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Introduction

The Optimal Search Path Problem

Find a path that maximizes the probability of locating a survivor, a
robber, an object, etc.

Uncertain object detectability and location
Markovian motion model

Search theory (Stone [2004])

NP-hard problem (Trummel and Weisinger [1986])
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The OSP Problem

Definitions

@ Ga=(V(Ga),E(Ga)) where V(Gp) is a set of discrete regions.

A fictive building
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The OSP Problem

Definitions

e 7 ={1,..., T} is the set of time steps available to search Ga.
@ y: € V(Gp) is the searcher's location at time t € 7.
o When y; = r € V(Ga), the vertex r is searched at time t.

e P=|[yo,y1,...,y7] is the search path (plan).

e o € V(Gp) is the searcher's starting location.
o Forall t €T, (yi—1,yt) € £(Ga).

A fictive building
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The OSP Problem

Definitions

@ The object’'s movements are independent of the searcher’s actions.

@ M is the Markovian motion model matrix.
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Blue terms are a priori known probabilities.
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The OSP Problem

Definitions

@ The initial probability of containment distribution: pocj.
@ The local probability of success (Vt € T):
Prob. of success Prob. of success
—
posi(r) = poc(r) X  pod(r)
—— ——

Prob. of containment  Prob. of detection

@ The probability of detection (conditional to the presence of the
object):
pOd(I’)E(O,l], if)/t:f;
pod(r) =0, otherwise.

The local probability of containment (Vt € {2,..., T}):

poct(r) = Z M(s, r) [poct—1(s) — post—1(s)] -
seV(Ga)
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The OSP Problem

Problem Statement

Find an optimal search plan P = [yp, y1,. .., y7| maximizing the
cumulative overall probability of success (COS) defined as:

COS(P)=>_ > posr).

teT reV(Ga)
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The OSP Problem

Example

A fictive building
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The OSP Problem

Example

A fictive building

@ Let T =5, yp =3, poci(4) = 1.0, pod(y:) =0.9 (Vt € T), and
assume a uniform Markovian motion model between accessible
vertices.
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The OSP Problem

Example

A fictive building

@ Let T =5, yp =3, poci(4) = 1.0, pod(y:) =0.9 (Vt € T), and
assume a uniform Markovian motion model between accessible

vertices.
@ P* is the optimal search plan:

P* = [}/Oa}/1>-~-,)/5] = [37677777777]'

October 9, 2012 9 /34
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The OSP Problem

Example

Probability distribution at t =0

C%s N T T
poco n ~

poco %(1) . I P*:[yo,yl,...,yg,]:[3,6,7,7,7,7].
poco n
poco(9)
poco(8)
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The OSP Problem

Example

Probability distribution at t =1

C]%S N T M

poci ~ = .

poci %é - L P* = [)/07}/17---;)/5]:[37677777777]-

poci ~
poci
poci
pocy
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The OSP Problem

Example

Probability distribution at t =2

cOS —:]‘045 T
poc2(12) [ o I "
pocz(11) || o = P :[)/07}/17---a)’5]:[37677777777]-
poc2(10) | o I

poc2(9) || o =
poc2(8) | o I
poca(7) || 0.05 =
poc2(6) | o I
poc2(5) | o =
poca(4) 05
poc2(3) || o =
poc2(2) | o I
poca(1) -{| o =
poc2(0) | o ‘ I

0 05 1

probability
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The OSP Problem

Example

Probability distribution at t = 3

CcoS 0.6B6
pocs(12) [ o = "
pocs(11) || o = P :[)/07}/17---a)’5]:[37677777777]-
poc3(10) | o =

pocs(9) || o =
pocs(8) ] 0.012 =
pocs(7) | 0.026 =
pocs(6) || 0.012 =
pocsz(5) | o =
pocs(4 7:] 0.263 |
pocs(3) || o =
pocsz(2) | o I
pocs(1) -{| o =
pocz(0) | o ‘ I

0 05 1

probability
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The OSP Problem

Example

Probability distribution at t = 4

COS ols17
poca(12) [ 0.001 I N
pocs(11) || 0.001 = P* = [yo,y1,...,y5] = [3,6,7,7,7,7].
pocs(10) | 0.001 I

pocs(9) - 0.001 I
poca(8) | 0.013 I
pocs(7) || 0.015 =
poca(6) | 0.008 I
poca(5) | 0.001 .
pocs(4) ||| 0138 -
pocs(3) - 0.001 I
poca(2) | 0.001 I
pocs(1) | 0.001 .
poca(0) 0.001 I

0 05 1

probability
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The OSP Problem

Example

Probability distribution at t =5

CoS | 4889
pocs(12) [ 0.002 = N
pocs(11) || 0.002 P* = [yo,y1,...,y5] = [3,6,7,7,7,7].
pocs(10) | 0.002

pocs(9) - 0.001
pocs(8) | o.01
pocs(7) | 0.008
pocs(6) || 0.008
pocs(5) || 0.001
pocs(4) || 0.073
pocs(3) - 0.001
pocs(2) | 0.001
pocs(1) | 0.001
pocs(0) || 0.001 ‘
0 05 1
probability
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A CP Model for the OSP

@ The variables and the constraints are given by the problem definition.
o Two equivalent objective functions with a different performance:
e First choice: The double sum definition

max COS,
CoS=>" Y POS(r)
teT reV(Ga)

e Second choice: The sum and max definition

max COS,
COS = Z max | POSH(r).

rEV

VARIABLES are displayed in UPPER case and constants are displayed in
lower case.
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A CP Model for the OSP

Two equivalent objective functions

@ The searcher searches one vertex per time step.
@ Thus, there is only one vertex r such that POS:(r) # 0.

o Consequently,

maxz Z POSt(r)EmaxZ max POS(r).

teT reV(Ga) te7 r€V(Ca)
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A CP Model for the OSP

A different performance

o First choice: Poor filtering = poor bound:

max COS = Z Z POS:(r),

teT reV(Ga)

[COST=Y>" > [POS(r

teT reV(Ga)

@ Second choice: Better filtering = better bound:

max COS = max POS
tGZ,TrEV(G ) t(r),

Cos| = ax |POS .
OS] = 3 max TPOS()
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The Total Detection Heuristic

@ Ignore negative information when searching.
@ What is the most promising vertex?

e The one with the highest total probability of detecting the object in the
remaining time.
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The Total Detection Heuristic

Variables and Values Ordering

@ Decision variables order:Yy, Y1,..., YT .

@ Values order:

argmax Y we(y’,0)POC(0), VteT.
y’€dom (Yt) OEV(GA)

e w¢(y’, 0) is the conditional probability that the searcher detects the
object before the end of the search given that, at time t, the searcher
is in y’ and the object in o.

e w¢(y’, 0) is computed using dynamic programming and the following
data:

o the Markovian motion model matrix M;
e the probability of detection pod.
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The Total Detection Heuristic

The Recurrence Relation

o Let w¢(y, 0) be the conditional probability that the searcher detects
the object before the end of the search given that, at time t, the
searcher is in y and the object in o:

pod(o), ifo=yandt=T,
aef |0, ifo£yandt=T,
we(y,0) = .
pe(y o), fotyandt<T,
pod(0) + (1 — pod(0))pt(y,0), ifo=yandt<T.
where

pt(y,0) = M(o,0') max w ' o).
i(y, o) o’;/\f(o) (0.0) max weia(y',o)

M. Morin et al. (ULaval) CP for Path Planning with Uncertainty October 9, 2012 21/ 34



The Total Detection Heuristic

Summary

@ Decision variables order: Yy, Y1,..., YT

@ Values order:

argmax Y w(y’,0)POC:(0), VteT.
y'€dom (Yy) 0€V(Gp)
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Experimentation

@ Three different probabilities of detection: pod(r) € {0.3,0.6,0.9}
(Vr e V(Ga)) -

@ Three different motion models:

1— .
M(s,r) = | @10 If (1) €E(Ca),
p7 ifs:r’

where deg(s) is the degree of s and p € {0.3,0.6,0.9} is the
probability that the object stays in its current location.

e Six different allowed time values: T € {9,11,13,15,17,19}.
@ Three different graph structures...
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Experimentation

Graph Structures

@ The 11 x 11 grid GT

O—O-@
@O—@E
-----

poci(60) =1
yo=0
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Experimentation

Graph Structures

@ The 11 x 11 grid G*
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Experimentation

Graph Structures

@ The graph G’ (the Université Laval tunnels map)
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Experimentation

@ Java implementation:

e Choco solver (Laburthe and Jussien [2012])
o Java Universal Network/Graph (JUNG) 2.0.1 framework (O'Madadhain
et al. [2010])

@ 20 minutes time limit
@ A maximum of 5,000,000 backtracks
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Results and Discussion

Comparing the CP Models

@ The CpMax model uses the max objective function.

@ The CpSum model uses the > objective function.

Table: CpMax vs CpSum on a 11 x 11 GT grid with T = 17.

CpMax CpSum
pod(r) p Time to last ~ COS value | Time to last ~ COS value
incumbent (s) incumbent (s)
0.3 0.6 1199 0.128 991 0.127
0.9 1026 0.338 1166 0.338
0.6 0.6 1169 0.220 1016 0.217
0.9 1166 0.512 942 0.501
0.9 0.6 692 0.315 728 0.315
0.9 1170 0.628 880 0.625
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Results and Discussion

Comparing the CpMax Model and Total Detection

@ The CpMax model uses the max objective function.
@ The TDValSel+CpMax model uses the Total Detection value
selection heuristic.

COS value vs T (GT) Time (s) value vs T (G™)
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Figure: CpMax vs Total Detection on a 11 x 11 G instance where
pod(y:) = 0.6 (Vt € T), and p = 0.6.
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Results and Discussion

Comparing the CpMax Model and Total Detection

@ The CpMax model uses the max objective function.

@ The TDValSel+CpMax model uses the Total Detection value
selection heuristic.

COS value vs T (G*)
0.36 T T T T

T 1200

Time (s) value vs T (G*)
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Figure: CpMax vs Total Detection on a 11 x 11 G* instance where pod(y;) = 0.6
(Vt € T), and p = 0.6.
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Results and Discussion

Comparing the CpMax Model and Total Detection

@ The CpMax model uses the max objective function.
@ The TDValSel+CpMax model uses the Total Detection value
selection heuristic.

COS value vs T (GF) Time (s) value vs T (GF)
0.85 T T 1200 T T
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0.80 |- Ophfex | 1000 | , @@ CpMax

4 AY

[ \ .0--0
. i

T
®
T
~
-

0.70 |-

time (s) (lower 1s better)
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0.60 ; - : : : - 0

Figure: CpMax vs Total Detection on a G' instance where pod(y;) = 0.6
(Vt € T), and p = 0.6.
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Conclusion

o Contributions and novelties:
e A new CP model to solve the OSP problem
e A tighter bound using the max objective function encoding
e The Total Detection heuristic
o Future work:
e Use the concept of the Total Detection heuristic to develop a better
bounding technique for the objective function.
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Thank you!

Photography by Yann Arthus-Bertrand

Stay tuned! :)
LAVAL http://www.agora.ulaval.ca/ mimor225/
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