \textit{COS} \rceil &= \sum_{t \in \mathcal{T}} \sum_{r \in \mathcal{V}(\textit{G}_{A})} \lceil \textit{POS}_{t}(r) \rceil. \end{aligned}$$

Second choice: Better filtering = better bound:

$$\begin{split} \max \textit{COS} &= \sum_{t \in \mathcal{T}} \max_{r \in \mathcal{V}(G_A)} \textit{POS}_t(r), \\ \lceil \textit{COS} \rceil &= \sum_{t \in \mathcal{T}} \max_{r \in \mathcal{V}(G_A)} \lceil \textit{POS}_t(r) \rceil. \end{split}$$

- Ignore negative information when searching.
- What is the most promising vertex?
 - The one with the highest *total probability* of detecting the object in the remaining time.

Variables and Values Ordering

- ullet Decision variables order: Y_0, Y_1, \dots, Y_T .
- Values order:

$$\underset{y' \in \mathsf{dom}\,(Y_t)}{\mathsf{argmax}} \sum_{o \in \mathcal{V}(G_A)} w_t(y', o) POC_t(o), \qquad \forall t \in \mathcal{T}.$$

- $w_t(y', o)$ is the conditional probability that the searcher detects the object before the end of the search given that, at time t, the searcher is in y' and the object in o.
- $w_t(y', o)$ is computed using dynamic programming and the following data:
 - the Markovian motion model matrix M;
 - the probability of detection pod.

The Recurrence Relation

• Let $w_t(y, o)$ be the conditional probability that the searcher detects the object before the end of the search given that, at time t, the searcher is in y and the object in o:

$$w_t(y,o) \stackrel{\text{def}}{=} egin{cases} pod(o), & \text{if } o = y \text{ and } t = T, \\ 0, & \text{if } o \neq y \text{ and } t = T, \\ p_t(y,o), & \text{if } o \neq y \text{ and } t < T, \\ pod(o) + (1 - pod(o))p_t(y,o), & \text{if } o = y \text{ and } t < T. \end{cases}$$

where

$$p_t(y,o) = \sum_{o' \in \mathcal{N}(o)} \mathbf{M}(o,o') \max_{y' \in \mathcal{N}(y)} w_{t+1}(y',o').$$

Summary

- Decision variables order: Y_0, Y_1, \dots, Y_T
- Values order:

$$\underset{y' \in \mathsf{dom}\,(Y_t)}{\mathsf{argmax}} \sum_{o \in \mathcal{V}(G_A)} w_t(y', o) POC_t(o), \qquad \forall t \in \mathcal{T}.$$

- Three different probabilities of detection: $pod(r) \in \{0.3, 0.6, 0.9\}$ $(\forall r \in \mathcal{V}(G_A))$.
- Three different motion models:

$$\mathbf{M}(s,r) = \begin{cases} \frac{1-\rho}{\deg(s)-1}, & \text{if } (s,r) \in \mathcal{E}(G_A), \\ \rho, & \text{if } s = r, \end{cases}$$

where deg(s) is the degree of s and $\rho \in \{0.3, 0.6, 0.9\}$ is the probability that the object stays in its current location.

- Six different allowed time values: $T \in \{9, 11, 13, 15, 17, 19\}$.
- Three different graph structures...

Graph Structures

 \bullet The 11×11 grid \emph{G}^{+}

$$\begin{aligned} poc_1(60) &= 1\\ y_0 &= 0 \end{aligned}$$

Graph Structures

ullet The 11 imes 11 grid \emph{G}^*

$$\begin{aligned}
poc_1(60) &= 1\\ y_0 &= 0
\end{aligned}$$

Graph Structures

• The graph G^L (the Université Laval tunnels map)

- Java implementation:
 - Choco solver (Laburthe and Jussien [2012])
 - Java Universal Network/Graph (JUNG) 2.0.1 framework (O'Madadhain et al. [2010])
- 20 minutes time limit
- A maximum of 5,000,000 backtracks

Comparing the CP Models

- The CpMax model uses the max objective function.
- The CpSum model uses the \sum objective function.

Table: CpMax vs CpSum on a 11×11 G^+ grid with T = 17.

		СрМах		CpSum	
pod(r)	ρ	Time to last	COS value	Time to last	COS value
		incumbent (s)		incumbent (s)	
0.3	0.6	1199	0.128	991	0.127
	0.9	1026	0.338	1166	0.338
0.6	0.6	1169	0.220	1016	0.217
	0.9	1166	0.512	942	0.501
0.9	0.6	692	0.315	728	0.315
	0.9	1170	0.628	880	0.625

Comparing the CpMax Model and Total Detection

- The CpMax model uses the max objective function.
- The TDValSel+CpMax model uses the Total Detection value selection heuristic.

Figure: CpMax vs Total Detection on a 11×11 G^+ instance where $pod(y_t) = 0.6$ $(\forall t \in \mathcal{T})$, and $\rho = 0.6$.

Comparing the CpMax Model and Total Detection

- The CpMax model uses the max objective function.
- The TDValSel+CpMax model uses the Total Detection value selection heuristic.

Figure: CpMax vs Total Detection on a 11×11 G^* instance where $pod(y_t) = 0.6$ $(\forall t \in \mathcal{T})$, and $\rho = 0.6$.

Comparing the CpMax Model and Total Detection

- The CpMax model uses the max objective function.
- The TDValSel+CpMax model uses the Total Detection value selection heuristic.

Figure: CpMax vs Total Detection on a G^L instance where $pod(y_t) = 0.6$ ($\forall t \in \mathcal{T}$), and $\rho = 0.6$.

Conclusion

- Contributions and novelties:
 - A new CP model to solve the OSP problem
 - A tighter bound using the max objective function encoding
 - The Total Detection heuristic
- Future work:
 - Use the concept of the Total Detection heuristic to develop a better bounding technique for the objective function.

Thank you!

Photography by Yann Arthus-Bertrand

Stay tuned! :)

http://www.agora.ulaval.ca/ mimor225/

References I

- F. Laburthe and N. Jussien. *Choco Solver Documentation*, 2012. http://www.emn.fr/z-info/choco-solver/.
- J. O'Madadhain, D. Fisher, T. Nelson, S. White, and Y. Boey. Jung: Java universal network/graph framework. http://jung.sourceforge.net, 2010.
- L. Stone. Theory of Optimal Search. Academic Press, New York, 2004.
- K. Trummel and J. Weisinger. The complexity of the optimal searcher path problem. *Operations Research*, 34(2):324–327, 1986.