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On SAT-Encodings of the At-Most-One Constraint

Steffen Hölldobler and Van-Hau Nguyen

International Center for Computational Logic
Technische Universität Dresden, 01062 Dresden, Germany

{sh,hau}@iccl.tu-dresden.de

Abstract. One of the most widely used constraint during the process of trans-
lating a practical problem into a propositional satisfiability instance is the at-
most-one constraint. This paper proposes a new encoding for the at-most-one
constraint, the so-called bimander encoding which can be easily extended to en-
code cardinality constraints. Experimental results reveal that the new encoding
is competitive. We prove that the bimander encoding allows unit propagation to
achieve arc consistency. Furthermore, we show that a special case of the bimander
encoding outperforms the widely used binary encoding in all our experiments.

1 Introduction

Solving propositional satisfiability (SAT) problems is one of the most successful au-
tomated reasoning methods in the last decade in Computer Science by solving a wide
range of both industrial and academic problems [27,13]. SAT solving comprises two es-
sential phases: encoding a certain problem into a SAT instance and, thereafter, finding
solutions by advanced SAT solvers. Notwithstanding the steadily increasing diffusion
and availability of SAT solvers, understanding of SAT encodings is still limited and
challenging [25].

An increasing number of real-world applications in computer science can be ex-
pressed as constraint satisfaction problems (CSPs) [36]. While CSPs can be solved
directly using appropriate solvers, the generality and success of SAT solvers in recent
years has let to a fruitful competition between the CSP and the SAT community. To
utilize state-of-the-art SAT solvers, CSPs need to be encoded as SAT instances (see
e.g. [41,5,32,40,39,35,3]). Such encodings should not only be efficiently generated, but
should also be efficiently solved by SAT solvers. Currently, mapping a CSP into a SAT
instance is regarded more of an art than a science [41,21,31,30,25,35], and detailed
studies of different encodings are needed in order to better understand these mappings.

Generally, different encodings of CSPs into SAT instances yield different sizes and
different run time behaviour of the used SAT solver. There does not seem to be general
knowledge why a particular encoding performs better than others. In this study, we will
compare different encodings with respect to the following features:

– the number of auxiliary variables required,
– the number of clauses required,
– the number of variables per clause,
– the strength of the encoding in terms of performance of unit propagation,
– the runtime of a SAT solver on benchmark problems.
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Although many encodings have been proposed [41,21,5,32,40,39,35], the most
straightforward way of mapping a CSP into a SAT instance is the direct encoding (see
[41]). The direct encoding requires the translation of global constraints like the at-least-
one (ALO) and at-most-one (AMO) constraints requiring that a CSP variable has at
least one and at most one value assigned to it, respectively. Whereas the ALO con-
straint can be easily encoded by a single clause, the encoding of the AMO constraint
is more complicated and has been intensively studied [26,17,14,34,33]. This is due to
the fact that many different applications such as the discrete tomography problem [9],
partial Max-SAT [6,7], or cardinality constraints [17] contain the AMO constraint. Fur-
thermore, better encodings of the AMO constraint in conjunctive normal form (CNF)
could also help Max-SAT solving, because some state-of-the-art SAT-based Max-SAT
solvers encode AMO constraints in CNF [4].

In the direct encoding, if a propositional variable is used to represent the binding
of a CSP variable to a particular value, then the AMO constraint requires that at most
one of n propositional variables is bound to TRUE. Herein, this will be denoted by
≤1(X1, ..., Xn), where Xi, 1 ≤ i ≤ n, are propositional variables.

Inspired by many interesting and recent results [26,17,14], especially when Prest-
wich used the binary encoding [18,19] to successfully solve many large instances with a
standard SAT solver [34,33], we will survey several widely used encodings of the AMO
constraint. In particular, we will point out the similarity of the relaxed ladder [33] en-
coding, the sequential [38] encoding, and several others. Finally, we will introduce a
new encoding, the bimander encoding. The new encoding requires dlog2me1 auxiliary
variables and n2

2m + ndlog2me − n
2 binary clauses, where m is the number of disjoint

subsets used by dividing the given set {X1, ..., Xn} of propositional variables.
Additionally, the bimander encoding can be easily extended to cardinality con-

straints, denoted by≤k(X1, ..., Xn), which expresses that less than k of n propositional
variables Xi, 1 ≤ i ≤ n, can be simultaneously assigned to TRUE. To the best of our
knowledge, our encoding is the one that requires the least number of auxiliary variables
among known encodings except for the pairwise encoding, which needs no auxiliary
variables at all. With respect to scalability, the bimander encoding can be adjusted by
changing the parameter m. For example, by setting the parameter m to specific values,
the binary and pairwise encodings can be expressed as special cases of the bimander
encoding. Interestingly, the special case of the bimander encoding where m = dn2 e,
outperforms the binary encoding in all our experiments. It is important to note that our
encoding allows unit propagation (UP) to preserve arc consistency, one of the most
important technique in Constraint Programming (see [12]).

The structure of the paper is as follows. In Section 2, we briefly represent many
known encodings of the AMO constraint. In Section 3, we describe the new biman-
der encoding and prove several important properties. In Section 4, we compare the
bimander encoding with other encodings through experiments. Finally, we conclude
and outline future research in Section 5.

1 dxe is the smallest integer not less than x.
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2 Existing Encodings

Before giving a brief survey of some of the most widely used AMO encodings, we first
define notions and notations, mainly following Frisch and Giannoros [17].

Let X = {Xi | 1 ≤ i ≤ n, n ∈ N} be a finite set of propositional variables, let
A be a finite, possibly empty set of auxiliary propositional variables, and let φ(X,A)
be a propositional formula in conjunctive normal form (CNF) encoding the constraint
≤1(X1, ..., Xn). The encoding φ(X,A) is correct if and only if

– any (partial) assignment x̂ that satisfies ≤1(X1, ..., Xn) can be extended to a com-
plete assignment that satisfies φ(X,A), and

– for any (partial) assignment x̂ for X which assigns more than one variable of X
to TRUE, unit propagation (UP) detects a conflict, i.e., repeated applications of UP
yield the empty clause.

UP plays a crucial role in SAT solving as modern SAT solvers spent more than 80%
of their runtime on it [15,29], whereas arc consistency is one of the most important
techniques in CSP solvers because it is a very good trade-off between the amount and
the cost of pruning. Therefore, when translating a CSP to a SAT instance one should
pay much attention to determine whether UP on the resulting SAT instance enforces arc
consistency. UP of a SAT encoding of the constraint ≤1(X1, ..., Xn) achieves the same
pruning as arc consistency on the original CSP if the following holds [17]:

– at most one propositional variable in X is assigned to TRUE, and
– if any variable Xi ∈ X is assigned to TRUE, then all the other variables occurring

in X must be assigned to FALSE using UP.

In the following sections, generally AMO(X), ALO(X), and EO(X) denote the
at-most-one, at-least-one, and exactly-one clauses, respectively, for the set of proposi-
tional variables X . For the sake of convenience, we will illustrate those encoding on a
running example through the set consisting of 8 Boolean variables, X = {X1, ..., X8}.

2.1 The Pairwise Encoding

This encoding has several different names: the naive encoding [38,26], the pairwise
encoding [37,33], or the binomial encoding [17]. In this paper, we refer to it as the
pairwise encoding. The idea of this encoding is to express that no pair of two variables
are simultaneously assigned to TRUE, therefore as soon as one literal is assigned to
TRUE, then all others must be assigned to FALSE:

n−1∧
i=1

n∧
j=i+1

(Xi ∨Xj)
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In the running example, the pairwise encoding produces the following clauses:

X1 ∨X2, X1 ∨X3, X1 ∨X4, . . . , X1 ∨X8,

X2 ∨X3, X2 ∨X4, . . . , X2 ∨X8,

X3 ∨X4, . . . , X3 ∨X8,

...

X7 ∨X8.

The pairwise encoding is a traditional way of encoding the AMO constraint into
SAT. Although this encoding does not need any auxiliary variables, it requires a quadratic
number of clauses (see Table 1). As a result, this encoding produces impractically large
formulas on problems with large domains. Nevertheless, the pairwise encoding is not
only widely used in practice, but also easily combined with other encodings [26,40,14].
The encoding allows UP to maintain arc consistency.

2.2 The Binary Encoding

Frisch et al. [18,19] proposed the binary encoding. Independently, Prestwich called it
bitwise encoding [33,35]) and used it to successfully solve a number of large instances
of CSPs with a standard SAT solver [34,33].

The binary encoding requires new Boolean variables B1, ..., Bdlog2ne with the un-
derstanding that Bj (or Bj) is the bit j of i − 1 represented by a binary string is. The
desired clauses are

n∧
i=1

dlog2ne∧
j=1

(Xi ∨ φ(i, j)),

where φ(i, j) denotes Bj (or Bj) if bit j of i− 1 represented by a binary string is 1 (or
0). The running example is represented by the binary encoding as follows:

X1 ∨B1, X2 ∨B1, X3 ∨B1, . . . , X8 ∨B1,
X1 ∨B2, X2 ∨B2, X3 ∨B2, . . . , X8 ∨B2,
X1 ∨B3, X2 ∨B3, X3 ∨B3, . . . , X8 ∨B3.

The idea is to create the different sequences of dlog2ne-tuples Bj , 1 ≤ j ≤ dlog2ne,
such that whenever any Xi is assigned to TRUE, 1 ≤ i ≤ n, then we immediately infer
that the other variables Xi′ must be assigned to FALSE, for any 1 ≤ i′ 6= i ≤ n. One
should observe that with the binary encoding UP maintains arc consistency.

2.3 The Commander Encoding

Klieber and Kwon [26] described the commander encoding by dividing the set X =
{X1, ..., Xn} of propositional variables intom, 1 ≤ m ≤ n, disjoint subsets denoted by
{G1, ..., Gm}, and introducing a commander variable ci for each subsetGi, 1 ≤ i ≤ m.
The commander encoding is defined as follows:
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1. Exactly one variable in each set Gi ∪ {ci} is assigned to TRUE.

m∧
i=1

EO({ci} ∪Gi) =
m∧
i=1

AMO({ci} ∪Gi) ∧
m∧
i=1

ALO({ci} ∪Gi).

Whereas the ALO constraint is easily translated into a single clause, AMO can
be encoded either by the pairwise on any other encoding. In the running example,
we select m = 4 and divide the set X = {X1, ..., X8} into the disjoint subsets
G1 = {X1, X2}, G2 = {X3, X4}, G3 = {X5, X6}, and G4 = {X7, X8}. Then,
four commander variables c1, c2, c3, and c4 are added. We obtain:

AMO(c1, X1, X2)∧ (c1∨ X1∨X2)∧ . . .∧AMO(c4, X7, X8)∧ (c4∨X7∨X8).

2. At most one commander variable is assigned to TRUE. This constraint can be en-
coded either by the pairwise encoding or by another encoding (even by a recursive
application of the commander encoding):

m∧
i=1

AMO(ci).

In the running example, we obtain:

AMO(c1, c2, c3, c4).

Compared with the pairwise encoding, the commander encoding requires fewer clauses
but introduces (an acceptable number of) new variables (see Table 1). The commander
encoding also allows UP to preserve arc consistency.

2.4 The Product Encoding

Chen [14] proposed an AMO encoding which is called product encoding. Instead of
encoding the AMO constraint ≤1(X1, ..., Xn) he encoded a constraint consisting of n
corresponding points, denoted by ≤1{(ui, vj) | 1 ≤ i ≤ p, 1 ≤ j ≤ q, p ∗ q ≥ n}. The
idea can be explained as follows:

1. Each variable Xk, 1 ≤ k ≤ n, is mapped onto a corresponding point (ui, vj),
where ui ∈ U = {u1, ..., up} and vi ∈ V = {v1, ..., vq}.

2. Then, the product encoding is obtained as:

AMO(X) = AMO(U) ∧AMO(V )

1≤k≤n,k=(i−1)q+j∧
1≤i≤p,1≤j≤q

((Xk ∨ ui) ∧ (Xk ∨ vj)),

where AMO(U) and AMO(V ) can be encoded by either another encoding or a recur-
sive application of the product encoding.
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With regard to our running example, we choose p = 3, q = 3, and use the pairwise
encoding for AMO(U) and AMO(V ). The derived clauses are:

AMO(U) = (u1 ∨ u2) ∧ (u1 ∨ u3) ∧ (u2 ∨ u3),
AMO(V ) = (v1 ∨ v2) ∧ (v1 ∨ v3) ∧ (v2 ∨ v3),
AMO(X) = AMO(U) ∧AMO(V ) ∧

(X1 ∨ u1) ∧ (X1 ∨ v1) ∧ (X2 ∨ u2) ∧ (X2 ∨ v1) ∧
(X3 ∨ u3) ∧ (X3 ∨ v1) ∧ (X4 ∨ u1) ∧ (X4 ∨ v2) ∧
(X5 ∨ u2) ∧ (X5 ∨ v2) ∧ (X6 ∨ u3) ∧ (X6 ∨ v2) ∧
(X7 ∨ u1) ∧ (X7 ∨ v3) ∧ (X8 ∨ u2) ∧ (X8 ∨ v3).

One should observe that UP on the product encoding achieves arc consistency.

2.5 The Sequential Encoding

By building a count-and-compare hardware circuit and translating this circuit to an
equivalent CNF formula, Sinz [38] introduced an encoding of ≤k (X1, ..., Xn) which
he called the sequential encoding. Here, we only consider the case k = 1 and obtain
the following clauses:

(X1 ∨ s1) ∧ (Xn ∨ sn−1)
∧

1<i<n

((Xi ∨ si) ∧ (si−1 ∨ si) ∧ (Xi ∨ si−1)), (1)

where si, 1 ≤ i ≤ n− 1, are auxiliary variables.
The running example is represented by the following clauses:

X1 ∨ s1,
X2 ∨ s2, s1 ∨ s2, X2 ∨ s1,
X3 ∨ s3, s2 ∨ s3, X3 ∨ s2,
X4 ∨ s4, s3 ∨ s4, X4 ∨ s3,
X5 ∨ s5, s4 ∨ s5, X5 ∨ s4,
X6 ∨ s6, s5 ∨ s6, X6 ∨ s5,
X7 ∨ s7, s6 ∨ s7, X7 ∨ s6,
X8 ∨ s7.

As Marques-Silva and Lynce [37] pointed out, the sequence s1, ..., sn−1 is of the
form ”0...01...1” and whenever any Boolean variable Xi is assigned to TRUE (or 1),
1 ≤ i ≤ n, consequently, under UP all the other variables Xj must be forced to FALSE
(or 0), 1 ≤ j 6= i ≤ n. In other words, this encoding allows UP to guarantee the arc
consistency property.
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2.6 The Ladder Encoding

Gent and Nightingale [22] used the ladder structure, originally proposed by Gent et
al. [23], to describe a new encoding of the all-different constraint into SAT. It was
named the ladder encoding.

Without loosing the correctness property, we consider the sequence s1, ..., sn−1 to
play the role of the sequence y1, ..., yn−1 in [22] with the the condition reversed. Now
the ladder validity clauses are represented as follows:

n∧
i=1

(si−1 ∨ si), (2)

where we set
s0 = 0 ∧ sn = 1. (3)

We add the channelling clauses [22]

n∧
i=1

((si ∧ si−1)↔ Xi), (4)

and adding the conjunction of (2) and (4) we obtain the ladder encoding [22]:

n∧
i=1

((si−1 ∨ si) ∧ (si ∨ si−1 ∨Xi) ∧ (Xi ∨ si) ∧ (Xi ∨ si−1)). (5)

It is easy to check that the clauses (si ∨ si−1 ∨ Xi) occurring in (5) are redundant
because they do not affect the correctness of the AMO constraint. After removing these
redundant clauses the ladder encoding is simplified to:

n∧
i=1

((si−1 ∨ si) ∧ (Xi ∨ si) ∧ (Xi ∨ si−1)). (6)

Replacing (6) by (3) yields the sequential encoding:

(X1 ∨ s1) ∧ (Xn ∨ sn−1)
∧

1<i<n

((Xi ∨ si) ∧ (si−1 ∨ si) ∧ (Xi ∨ si−1)). (7)

Furthermore, Prestwich supposed the relaxed ladder in [33]. Particularly, instead of
adding the condition (4), he added the following condition:

n∧
i=1

((si ∧ si−1)← Xi). (8)

Hence, the relaxed ladder encoding is exactly the ladder encoding without the redun-
dant clauses. Consequently, the relaxed ladder encoding and the sequential encoding
are identical. Argelich et al. [7] also noticed that the sequential encoding is a reformu-
lation of a regular encoding [5]. In fact, it is a simple matter to prove that the regular
encoding and the ladder encodings are identical.
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Summarizing, we showed that the relaxed ladder encoding and the sequential en-
coding are identical. These encodings are obtained from the ladder or the regular en-
coding by removing redundant clauses. One should observe that Tamura et al. used
the ladder structure in the order encoding to translate CSPs to SAT instances in their
SAT-based solving system [39]. Bailleux et al. [9] also used this structure, called unary
representation, during their translation of cardinality constraints and pseudo-Boolean
constraints to SAT formulas [9,16,10].

Recently, Martins et. al [28] compared both encodings, the sequential encoding and
the ladder encoding. As the result, the experiment shown in their paper indicated very
small difference between the two encodings.

In conclusion, here we claim the similarity of the ladder, sequential, relaxed ladder,
regular, order encodings, and the unary representation. We hope that this work could
help the SAT community to recognize the similarities of these encodings.

3 The Bimander Encoding

The general idea of the new encoding is based on both the ideas of the binary encoding
and the commander encoding. We refer to it as the bimander encoding.

Similarly to the commander encoding, with a given positive numberm, 1 ≤ m ≤ n,
we partition a set of propositional variables X = {X1, ..., Xn} into m disjoint subsets
{G1, ..., Gm} such that each subsetGi consists of g = d nme variables. However, instead
of introducing commander variables like in the commander encoding, we introduce a
set of auxiliary propositional variablesB1, ..., Bdlog2me like in the binary encoding. The
variables B1, ..., Bdlog2me play the role of the commander variables in the commander
encoding.

The bimander encoding is the conjunction of the following clauses:

1. At most one variable in each subset can be TRUE. We encode this constraint for
each subset Gi, 1 ≤ i ≤ m, by using the pairwise encoding:

m∧
i=1

AMO(Gi). (9)

In our running example we choose m = d
√
ne = 3 to obtain:

AMO(X1, X2, X3) ∧AMO(X4, X5, X6) ∧AMO(X7, X8).

2. The following clauses are generated by the constraints between each variable and
commander variables in a subset:

m∧
i=1

g∧
h=1

dlog2me∧
j=1

(Xi,h ∨ φ(i, j)), (10)

where φ(i, j) denotes Bj (or Bj) if bit j of i − 1 represented by a unique binary
string is 1 (or 0).
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The following set of clauses is generated for the running example:

X1 ∨B1, X4 ∨B1, X7 ∨B1,
X1 ∨B2, X4 ∨B2, X7 ∨B2,
X2 ∨B1, X5 ∨B1, X8 ∨B1,
X2 ∨B2, X5 ∨B2, X8 ∨B2,
X3 ∨B1, X6 ∨B1,
X3 ∨B2, X6 ∨B2.

Compared with the commander encoding, the bimander encoding does not require any
constraints among the sequences of auxiliary variables because any combination of
such variables B1, ..., Bdlog2me of a corresponding subset is different from any combi-
nations of all the other groups. Let us prove some important properties of the bimander
encoding, following the definitions mentioned at the beginning of Section 2.

Correctness Let x̂ = (X1, ..., Xl), 1 ≤ l ≤ n, be a partial assignment with at most one
variable assigned to TRUE. In case all variables are mapped to FALSE, then condition
(9) is trivially satisfied. The same holds for condition (10). In case that only one vari-
able, say Xi, 1 ≤ i ≤ n, is mapped to TRUE, then there is a corresponding sequence
of TRUE values assigned to the corresponding sequence of {B1, ...Bdlog2me}. Hence,
condition (10) is satisfied as well. Therefore, the partial assignment x̂ can possibly be
extended to a complete assignment that satisfies the two conditions.

Now suppose that we have a partial assignment x̂ = (X1, ..., Xl), 1 ≤ l ≤ n,
with more than one variable assigned to TRUE. Suppose that Xi = TRUE and Xj =
TRUE, for 1 ≤ i 6= j ≤ l. In order to satisfy the condition (9), the variablesXi andXj

must belong to different subsets. That leads to two differently corresponding patterns of
the sequence {B1, ...Bdlog2me} which are assigned to TRUE. As a result, the sequence
contains one propositional variable Bk, 1 ≤ k ≤ dlog2me, that is assigned to both
TRUE and FALSE at the same time, which is impossible. Hence, if any partial assign-
ment has more than one variable assigned to TRUE, then UP produces an empty clause.
It means that this partial assignment can not be extended to a complete assignment.

In conclusion, the bimander encoding correctly encodes AMO.

Propagation Strength Let x̂ = (X1, ..., Xl), 1 ≤ l ≤ n, be a partial assignment
where TRUE is assigned to exactly one variable. Now we will show that UP will assign
all other variables to FALSE. Suppose that variable Xi,j = TRUE, which is the jth

variable in the subset Gi, 1 ≤ i ≤ m, then this assignment forces a corresponding
pattern of the sequence {B1, ...Bdlog2me} to TRUE. Because Xi,j = TRUE, all other
variables in the subset Gi are set to FALSE due to condition (9). Due to condition (10),
all the other variables in the subsets Gi′ , 1 ≤ i′ 6= i ≤ m, are set to FALSE because
they have different patterns of the sequence {B1, ...Bdlog2me} corresponding to Xi,j =
TRUE. In conclusion, UP on the bimander encoding maintains arc consistency.

Complexity As we mentioned, we need a set of dlog2me auxiliary variables. Condi-
tion (9) using the pairwise encoding requires m ∗ [ g(g−1)2 ] =

n( n
m−1)
2 new clauses.

Condition (10) requires m ∗ [g ∗ log2m] = n ∗ dlog2me clauses. Hence, the encoding
uses n( n

m−1)
2 + ndlog2me = n2

2m + ndlog2me − n
2 clauses.
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Generalization It is worth pointing out that the bimander encoding can be easily gener-
alized to encode the at-most-k constraint. Again, the set of variables is partitioned into
several subsets.

1. For each subset, the at-most-k constraint is encoded by a modified pairwise (or
another) encoding.

2. The constraints between each variable and the commander variables in a subset are
encoded by the following clauses:

m∧
i=1

g∧
h=1

k∨
l=1

dlog2me∧
j=1

(Xi,h ∨ φ(i, h, l, j)),

where φ(i, h, l, j) denotes Bl,j (or Bl,j) if bit j of i − 1 represented by a binary
string is 1 (or 0).

Special Cases One should observe that the bimander encoding is a general case of
several encodings. For example,

– the pairwise encoding is a special case of the bimander encoding by settingm = 1;
– the commander encoding is a special case of the bimander encoding by setting
m = 2 (when both encodings divide into 2 subsets); and

– the binary encoding is a special case of the bimander encoding by setting m = n.

4 Comparison and Experimental Evaluation

In this section, we first summarize key features of SAT encodings of the AMO con-
straint. Thereafter, we experimentally evaluate the encodings presented in Section 3
using different domains.

4.1 Comparison

Table 1 presents the key features of many approaches for encoding the AMO constraint
(column enc). The columns clauses and aux vars depict the number of clauses required
and auxiliary variables, respectively. The column AC indicates whether UP achieves arc
consistency. The column origin refers to the original publications where the encoding
had been introduced. m denotes the disjointed subsets by dividing the set of proposi-
tional variables {X1, ..., Xn} in the bimander encoding. In addition to the encodings
of the AMO constraint presented in Section 3, we also mention several more encodings
that are mainly used for cardinality constraints. As we can see in Table 1, the bimander
encoding requires the least auxiliary variables among known encodings – with the ex-
ception of the pairwise encoding. The totalizer encoding proposed by Bailleux al et. [9]
requires clauses of size at most 3, and the commander encoding proposed by Klieber
and Kwon [26] needsm (number of disjointed subsets) clauses of size d nm+1e, whereas
the product, sequential, binary and bimander encodings require only binary clauses.
This is a considerable advantage of the new encoding.
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Table 1. A summary of almost all known encodings of the AMO encoding.

enc clauses aux vars AC origin

pairwise
(
n
2

)
0 yes none

linear 8n 2n no [42]
totalizer O(n2) O(nlog(n)) yes [9]
binary nlog2n dlog2ne yes [19]

sequential 3n− 4 n− 1 yes [38]
sorting networks O(nlog22n) O(nlog22n) yes [16]

commander ∼ 3n ∼ n
2

yes [26]
product 2n+ 4

√
n+O( 4

√
n) 2

√
n+O( 4

√
n) yes [14]

card. networks 6n− 9 4n− 6 yes [8]
PHFs-based nlog2n dlog2ne yes [11]

bimander n2

2m
+ nlog2m− n

2
log2m, 1 ≤ m ≤ n yes this paper

bimander (m = n
2

) nlog2n− n
2

dlog2ne − 1 yes this paper

4.2 Experimental Evaluation

For the experimental evaluation we have selected some well-known problems which
have been used in recent CSP and SAT competitions. In case of the bimander encoding,
we have considered two different values for the parameterm, viz.m =

√
n andm = n

2 .
Our experiments were conducted using CLASP 2 [20] with default configuration on

a 2.66-GHz Intel Core 2 Quad processor with 3.8 GB of memory. Bold font indicates the
minimum time for each benchmark. We abbreviate pairwise, sequential, commander,
binary, product, and bimander encodings as pw, seq, cmd, bin, pro and bim, respec-
tively. For the commander encoding, the set of variables is recursively divided into 2
disjoint subsets since the encoding in that case conducted on our problems gives a best
result in term of the average time.

Pigeon-Hole Problems The goal of the problem is to prove that p pigeons can not fit
in h = p− 1 holes. Table 2 shows the results from different encodings on unsatisfiable
Pigeon-Holes instances.

Table 2. A comparison of the run times for Pigeon-Hole problems. Run times are in seconds.

enc pw seq cmd bin pro bim(
√
n) bim(n/2)

10 2.16 0.73 0.56 0.80 0.22 0.33 0.22
11 22.15 5.79 4.46 6.59 6.13 5.10 2.10
12 244.59 117.83 43.27 29.52 43.21 38.19 26.06
13 >3600.00 1604.14 352.53 142.60 736.25 546.91 64.91
14 >3600.00 >3600.00 >3600.00 1271.24 >3600.00 >3600.00 560.03
average >1493.78 >1065.69 > 800.16 290.15 > 877.16 > 838.10 130.66

It can be seen that the bimander encoding (with m = n
2 ) performs best in all cases,

followed by the binary encoding, whereas the bimander encoding (with m =
√
n)

outperforms the rest.
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Hamiltonian Cycle Problems Given a directed or undirected graph with a set of vertices
and a set of edges between vertices. A Hamiltonian cycle is a path that visits each vertex
exactly once, except for the vertex that is both first and the last, which is visited twice.
The different instances were taken from [1].

The run times for the different encodings of the Hamiltonian cycle problem are
presented in Table 3. Both bimander encodings achieve the best average run time, fol-
lowed by the binary encoding. The commander and product encodings are faster than
the sequential encoding, whereas pairwise encoding performs worse.

Table 3. A comparison of run times for satisfiable Hamiltonian cycle instances. Run times are in
seconds.

enc pw seq cmd bin pro bim(
√
n) bim(n/2)

miles750 135.48 25.42 13.67 38.19 14.18 32.55 22.92
miles1000 67.77 10.93 7.65 7.38 12.45 9.52 8.19
miles1500 30.01 3.30 2.60 2.95 2.46 3.74 3.16
queen10 10 13.87 4.16 3.54 3.77 3.68 4.00 3.75
queen11 11 32.34 9.75 8.32 8.43 8.41 9.23 8.16
queen12 12 1.73 22.46 20.13 21.49 18.43 20.44 21.13
queen13 13 3.10 40.99 38.43 1.58 36.30 1.45 1.39
queen14 14 5.17 2.47 2.53 2.42 2.09 2.27 2.20
queen15 15 7.75 3.64 3.42 3.76 3.17 3.47 3.37
queen16 16 11.26 4.80 5.21 5.44 5.14 5.37 5.25
average 30.84 12.79 10.55 9.54 10.63 9.20 7.95

All-Interval Series Problems The goal of the problem is to arrange a permutation of
the n integers ranging from 1 to n in such a way that the differences between adjacent
numbers are also a permutation, of the numbers from 1 to n− 1. As a result, the perfor-
mance of this benchmarks is heavily influenced by the encoding of the AMO constraint.
All-interval series problems are one of the classical CSPs and are usually regarded as a
difficult benchmark to find all solutions (see prob007 in [24]).

Table 4. A comparison of run times for All-Interval Series problems. Run times are in seconds.
sol shows the number of all solutions of the corresponding instance.

enc pw seq cmd bin pro bim(
√
n) bim(n/2) sol

7 0.05 0.03 0.02 0.02 0.05 0.01 0.02 32
8 0.56 1.07 0.63 0.20 0.49 0.62 0.62 40
9 5.33 8.92 0.37 0.27 5.61 0.33 0.24 120
10 61.72 104.02 1.72 1.58 60.71 1.95 1.46 296
11 972.54 1387.67 11.96 8.94 269.43 11.34 6.72 648
12 >3600.00 >3600.00 78.91 49.24 >3600.00 69.52 43.81 1328
13 >3600.00 >3600.00 517.72 356.64 >3600.00 504.61 276.34 3200
14 >3600.00 >3600.00 3200.21 2748.69 >3600.00 3537.74 2005.18 9912
average >1480.02 >1537.71 476.44 395.69 >1392.03 515.76 291.79
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Table 4 summaries the run times for different encodings on AIS instances. Except
for the cases n = 7 and n = 8, the table shows that the bimander encoding with
m = n

2 significantly surpasses all the others. Moreover, for the final three instances
this one performs in a reasonable time, whereas the pairwise, sequential, and product
encodings carry out more than 3600 seconds. The binary encoding gives rather good
results, while the bimander encoding in case m =

√
n and the commander encoding

perform similarly. The pairwise, sequential, and product encodings perform worse.

Quasigroup With Holes Problems A quasigroup is a square of values xij , 1 ≤ i, j ≤ n,
where each number [1..n] occurs exactly oncee in each row and column. Achlioptas
et al. [2] introduced an encoding for generating satisfiable quasigroups with holes in-
stances in which some cells are filled. Quasigroup with holes instances can be consider
as a multiple permutation problem in which the variables may occur in more than one
permutation problem. Moreover, the encoding can tune the generator to output hard
instances. We experimented with instances with different levels of hardness.

Table 5 shows the results from different encodings on satisfiable quasigroup with
holes problems. The bimander encoding with parameter m =

√
n is clearly the fastest

with the exception of the instance qwh.order40.holes544. Surprisingly, the pairwise
encoding performs very well followed by the commander encoding. The bimander en-
coding with parameter m = n

2 , the binary, and the product encoding are quite similar.
Although the sequential encoding was the fastest on the instance qwh.order40.holes544,
its overall performance is poor.

Table 5. A comparison of run times for satisfiable quasigroup with holes problems. Run times
are in seconds.

enc pw seq cmd bin pro bim(
√
n) bim(n/2)

qwh.order30.holes320 0.46 0.28 0.23 0.25 0.23 0.20 0.22
qwh.order35.holes405 3.62 3.51 10.35 6.51 5.73 1.60 2.14
qwh.order40.holes528 134.71 115.62 124.26 120.47 241.20 58.90 159.21
qwh.order40.holes544 39.26 14.57 47.82 123.72 46.7 70.81 154.03
qwh.order40.holes560 121.74 65.36 55.68 119.66 33.16 21.22 53.27
qwh.order33.holes381 58.73 435.90 174.29 94.22 108.03 12.74 92.30
average 358.52 635.24 412.63 464.83 435.05 165.47 461.17

5 Conclusions and Future Works

Inspired by being remarkably successful at solving hard and practical problems of SAT
solving, many problems that were solved previously by other encodings can now be
solved more effectively by translating them into SAT instances and applying advanced
SAT solvers to find solutions. During the encoding phase, one of the most important
constraints occurring naturally in a wide range of real world applications, is the AMO
constraint. Hence, many problems may benefit from effective encodings of this con-
straint.

The paper has four contributions. Firstly, we pointed out that the ladder encod-
ing [22] is nothing but the sequential encoding [38] and a set of redundant clauses.
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Moreover, the relaxed ladder encoding [33] and the sequential encoding are identical.
Another two encodings, viz. the ladder and the regular [5] encoding, are also identical.
Moreover, the relaxed ladder and the sequential encodings can be obtained from the
ladder and the regular encoding after removing redundant clauses. Interestingly, these
ideas were exploited in the unary representation [9] and the order encoding [39].

Secondly, we proposed a new encoding for AMO, the so-called bimander encod-
ing. Compared to many other well-known AMO encodings, the bimander encoding re-
quires the least auxiliary variables (with the exception of the pairwise encoding which
does not erequire any auxiliary variables at all). Although the commander encoding and
the bimander encoding use the same approach by dividing the original set of proposi-
tional variables, the commander encoding requires clauses of size d nm + 1e (where m
is the number of disjoint subsets), whereas the bimander encoding requires only binary
clauses. We believe that this helps the bimander encoding to perform better than the
commander encoding in our experimental evaluation. Moreover, the bimander encod-
ing has the advantage of high scalability, and it can easily be adjusted in terms of the
number of additional propositional variables to obtain particular encodings. For exam-
ple, the pairwise or binary encodings are special cases of the bimander encoding.

Thirdly, this paper also proposes a special case, when dividing the propositional
variables into m = dn2 e disjoint subsets. From a theoretical point of view, this case
is better than the binary encoding due to fewer auxiliary variables and clauses. From
a practical point of view, we show that this special case of the bimander encoding
(m = dn2 e) performs better than the binary encoding in all experiments in term of run
time.

Fourthly, in practice, the bimander encoding is practical and easy to implement. Our
results reveal that two particular cases of the bimander encoding are very competitive
in a comparison with other well-known encodings.

A future research is to study how the number of disjoint subsets could affect the
bimander encoding in realistic problems. It would be particularly useful to extend our
findings to the at-most-k constraint. Finally, the ultimate goal should carry out a pro-
found study of not only analytical, but also theoretical knowledge of variants of well-
known encodings. We expect that this will help us to deepen our understanding on what
encoding one should select given a particular problem.
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Abstract. We investigate alternative methods for implementing table
constraints in clause learning CSP solvers (CL solvers). CL solvers have
been an important development in CP solving as they can provide impor-
tant performance improvements on some problems. Furthermore, table
constraints remain an important and useful modeling tool in CP. Hence,
it is important to be able to utilize table constraints in CL solvers ef-
fectively. Here we compare different ways of achieving GAC propagation
over table constraints in a CL solver. These methods require different
representations of the constraint. First we utilize a CNF encoding of the
table constraint which has the property that unit propagation achieves
GAC. We compare this with the use of a traditional GAC propagation
algorithm for tables, Simple Tabular Reduction (STR). To utilize STR in
a CL solver we also develop a method for extracting clausal explanations
for pruned values. We also develop and test a negative version of STR
which more compactly represents tables that have fewer falsifying than
satisfying tuples. This version also generates clausal explanations. We
implement these different methods in the CL solver minicsp, and com-
pare them to the CNF encodings. Even though our proposed methods
do not perform as well as the encodings in general, we believe that they
will stimulate further research on this area.

1 Introduction

A number of robust and powerful CSP solvers have been developed and are
publicly available. A recent development in CSP solver technology has been
the importation of ideas from SAT, specifically clause learning [9, 10, 12, 13].
Clause learning improves the theoretical power of a CSP solver, and recently
well engineered clause learning CSP solvers (CL solvers) have demonstrated
very good empirical performance on a range of problems (see, e.g., the results of
recent MiniZinc Challenges, http://www.minizinc.org/).

One of the main technologies exploited by CL solvers is the ability to gen-
erate clausal explanations from global constraints. Specifically, when a global
constraint prunes a domain value, a clause justifying that pruning needs to be
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generated (also called an explanation). Once the solver can obtain a clause for
each pruned value, it can perform clause learning much like a regular SAT solver.
In particular, when a contradiction is detected the CL solver must be able to
obtain the clausal reasons for the various domain prunings that lead up to the
contradiction, and resolve these reasons against the base contradiction.

A considerable amount of work has been done showing how to generate
clausal reasons (typically on-demand or lazily) from propagators for various
global constraints, e.g., [9, 14, 5, 4]. Methods for generating explanations from
table constraints were examined in [9], but from a practical point of view these
methods have not been previously examined in the light of the performance
tradeoffs of modern CL solvers.

Table constraints are of course very important in constraint programming.
They are easy for inexperienced users to use, problem domains often contain
special ad-hoc constraints that are most easily encoded extensionally as table
constraints, and information stored in databases is often accessed most conve-
niently as a table constraint. It is not surprising then that much research has
been done on efficiently achieving GAC on table constraints.

In this paper we examine some different options for implementing table con-
straints in a CL solver so as to efficiently achieve GAC. We look at a clausal
decomposition, i.e., representing the table constraint as a set of clauses (CNF).
The main inference method available on clauses in a CL solver is unit propaga-
tion, hence we examine a clausal encoding on which unit propagation is sufficient
to achieve GAC. A CL solver can also treat a table constraint as a black box—
just as if it was any other propagator for achieving GAC over a specific type
of constraint. As mentioned above, all that the CL solver needs is the ability
to generate (or obtain on the fly) clausal reasons for the values pruned by the
constraint. We examine one of the most efficient and simplest “propagators” for
table constraints, Simple Tabular Reduction [11]. Although not typically viewed
as being a propagator, an STR represented table constraint interfaces with a CL
solver in the same way that any other propagator would. Finally, we examine a
new STR-like algorithm for propagating table constraints represented by their
falsifying rather than satisfying tuples. Negative STR can be more effective for
table constraints that have many more satisfying tuples than falsifying tuples.
We give an algorithm for achieving GAC on this negative STR table. We com-
pare these different ways of handling table constraints in CL solvers and draw
some conclusions about their relative effectiveness in practice.

2 Background

A constraint problem P consists of a finite set V = {V1, ..., Vn} of variables,
each with a finite domain of values Dom[Vi] and a finite set of constraints
C = {c1, . . . , cm}. Each constraint ci is defined over some subset of variables,
scope(ci) ⊆ V. An assignment A is a set of variable value assignments {V 1 =
d1, . . . , V k = dk} in which any variable is assigned at most a single value. Let
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vars(A) ⊆ V denote the set of variables assigned in A. A is said to cover a
constraint c if scope(c) ⊆ vars(A).

A constraint c can be viewed as a Boolean function from assignments A that
cover it to true (in which case A is said to be satisfying) or false (A is said to
be falsifying). c is actually a function only of the variables in scope(c), so if A
covers c and V 6∈ scope(c), then A with any assignments to V removed will be
mapped to the same value as A.

Often we consider scope(c) to be ordered, and then for assignments A such
that vars(A) = scope(c) we can order its variable assignments in the same way.
Then without loss of information we can remove the variables leaving only a
sequence of values. This ordered sequence of values is called a tuple for c. If A
is satisfying then its corresponding tuple is said to be a positive tuple (p-tuple)
for c, otherwise it is a negative tuple for c (n-tuple). If t is a tuple we let vars(t)
denote the variables t specifies values for. If V ∈ vars(t) we let t[V ] denote the
value assigned to V in t, and we say that t is valid iff for all V ∈ vars(t) we
have that t[V ] ∈ Dom[V ]. A valid p-tuple t for c is said to be a support for the
value d ∈ Dom[V ] (where V ∈ scope(c)) if t[V ] = d.

A positive table constraint (p-table) is a constraint that is specified by a
set of p-tuples, a negative table constraint is specified by a set of n-tuples. In
particular these sets of tuples are complete: t satisfies a p-table constraint T if
and only if t ∈ T (similarly for n-tables).

Finally, a constraint c is said to be generalized arc-consistent (GAC) if ∀V ∈
scope(c), d ∈ Dom[V ] there exists a valid p-tuple t for c such that t[V ] = d.

A propositional variable is a variable with domain {0, 1}. By convention, if
x is a propositional variable, we write x for x = 1 and ¬x for x = 0. x and ¬x
are literals of the variable x and they are called complementary to each other.
If l is a literal, we denote its complement by l. A clause is a constraint which
is a set of literals, interpreted as their logical disjunction, e.g., (x, y, z), which is
interpreted as x ∨ y ∨ ¬z.

In a CL solver, for each variable we maintain (implicitly or explicitly) a
clausal encoding of its domain. There are several options for this; we use the
order encoding in [12, 3, 1]. For every multi-valued variable V with Dom[V ] =
{d1, . . . , dk} we have k Boolean assignment variables AV=dj

and k + 1 order
variables3 AV≤dj

, 0 ≤ j ≤ k. The variable AV=dj
is true when V = dj , and

is false when dj has been pruned from V ’s domain. The variable AV≤dj
is true

when all values greater than dj have been pruned from the domain of V and
false when all values less than or equal to dj have been pruned. We also have
O(k) clauses that encode AV=d ⇐⇒ AV≤d ∧ ¬AV≤d−1 and AV≤d → AV≤d+1

and the unit clauses (AV≤dk
) and (¬AV≤d0

). These ensure that each variable is
assigned exactly one value.

3 d0 is a sentinel value, which we use here only to simplify the exposition. In practice
it is optimized away.
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3 Clausal Decompositions of Table Constraints

We aim to examine methods for implementing table constraints in CL solvers.
Such solvers have efficient mechanisms for handling clauses, as they can learn
many clauses during solving, and it is very easy to use the same mechanisms to
deal with an initial set of input clauses. Hence, one way of implementing table
constraints is to convert them into a set of input clauses. The only restriction is
that the solver only has access to unit propagation (UP) to reason about these
clauses. Thus to achieve GAC we must use an encoding on which UP achieves
GAC. One significant advantage of clausal encodings is that the clausal reasons
are already available—no extra computation is needed to obtain them.

3.1 Support Tuple Encoding

In [2] a CNF encoding for a table constraint c was given on which UP achieves
GAC. This encoding was an adaptation of encodings presented in [8].

To encode the constraint c we utilize additional propositional variables t1,
. . ., tm, each one representing one of the m different p-tuples of c. Let τi be the
p-tuple represented by the propositional variable ti. Using the ti variables we
can write the clauses capturing C as follows. For the variable V ∈ scope(c) and
value d ∈ Dom[V ], let {s1, . . . , si} be the subset of {t1, . . . , tm} such that the
satisfying tuples represented by the si are precisely the set of tuples τi such that
τi[V ] = d (these are the supports of V = d). For each variable and value V = d
we have the clause (s1, . . . , si,¬AV=d) (V = d must be false if it has no support).
Finally, we have for each p-tuple of C, τi, and assignment V = d ∈ τi the clause
(AV=d,¬ti), which captures the condition that the tuple of assignments τi cannot
hold if V = d cannot be true and also the condition that if τi holds then so do
all of its variable assignments.

For example consider the table constraint C, where scope(C) = {V1, V2} and
Dom[V1] = Dom[V2] = {1, 2}. Let the table be represented by a set of tuples
as {(1, 1), (2, 1), (2, 2)}. To encode this constraint we associate a new variable
with each row, namely t1, t2 and t3. We have the following clauses: (t1,¬AV1=1),
(t2,¬AV1=2), (t1, t2,¬AV2=1), (t3,¬AV2=2) for capturing the loss of supports for
each variable value pair. In addition, we have the following clauses to capture the
relation between assignments and the new variables: (AV1=1,¬t1), (AV2=1,¬t1),
(AV1=2,¬t2), (AV2=1,¬t2), (AV1=2,¬t3),(AV2=2,¬t3).

It has been shown [2] that this encoding enforces GAC on a table constraint.
It can also be observed that the size of this encoding (i.e., the sum of the lengths
of the clauses) is linear in the size of the constraint’s p-table representation:
O(mr) where m is the number of satisfying tuples, and r is the constraint’s
arity. Hence UP on this encoding will operate in time linear in the size of the
constraint’s p-table representation.
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4 Clausal Reasons from Table Propagators

In this section we examine an algorithmic representation for achieving GAC on a
table constraint. There are many such algorithms, but in this paper we focus on
simple tabular reduction, a GAC algorithm that is particularly efficient under
backtracking. When we implement table constraints using non-clausal represen-
tations the CL solvers must be able to derive clausal reasons for pruned values.
First we discuss the standard STR algorithm that works on p-table constraints.
Then we turn our attention to a negative version of STR that works on n-table
constraints. Our negative STR algorithm is new and might be of interest beyond
the context of CL solvers.

4.1 Positive STR

Simple Tabular Reduction (STR) is an efficient GAC algorithm which dynami-
cally maintains tables in order to keep track of supports. It was first introduced
by [15], and used in the context of a backtracking search algorithm by [11] along
with a number of optimizations under the name STR2+. In this paper we will
refer to STR2+ as positive STR, and as STR when the context is clear. In pos-
itive STR, the table t of a constraint is divided into its upper and lower parts
called top(t) and bottom(t) with all the tuples in bottom being invalid.

As described in [11] achieving GAC with STR involves processing the tuples
in top to determine if they are valid (these tuples become invalid as the values
they assign to variables are pruned). If a tuple t is found to be invalid it is
moved to bottom, while if t is found to be valid all of the values it assigns are
marked as having a support (i.e., these values are GAC). After all tuples in top
are processed, the unsupported variable values are pruned. The key contribution
of STR is that the invalid tuples need never be examined, the valid tuples need
be examined only once, and backtracking can be achieved by simply restoring
the variable domains and moving the marker that divides top from bottom.

Our addition to STR is to compute clausal reasons for the values pruned.
These reasons can also be computed on demand (lazily). This is achieved as
follows. When processing the tuples in top, for any invalid tuple t we detect, we
remember the variable value pair that made t invalid. This is some V = d such
that t[v] = d and d 6∈ Dom[V ]. There must be at least one such pair in t for it
to be classified as invalid. If there are multiple pairs we simply choose the first
one found. Hence, each tuple in bottom is marked with a proposition AVi=dj

.
Then if we prune a value, e.g., V = d to compute a reason we scan all tuples in
bottom, locate those tuples t with t[V ] = d and accumulate their propositional
reasons into a set. The conjunction of these propositions then implies the loss
of all supporting tuples for V = d, and thus implies ¬AV=d. This implication
is a clause and supplies the reason we wanted to compute. In [7] an alternative
method is presented for computing reasons from table constraints, where they
use a trie containing tuples of the table. This trie is built using a static ordering
of the variables and hence some extra processing is required to extract a reason
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Algorithm 1: Initialize n-STR

1 init-nSTR (c);
2 dprod =

∏
V ∈scope(c) |Dom[V ]|;

3 foreach X ∈ scope(c) do
4 c.dprod[X] = dprod / |Dom[X]|;
5 foreach d ∈ Dom[X] do

// Initialize Forbidden Tuple Counts
6 c.ftc[X][d] ← # of n-tuples t for c with t[X] = d;
7 if c.ftc[X][d] == c.dprod[X] then
8 prune (X,d);
9 c.update = true;

10 if c.update then
11 prop-nSTR (c);

compatible with the order of the variables along the current search path. Our
approach more naturally yields a reason compatible with the current search path.

Since we must scan all tuples in bottom computing reasons can be fairly
expensive, and it can be done lazily by simply restoring the marker between
top and bottom to its state when the value was pruned and then examine all
tuples in bottom. Alternatively, by using more memory these reasons could be
accumulated as the tuples are detected to be invalid. We did not experiment
with this alternative, as the STR approach in general is not that promising for
CL solvers (see Sec. 5).

4.2 Negative STR

The new STR-based algorithm that we describe for negative table constraints c
reuses the table data structures of the positive STR. In addition, it maintains
the following data structures:

– dprod: is an array of size r = |scope(c)|, such that dprod[i] is the number
of valid (satisfying or falsifying) tuples that contain each value of variable i.

– ftc: is a two dimensional array giving the number of valid falsifying tuples
for every variable/value pair.

The initialization of the n-STR propagator is shown in Algorithm 1 and
the propagator itself in Algorithm 2. They both compute dprod and ftc in a
straightforward manner. The only complication is that when we prune a value,
the counts have to be recomputed from scratch, hence we set the variable update
to true in order to repeat the loop.

To see the correctness of n-STR, observe that it computes exactly for each
X = d, the size of the set V(X = d) of valid tuples t with t[X] = d and the
size of the set F(X = d) of valid falsifying tuples t with t[X] = d. We see that
F(X = d) ⊆ V(X = d) and moreover the set of supporting tuples S(X = d)
satisfies S(X = d) ⊆ V(X = d), F(X = d) ∪ S(X = d) = V(X = d) and
S(X = d) ∩ F(X = d) = ∅. Therefore |S(X = d)| = |V(X = d)| − |F(X = d)|.
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Algorithm 2: Achieve GAC on an n-STR

1 prop-nSTR (c);
// Propagate The Pruned Values

2 while c.update do
3 c.update = false;
4 dprod =

∏
V ∈scope(c) |Dom[V ]|;

5 foreach X ∈ scope(c) do
6 c.dprod[X] = dprod / |Dom[X]|;
7 foreach n-tuple nT in c.top do
8 if ¬valid(nT ) then
9 foreach X ∈ scope(c) do

10 c.ftc[X][nT [X]] -= 1;
// Move nT to inactive part of c

11 foreach X ∈ scope(c), d ∈ Dom[X] do
12 if c.ftc[X][d] == c.dprod[X] then
13 prune (X,nT [X]);
14 c.update = true;

We must prune X = d when |S(X = d)| reaches 0, or |V(X = d)| = |F(X = d)|.
But |V(X = d)| = dprod[X] and |F(X = d)| = ftc[X][d], so since these counts
are maintained correctly, n-STR is sound and enforces GAC.

Let r be the size of the constraint’s scope, d the size of the maximum vari-
able domain and T the number of n-tuples in the constraint. The complexity
of computing dprod is O(r) per iteration (lines 4–6) and the complexity of up-
dating ftc is O(rT ). The loop can be executed at most O(rd) times, but this is
cumulative over an entire branch. This gives a total cumulative complexity over
a branch of O(r2 + r2dT ). Crucially, this complexity is linear in T , although it
is worse than that of STR and other algorithms for positive table constraints.

To compute clausal reasons from n-STR is more complex to implement. We
chose to implement a simple but non-minimal way of computing reasons. If n-
STR c prunes V = d then it is easy to see that the conjunction of all of the
other pruned values for the other variables in c’s scope is a sufficient reason. For
example, if scope(c) = {V1, V2, V3}, and the value V2 = a, V2 = d, and V3 = a
have been pruned from V2 and V3 at the time c prunes V1 = d (note these values
could be, and probably are, pruned by other constraints), then we know that
¬V2 = a ∧ ¬V2 = d ∧ ¬V3 = a → ¬V1 = d. This can be encoded in a clause
using the AV=d variables. These reasons are not as compact at those produced
by positive STR.

5 Empirical Results

To evaluate these three methods, we have implemented them in the CL solver
minicsp (http://www7.inra.fr/mia/T/katsirelos/minicsp.html). The eval-
uation was performed using XCSP benchmarks (http://www.cril.univ-artois.
fr/~lecoutre/benchmarks.html). All experiments were performed on a Intel
Core 2 Duo, 2.00 GHz.
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We experimented with a set of 163 real instances of consisting of mostly
crossword puzzles (lexPuzzle, ukPuzzle, ogdPuzzle, ogdHerald, lexHerald,
driver, renault), a set of 757 patterned instances consisting of mostly graph iso-
morphism problems (si2-m4D, si4-m4D, si4-bvg, si6-m4D, si6-bvg, , BH-4-4,
BH-4-7) and a set of 50 randomly generated instances to evaluate the different
methods for implementing p-table constraints in minicsp.

Figure 1 reports the number of solved real instances and Figure 2 reports
the number of solved patterned instances using the CNF support tuple encoding
(STE) and the positive STR method (p-STR).4 We see that although on the
real instances the performance is similar, on the patterned instances the clausal
STE encoding performs much better (solving more problems in less time).

Fig. 1. Real instances Fig. 2. Patterned instances

Fig. 3. Random instances Fig. 4. Instances with negative tables

4 In addition to the support tuple encoding we also experimented with a MDD clausal
encoding. However, we do not report results for this since it was not competitive
with the other methods.
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The 50 random instances all consisted of 20–25 positive table constraints,
each with arity between 5–10 variables, each with domain size 8–9. Each tuple of
values was inserted as a p-tuple into the table with probability 0.5, so that these
constraints had a tightness of approximately 1/2. Figure 3 show the comparison
between our p-STR implementation and the support tuple encoding (STE).

The results reveal that the support tuple encoding shows the best perfor-
mance for real and patterned instances. A special purpose propagator such as
STR yields better results when the table constraints tend to be tight as seen on
the random problems. However, none of the XCSP benchmarks we used contain
tables with a tightness close to 50%.

Although it is known that the crossword instances lack an underlying struc-
ture which can be exploited by conflict analysis [6] they remain an apt choice as
benchmark, since a clause learning solver must generate reasons from all of the
problems’ constraints. Profiling of STR shows that in the crossword instances
60% of the runtime is spent extracting clausal reasons while pruning values. Time
spent on this extraction can be as high as 70% in the patterned instances. How-
ever, this does not account for the performance difference in patterned instances,
as seen in the logarithmic gap between STR and STE is shown in Figure 2. This
gap demonstrates that STE would still be faster even if the reasons from STR
could be generated for free. We could further confirm this by verifying that the
solver generates fewer conflicts when using STE, on average. We conjecture that
the additional propositions in the STE encoding allows the solver to generate
smaller proofs.

Finally, to evaluate our n-STR approach we experimented on 182 patterned
instances (bqwh-15-106, travellingSalesman-20, QCP-10, cril, QWH-10, coloring)
specified with n-tables. Since the support tuple encoding works with p-tuples,
we tested the n-STR algorithm against a naive encoding where each conflicting
tuple is directly represented as a clause. Figure 4 shows the number of solved
instances using these two methods, where n-STR stands for negative STR and
Decomp stands for the naive encoding. For n-STR we see that it is generally
inferior to the naive encoding on this problem set.

In general, it would seem that once the simplicity of using the clausal en-
coding is considered for CL solvers a CNF encoding will probably be the best
choice for representing table constraints. The results could change, however, de-
pending on future developments: (1) potentially a more memory expensive way
of computing better reasons from p-STR tables might benefit p-STRs; (2) better
reasons could potentially be computed from n-STRs. These are useful questions
for future research.
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Abstract. Many problems are naturally modelled by extending an ex-
isting type with additional values. For example for modelling database
problems with nulls natural models use booleans and integers with an
additional null value. Similarly models involving integers may naturally
be extended to handle −∞ and +∞. We extend MiniZinc to MiniZ-
inc+ to allow modelling with extended types. The user can specify both
the extension of a predefined type with new values, and the behavior
of the operations with relation to the new types. The resulting model
MiniZinc+ model is transformed to a MiniZinc model which is equiv-
alent to the original model. We illustrate the usage of MiniZinc+ to
model Boolean circuits allowing undefined inputs and scheduling prob-
lems considering special time values.

1 Introduction

Constraint programming languages aim at providing mechanisms that allow the
user to represent complex problems in a natural way. With that purpose, this
paper presents a technique for expressing constraints over extended types in the
constraint modelling language MiniZinc [9].

For example, within our framework, it is possible to extend the int predefined
MiniZinc domain to support the representation of the value positive infinity.
The new type intE is introduced by the reserved word extended:

extended intE = int ++ [posInf];

where posInf is a new extended constant. Once a new extended type has been
declared, the user can also define new operations as extensions of the predefined
operations allowed by the language. For instance, in this example one could
define result of the addition of two intE variables x, y as x+y if both x and y
are in the subtype int, or posInf if at least one of the two values is posInf (as in
IEEE standard 754 [5]).

Apart from extended arithmetic, the extension of standard domains is an
approach used in a multitude of disciplines, such as the design and test of digital
circuits [1], the representation of null values to represent the unknown data in
database query languages such as SQL [3], or the many-valued logics [8]. All
these problems can be successfully modeled in the language proposed in this
paper, which we call MiniZinc+.
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In order to solve the constraints over the extended types we present a trans-
formation from MiniZinc+ into MiniZinc. The transformation represents each
extended decision variable as a pair of variables in MiniZinc. The first variable
contains the possible value in the source, standard type. The second variable
contains the value in the extended type and also works as a switch that selects
one of the two variables during the search. The transformation applies not only
for constraint satisfaction problems, but also for optimization problems.

The next section introduces both the syntax of MiniZinc with functions [10]
and the syntax of MiniZinc+. Section 3 explains that the transformation is the
composition of two phases. The first phase, the elimination of local declarations
and functions is decribed in other papers and is not discussed here. The second
part is itself split into two section: first, Section 4 introduces the transformation
over expressions, and then Section 5 generalizes the transformation to top-level
constructions such as constraints and declarations. The soundness of the ap-
proach is discussed in Section 6. Finally, Section 7 presents the conclusions and
discusses possible future work.

2 Extending MiniZinc

2.1 Syntax

In this section we introduce the syntax of MiniZinc+, our proposed extension
of MiniZinc (with functions) [10]:

typeE −→ extended tId = [c−n, . . . , c−1] ++ type ++ [c1, . . . , cm]
exp −→ vId | constant | vId[exp] | arrayexp[exp] | setexp | arrayexp

| if exp then exp else exp endif
| vId(exp∗[,]) | let {decl∗[,] const∗[,]} in exp

arrayexp −→ [exp∗[,]] | [exp | genvar+[,] where exp]
setexp −→ { exp∗[,] } | range | {exp | genvar+where exp}
genvar −→ vId+[,] in setexp | vId+[,] in arrayexp
range −→ exp .. exp
decl −→ vtype : vId | array[range] of vtype : vId

| set of type: vId | var set of setexp: vId
assig −→ vId = exp
const −→ constraint exp
funct −→ function decl (decl∗[,]) = exp
pred −→ predicate vId(decl∗[,]) = exp
solv −→ solve satisfy | solve minimize vId | solve maximize vId
out −→ output ([ show∗[,] ])

show −→ show( exp) | “string“
type −→ int | bool | float | tId | range

vtype −→ type | var type
model −→ typeE∗[;];decl∗[;]; assig∗[;]; pred∗[;]; funct∗[;]; const∗[;]; solv; out

where model is the start symbol of the grammar, vId and tId are identifiers
for: parameters, variables, functions, or predicates and new types, respectively.
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string represents an arbitrary string constant. The values ci represent new con-
stant identifiers. The notation n∗[s] / n+[s] indicates zero or more / one or more
repetitions of the nonterminal n such that these repetitions are separated by
string s. Italic words are reserved words of the language. The only difference of
this grammar with respect to the standard MiniZinc with functions presented
in [10] is the new nonterminal typeE and the inclusion of type identifiers (tId)
as possible types.

2.2 Example: Extending the Boolean type for a full adder
combinational circuit

Suppose that we wish to extend the Boolean type with a new constant undef in
order to model combinational circuits with undefined (i.e. neither true or false)
signals [1]. The definition in MiniZinc+ of the new type can be found in the
first line of the model in Figure 1. Note that replacing boolEx with bool in
lines (3-6) and omitting lines (8-24) would give a standard MiniZinc model for
this problem.

The model redefines the behavior of the Boolean connectives ∧, ∨ and xor
taking into account the new constant as indicated in the truth tables of Figure
2 (where 0 stands for false, 1 for true and ⊥ stands for undef ). For instance, the
standard MiniZinc operator xor is redefined in MiniZinc+ as shown in lines
(8-11) of Figure 1. The function first defines a local decision variable c1, which
uses the predefined function sv in order to check if both parameters a and b
contain standard values, that is, values different from undef. If this is the case,
then the function returns the result of using the standard MiniZinc operator
xor, represented by predef(xor). Otherwise, if either a or b is undef, then the
result is undef according to the table for extended xor of Figure 2. The schema
of this function will be usual in all the conservative redefinition of standard
operators. The code for functions redefining ∧ and ∨ is analogous.

Note that although the functions xor, ∧ and ∨ have been redefined, they
are used as the original functions inside function declarations by wrapping them
with predef.

Using these definitions we model the behavior of a n-bit adder digital circuit
in lines (25-28). The basic piece of the circuit is the full adder :

which adds binary numbers and accounts for values carried in as well as out. The
code of lines (25-28) employs n full adders to obtain a n-bit adder. In particular,
line (26) defines the output s using two xor gates, while lines (27-28) model the
carries employing two and and one or gates.
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1 extended boolEx = bool ++ [undef];
2 int n;
3 array[1..n] of var boolEx: x;
4 array[1..n] of var boolEx: y;
5 array[1..n+1] of var boolEx: s;
6 array[1..n+1] of var boolEx: c;
7

8 function var boolEx:xor(var boolEx:a, var boolEx:b) =
9 let{var boolEx:r, var bool:c1=sv([a,b]),

10 constraint (c1 /\ r = (a predef(xor) b)) \/
11 (not c1 /\ r=undef)} in r;
12 function var boolEx:/\(var boolEx:a, var boolEx:b) =
13 let{var boolEx:r, var bool:c1=sv([a,b]),
14 var bool:c2= (a=false \/ b=false),
15 constraint (c1 /\ r = (a predef(/\) b)) \/
16 (not c1 /\ c2 /\ r=false) \/
17 (not c1 /\ not c2 /\ r= undef)} in r;
18 function var boolEx:\/(var boolEx:a, var boolEx:b) =
19 let{var boolEx:r, var bool:c1=sv([a,b]),
20 var bool:c2= (a=true \/ b=true),
21 constraint (c1 /\ r = (a predef(\/) b)) \/
22 (not c1 /\ c2 /\ r=true) \/
23 (not c1 /\ not c2 /\ r=undef)} in r;
24

25 constraint c[1]=false /\ s[n+1]=c[n+1]
26 constraint forall([s[i]=x[i] xor y[i] xor c[i]|i in 1..n])
27 constraint forall([c[i+1]=(x[i] /\ y[i]) \/
28 ((x[i] xor y[i]) /\ c[i])|i in 1..n]);
29 solve satisfy;

Fig. 1: A n bit full adder in MiniZinc+: x+ y = s

After transforming this model into an standard MiniZinc model, we can use
MiniZinc to obtain solutions such as the following:3

x = 1 ⊥ 0 1
y = 1 ⊥ 0 0
c = 0 1 ⊥ 0 0
s = 0 ⊥ ⊥ 1 0

The least significant digit (and thus the first position of each array) is displayed
on the left. Observe that in the second position from the left the addition ⊥
+ ⊥ +1 (1 is the carry from the previous position) yields ⊥ in the result. In

3 The output sentence is omitted in Figure 1 for simplicity.
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1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥
(a) ∨

1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥
(b) ∧

1 0 ⊥
1 0 1 ⊥
0 1 0 ⊥
⊥ ⊥ ⊥ ⊥
(c) xor

Fig. 2: Truth tables including the undefined value

particular this means that the carry is undefined as well, and thus in the third
position 0 + 0+ ⊥ produces the output ⊥. However, in this case we can ensure
that the carry is 0, and thus in the fourth position we have 1 + 0 + 0 = 0 as
output with 0 carry and as last bit.

3 From MiniZinc+ to MiniZinc

The main goal of this paper is to present an automatic translation from MiniZ-
inc+ to MiniZinc. Thanks to this translation, the models written in the ex-
tended setting can be solved using all the features (optimizations, different types
of solvers, etc.) included in MiniZinc. The translation can be presented as a pro-
cess in two phases:

1. First, functions, predicates and local declarations of variables are removed
from the model.

2. Finally, the resulting MiniZinc+ model, now containing neither functions
nor local declarations, is translated into MiniZinc.

Observe that the first phase can be applied to both MiniZinc and MiniZ-
inc+ indistinctly. In particular, the function elimination is done by unrolling
the function calls following ideas similar to those described in [10] (we assume
in our setting the use of total functions), which simplifies the task. The elimina-
tion of constraints included in local declarations is managed using the relational
semantics [4] of MiniZinc where these constraints “float” to the nearest enclos-
ing Boolean context where they are added as a conjunct. Analogously, the local
variable declarations are converted to global variable declarations, see [6] for a
more detailed discussion.

In the rest of the paper we describe the second phase, which converts a
MiniZinc+ model without functions and local declarations into a semantically
equivalent MiniZinc model.

4 Transforming MiniZinc+ expressions

In the case of MiniZinc+ expressions, the transformation is defined in terms of
two auxiliary transformations, the first one representing the standard MiniZinc
part of the expression (transformation τs(c)), and the second one keeping a
representation of the extended part (transformation τe(c)).
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4.1 Notation
First we introduce some auxiliary notation:

We use t for type identifiers (either standard as bool, int and float or extended
such as bEx). The functions st(t) and et(t) return whether t is either a standard
(st) or an extended (et) type.

The notation ordt(k) maps constants k of type t to an integer that represents
the distance to k from the base type following the textual order in its definition
(the sub-index t in ord is omitted when it is clear from the context). For instance,
given the definition
extended int3 = [negInf]++int++[undef,posInf];

then: ordint3(negInf) = -1, ordint3(undef)= 1, and ordint3(posInf) = 2.
For every constant k, ordt(k) 6= 0 iff k is extended. We define ordt(k) = 0 if

k is a standard constant. The function eRan(t) (extended Range) is defined for
an extended type t as follows: define a set S as S = {ordt(k)|k ∈ t} ∪ {0}, then
eRan(t) = min(S) . . max(S). In the example of int3 above: −1 . . 2. We choose
for each type t a default value ko(t) which will be used in the representation of
extended constants. The notation o(t) refers to the base type of t if it is extended,
or to t itself otherwise. Additionally, for each type t we define a value zt, which
is 0 if t is an atomic type, the array of n zeros ([0, . . . , 0]) if t is an array of size
n, the empty set ({}) if t is a set, and the minimum value in the base type in the
case of an integer subrange. In the rest of the paper we assume that MiniZinc+

models are well-typed following the type inference rules for MiniZinc which can
be found in [2], and use the notation type(e) to refer to the type of e.

Next we explain the transformation of MiniZinc+ expressions, distinguishing
between the different possibilities enunciated in the grammar (Section 2.1).

4.2 Identifiers, constants, array and set expressions
Base identifiers and constants The transformations τs and τe for identifiers and
constants of base types are defined as follows:

τs τe

Identifiers : x, t = type(x)
st(t) x zt
et(t) s(x) e(x)
Constants : k, t = type(k)
st(t) k zt
et(t) ko(t) ordt(k)

Observe that here identifiers represent both decision variables and param-
eters. Identifiers of standard type are mapped to the original form, with the
second component fixed to zero, representing a standard value. Extended type
identifiers x are mapped to the associated new identifiers s(x) of type t and e(x)
of type eRan(t). Constants are mapped to themselves paired with zt if standard,
or to the default constant from the underlying type and their order number if
they are extended, new values.
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Array expressions and identifiers Array expressions of the form: e = [e1, . . . , en]
are transformed simply mapping the transformations τs, τe:

τs(e) = [τs(e1), . . . , τs(en)] τe(e) = [τe(e1), . . . , τe(en)]

For instance, if we consider the array expression e defined as [true,false,undef ],
then τs(e) = [true,false,false], and τe(e) = [0,0,1 ]. Observe that the underlined
false corresponds to the arbitrary constant kbool chosen to replace undef and it is
only used to keep the array with the same length and with the standard constants
in the same positions. Array identifiers a always have known length after unfold-
ing so they are treated analogously to array expressions: e.g. a = [a[1], . . . , a[n]]
means that τs(a) = [τs(a[1]), . . . , τs(a[n])] and τe(a) = [τe(a[1]), . . . , τe(a[n])].

Array access An array access of the form a[exp] with type(a) = <array of t> is
transformed as:

τs(a[exp]) = τs(a)[τs(exp)] τe(a[exp]) = τe(a)[τs(exp)]

We make use of the fact that MiniZinc arrays are always indexed by integers.
Consider the subexpression c[1] in line 25 of Figure 1. We have type(c) = <ar-
ray of bEx>, and thus st(bEx) is false and et(bEx) holds. Therefore, τs(c[1 ]) = cs[1 ]
, τe(c[1 ]) = ce[1 ], assuming s(c[1 ]) is defined as the new identifier cs[1] and
e(c[1 ]) as ce[1].4

Set expressions 5 Set expressions of the form e = { e1, . . . , en } with type(e1) =
· · · = type(en) = t are transformed depending on the type t:

– if st(t), then τs(e)= { τs(e1), . . . , τs(en) }, and τe(e)={}
– if et(t), then τs(e) = {[τs(e1), . . . , τs(en)][i] | i in 1..n

where [τe(e1), . . . , τe(en)][i] = 0 }
τe(e) = {[τe(e1), . . . , τe(en)][i] | i in 1..n

where [τe(e1), . . . , τe(en)][i] != 0 }

The overall idea is that the elements in the set are split into standard and
extended parts.

4.3 Array and set comprehensions

Let 〈 exp | genvars where cond 〉 be an array or set comprehension (with 〈,〉
representing [,] or {,}). The translation of this expression consists of two phases.
The first phase processes each generator g in genvars. We use the notation e[x 7→
e′] to indicate that all the occurrences of x in e must be replaced by e′.

– If g ≡ gId in genExp with genExp a set or array of standard type, then apply
the replacement genvars[g 7→ gId in τs(genExp)].

4 For simplicity we use the suffixes s and e to generate new identifiers for the standard
and extension parts of a construction in the rest of the paper.

5 For set variables see Section 5.2.
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– If g is of the form gId in arrayexp and arrayexp is an array of extended type
then:
• Apply the replacement
genvars[g 7→ f in index_set(τs(arrayexp))], where f is a fresh variable.
• Apply the replacements
exp[gId 7→ arrayexp[f] ] and cond[gId 7→ arrayexp[f] ]

– If g ≡ gId in setexp and setexp is a set of extended type then: Let fresh
array expression a be [ord−1

t (x) | x in τe(setexp) where x<0]++ [x | x in
τs(setexp)]++ [ord−1

t (x) | x in τe(setexp) where x>0].
Then:
• Apply the replacement genvars[g 7→ f in index_set(τs(a))], where f is a

fresh variable.
• Apply the replacements exp[gId 7→ a[f] ] and cond[gId 7→ a[f] ]

Let 〈(exp’) | genvars’ where cond’ 〉 be the result of applying this transformation
to all the generators in the array/set comprehension. Then, the second phase of
the translation is defined as:
- Array comprehensions:
τs = [ τs(exp’) | genvars’ where τs(cond’) ]
τe = [ τe(exp’) | genvars’ where τs(cond’) ]
- Set comprehensions:
τs = { τs(exp’) | genvars’ where τs(cond’) ∧ τe(exp)=0 }
τe = { τe(exp’) | genvars’ where τs(cond’) ∧ τe(exp)!=0 }

For example, let intE be the integer type extended with constant posInf , and
consider the following expression:
e = [ y | x in [posInf, 4, 9, -1], y in {8, -1, 8, posInf}

where x=y]

In order to simplify the presentation we use L to represent the list [posInf,
4, 9, -1], and S to represent the set {8, -1, 8, posInf}. Therefore, the array
comprehension is represented as [y | x in L, y in S where x=y].

First we select the first generator x in L, choosing i as new variable and taking
into account that τs(L) = [0, 4, 9, -1]. Applying the replacements we obtain [y |
i in index_set([0,4,9,-1]), y in S where L[i]=y].

The second generator is y in S. Attending to the translation of set expressions
we have
τs(S) =[ [8,-1,8,0][i] | i in 1..4 where [0,0,0,1]=0]
τe(S) =[ [0,0,0,1][i]| i in 1..4 where [0,0,0,1]!=0]

Then the array expression a is defined as:
a = [ord−1

t (x) | x in τe(S) where x < 0] ++
[x | x in τs(S)] ++
[ord−1

t (x) | x in τe(S) where x >0]
Observe that during the evaluation of the model a will be evaluated to []++[-

1,8]++[posInf] = [-1,8,posInf]. The idea behind a is to obtain the list of elements
in S without repetitions and respecting the order among elements. This mimics
in MiniZinc+ the behaviour of MiniZinc where [x | x in {3,4,5,3,4}] is evaluated
to [3,4,5].
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The translation proceeds by replacing the second generator by a new variable
j, obtaining
[a[j] | i in index_set([0,4,9,-1]), j in index_set(τs(a)) where L[i]=a[j]]

Finally:
τs(e)= [τs(a[j])|i in index_set([0,4,9,-1]), j in index_set(τs(a)) where τs(L[i]=a[j])]

and
τe(e)= [τe(a[j])|i in index_set([0,4,9,-1]), j in index_set(τs(a)) where τs (L[i]=a[j])]

During the evaluation the system will obtain: τs(e) = [0,-1], and τe(e) =
[1,0], which corresponds to the MiniZinc representation of the MiniZinc+ list
[posInf,-1].

4.4 Conditional and logical expressions

Expressions e ≡ if c then e1 else e2 endif are transformed as:
τs(e) = if τs(c) then τs(e1) else τs(e2) endif
τe(e) = if τs(c) then τe(e1) else τe(e2) endif

Note: the exists and forall constructions are simply expanded to disjunctions
and conjunctions respectively and then transformed.

4.5 Predefined function and predicate calls

We consider the following predefined function and predicate calls:
- c ≡ sv([exp1,. . . ,expn]). The purpose of this Boolean function is to ensure that
all the expressions correspond to standard values. Therefore: τs(c) = (τe(exp1)=zt1)
∧ · · · ∧ (τe(expn)=zo(tn)), with zo(ti) the zero value associated to the type ti of
expression expi.
- c ≡ predef(f)(exp1, . . . , expn), or alternatively c ≡ exp1 predef(f) exp2, with
f a predefined function or an infix operator. predef indicates that this call cor-
responds to the predefined MiniZinc function/operator f even if it has been
redefined by the user. Thus, τs(c)= f(τs(exp1), . . . , τs(expn)), or τs(c)=τs(exp1)
f τs(exp2) if f is an infix operator, and τe(c) = zt where t is the output type of f.
Thus, the user should ensure, usually by adding some constraints using sv that
exp1, . . . , expn can only correspond to standard values, otherwise the result of
evaluating this function can be unsound.
- c ≡ (exp 1 = exp2), assuming that = has not been redefined. Then: τs(c) is
defined as

(τs(exp1) = τs(exp2) ∧ τe(exp1) = τe(exp2))

and τe(c) is defined as zbool . The result of the comparison depends both on the
standard and on the extended value. It is not enough to check only the standard
part, because in case of two different extended constants a, b with base type t we
have τs(b) = τs(a) = kt, but the result should be false. Analogously, the extended
part is not enough because for instance considering the standard constants 3, 4,
we have τe(3) = τe(4) = zbool . The translation of exp1 != exp2 is simply not(exp1
= exp2), applying then the translation of =.
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- c ≡ (e in S), assuming that in has not been redefined. Then: τs(c) = (τe(e) =
0∧ τs(e) in τs(S))∨ (τe(e) 6= 0∧ τe(e) in τe(S)) and τe(c) = 0. Other set opera-
tions such as card, union or intersect can be defined analogously.

This ends the transformation part for expressions. It only remains to define
the transformation applied to top-level constructions.

5 Transforming MiniZinc+ models

The transformation of a MiniZinc+ model M, denoted by τ(M) is obtained
transforming each of these top-level constructions as described in this section.

5.1 Declarations of extended types

The declarations of extended types are useful for obtaining the names of the new
types, their base standard types, the names of the extended constants, and for
generating the ord function described above. However, these declarations do not
generate directly any code in the transformed MiniZinc model.

5.2 Declarations of variables and parameters

If c ≡ decl is a declaration of a variable or a parameter, then it is translated to
MiniZinc as cT ≡ τ(decl) as defined by the following table:

τ

Var. or param. declarations: [var] t : x, with o(t) ∈ {int, float, bool }
st(t) [var] t : x
et(t) [var] o(t): s(x); [var] eRan(t): e(x); C1

array [S] of [var] t: a
st(t) array [S] of [var] t: a;
et(t) array [S] of [var] o(t): s(a);

array [S] of [var] eRan(t): e(a); C2

set of t: x
st(t) set of t: x;
et(t) set of o(t): s(x); set of eRan(t) : e(x)

var set of setexp : x, type(setexp) = <set of t >
t=int var set of setexp : x
et(t) var set of τs(setexp) : s(x);

var set of τe(setexp) : e(x);

with the constraints C1 and C2 defined as

C1 ≡ constraint e(x) = zo(t) -> s(x) = ko(t);
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and

C2 ≡ constraint forall([e(a[i]) 6= zo(t) ->s(a[i]) = ko(t) | i in S]);

The first column of the table distinguishes the different possible cases. The con-
straints C1 and C2 are introduced to avoid the repetition of equivalent solutions
that is produced if the standard variables are not constrained. This is done, by
ensuring that if the variable takes an extended value (extended part 6= zo(t)),
then the standard part of the variable takes some arbitrary value ko(t).

In our circuit example, the array x is transformed into:
array[1..n] of var bool: xs;
array[1..n] of var 0..1: xe;
constraint forall([xe[i]!=0 -> xs[i]=false | i in 1..n]);

assuming that false is the arbitrary constant kbool .

5.3 Assignments and Constraints
Assignments of the form c ≡ vId = exp, with type(vId) = t are transformed as
follows:

τ
st(t) vId = τs(exp)
et(t) τs(vId) = τs(exp); τe(vId) = τe(exp)

Thus, the idea is to constrain the standard (respectively extended) part of
the identifier to the standard (respectively extended) part of the expression.

Constraints have the form c ≡ constraint exp;, where exp is a Boolean expres-
sion. In this case the transformation simply takes into account that the type of
exp is standard, and therefore cT ≡ constraint τs(exp).

5.4 Output Item
The translation of an output item adds a new requirement, being able to print
extended types. An expression of the form show(exp) must return a string rep-
resenting the possibly extended expression exp. An extended type definition of
the form

extended tId [c−n, . . . , c−1]++type++ [c1, . . . , cm];
creates an array of string tnames
array[eRan(tId)] of string: tnames = [c−n, ..., c−1, "dummy", c1, ..., cm];
and replaces each show(e) by
if(fix(τe(e))==0) then show(τs(e)) else show(tnames[τe(e)]) endif

For example output [show(x)]; where x is of type int3 creates
array[-1..2] of string: int3names =

["neginf","dummy","undef","posInf"];
output [ if (fix(xe) == 0) then show(xs)

else show(int3names[xe]) endif ];
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5.5 Satisfaction and Optimization

A satisfaction problem is encoded in MiniZinc+ using the solve item solve satisfy.
In the translation to MiniZinc this is unchanged.

MiniZinc also allows defining optimization problems, using solve minimize e
or solve maximize e. In MiniZinc+ we also allow the optimization of expressions
with extended range, extending implicitly the order < to the new elements ac-
cordingly to their position with respect to the standard type in the definition of
the type extension (see Section 4).

In standard MiniZinc, the optimization of an arithmetic expression is treated
as the optimization of a variable constrained to be equal to the expression. Thus
we consider goals either of the form solve minimize y; or solve maximize y; with
y a variable of some extended type t.

In order to compare values k of extended types in the transformation we
consider the lexicographical ordering over pairs of the form (τe(k), τs(k)). Let a
be the minimum base type value in t if this exists, and b be the maximum base
type value in t if this exists. If a and/or b dont exist then we may be able to
determine a = min(τs(y)) and b = max(τs(y)). As a last resort, if we are to use a
solver which artificially represents unbounded objects of the base type in a finite
range a..b we can use these values. Note that most finite domain solvers have this
restriction. If we cannot determine either a or b then the optimization cannot be
translated.6 Given a and b can be determined we transform minimize/maximize
y to minimize/maximize τe(y) ∗ (b− a+ 1) + τs(y).

For instance, the example in Figure 3 models the time required to perform
some task. The time is measured in hours, from 0 to 23, plus an especial value
oneDayOrMore. The addition operator + is redefined accordingly, ensuring that
if the sum of the two values exceeds 23 then the value oneDayOrMore is returned.
For this type a = 0 and b = 23.

In the example, the sum of the values of the parameters exceed 23 hours,
and therefore even assuming the minimum possible value for c (which is 0),
the expression takes the value oneDayOrMore. After transforming the model
MiniZinc yields the expected values for variables total and c:

Total=oneDayOrMore t2=0

6 Theoretical results

In this section we present the theoretical result that supports our proposal. The
idea is to prove that both the MiniZinc+ and its transformation represent the
same set of solutions. The solutions are represented by well-typed substitutions:

Definition 1. Let M be a MiniZinc+model, Γ its associated type context, and
θ a substitution. We say that θ is a well-typed substitution forM iff
6 We are aiming to extend MiniZinc to directly handle lexicographic objectives, in
which case this problem would disappear.
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1 extended time = (0..23) ++ [oneDayOrMore];
2

3 function var time:+(var time:x, var time:y) =
4 let {var time:r, var bool:c=sv([x,y]),
5 constraint (c /\ x + y>23 /\ r=oneDayOrMore)
6 \/ (c /\ x + y<=23 /\ r=x+y ) \/
7 (not c /\ r=oneDayOrMore) } in r;
8 time: t1 = 5;
9 var time:t2;

10 var time:total = t1 + t2 + 21;
11 solve minimize total;
12 output(["Total=",show(total)," t2=",show(t2),"\n"]);

Fig. 3: Modelling time with an extended value..

– The domain of θ is the set containing the decision variables declared inM.7
– For all x ∈ dom(θ), type(x) =< t > iff type(xθ) =< t >

The key idea for defining the concept of solution is the evaluation of an
expression in a model with respect to a given well-typed substitution.

Definition 2. Let M be a MiniZinc+model, e an expression occurring in M,
and θ be a well-typed substitution for M. The evaluation of e with respect to
θ, denoted by ‖ e ‖θ, is defined distinguishing cases according to the definition of
MiniZinc+expressions (refer to non-terminal exp in the grammar)

1. ‖ id ‖θ = idθ, id any identifier.
2. ‖ k ‖θ = k, k any constant.
3. Set Expressions:

(a) ‖ {e1, . . . , en} ‖θ = ord({‖ e1 ‖θ, . . . , ‖ en ‖θ}).
ord is defined as the function that given a set of values, eliminate the
repetitions and sort the values according to order � that extends ordt
defined in Section 4.1 where:

a � b =


a ≤ b a, b standard constants
ordt(a) < 0 a extended, b standard
ordt(b) > 0 a standard, b extended
ordt(a) ≤ ordt(b) otherwise

(b) ‖ ei..ef ‖θ = {‖ ei ‖θ, ‖ ei ‖θ + 1, . . . , ‖ ef ‖θ}
4. Array Expressions: ‖ [e1, . . . , en] ‖θ = [‖ e1 ‖θ, . . . , ‖ en ‖θ]
5. Array Access:
7 The decision variables are the variables declared either at top level, or in local let
statements. The parameter names in the declarations of user functions and predicates
are not considered decision variables in our setting.
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(a) ‖ a[e] ‖θ = ti, with a an array identifier with index range m. . . n, i =
‖ e ‖θ −m+ 1, 1 ≤ i ≤ n−m+ 1, and ‖ a ‖θ = [t1, . . . , tn−m+1].

(b) ‖ e1[e2] ‖θ = ti, with e1 not an array identifier, ‖ e1 ‖θ = [t1, . . . , tn], and
i = ‖ e2 ‖θ, 1 ≤ i ≤ n.

6. Set/list comprehensions of the form lc = 〈e | g1, . . . , gm where c〉, where:
(a) 〈, 〉 represents either {,} or [,].
(b) gj is of the form idj in arrayexp or idj in setexp.
(c) In particular we suppose that g1 ≡ id in e′. Let ‖ e′ ‖σ be 〈 e1, . . . , en 〉

and define σ1 = σ ] {id 7→ e1}, . . . , σn = σ ] {id 7→ en}.
Moreover, in the definition we use the following notation:
– � represents the array concatenation or set union depending on what 〈, 〉

is representing.
– C(e, c) being 〈e〉 if c holds and 〈〉 in other case.

Then, ‖ lc ‖θ is defined recursively as:
(a) If m = 1, then lc contains only one generator g, which must be of the

form id in e′. Then:
‖ 〈e |g where c〉 ‖σ = C(‖ e ‖σ1 , ‖ c ‖σ1) � . . . � C(‖ e ‖σn

, ‖ c ‖σn
)

(b) If m > 1 then lc contains more than one generator. Analogously to the
previous item, suppose that the first generator is g1. Then:
‖ 〈e |g1, . . . , gm where c〉 ‖σ =
‖ 〈e |g2 . . . , gm where c〉 ‖σ1 � . . . � ‖ 〈e |g2 . . . , gm where c〉 ‖σn}

7. ‖ sv([e1, . . . , en]) ‖θ = st(t1) ∧ · · · ∧ st(tn) with Γ ` ‖ e1 ‖θ :: t1, Γ ` ‖ en ‖θ ::
tn

8. ‖ e1 = e2 ‖θ = true if ‖ e1 ‖θ and ‖ e2 ‖θ are the same constant, false other-
wise.

9. ‖ p(e1, . . . , en) ‖θ = p(‖ e1 ‖θ, . . . , ‖ en ‖θ) , with p MiniZinc predefined (that
p is a relational operator or predefined arithmetic function such as >,<,+
. . . ) .

10. Forall, exists constructions:
Let ‖ a ‖θ be [v1, . . . , vn], then:
– ‖ forall(a) ‖θ = v1 ∧ · · · ∧ vn
– ‖ exists(a) ‖θ = v1 ∨ · · · ∨ vn

Thus, the overall idea is simply to evaluate the expressions after replacing the
variables by their values. Now we can define the concept of solution.

Definition 3. Let M be a MiniZinc+model, M = T ;D;A;P ;F ;C;S, with T
the sequence of type extensions declarations, D a sequence of declarations, A a
sequence of assignments, C a sequence of constraints, and S the solve statement.
Let θ be a well-typed substitution forM. Then, we say that θ is a solution ofM
if:

1. For every assignment a in A, ‖ a ‖θ = true.
2. For every constraint constraint c in C, ‖ c ‖θ = true.
3. If S is of the form maximize f (respectively minimize f) then there is no

well-typed substitution σ for M verifying 1) and 2) and such that fσ > fθ
(respectively fσ < fθ)
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Definition 4. Let M be a MiniZinc+model and σ be a well-typed substitution
ofM, then,

σT = {τs(x) 7→ τs(v) | (x 7→ v) ∈ σ} ∪
{τe(x) 7→ τe(v) | (x 7→ v) ∈ σ, Γ ` x :: t, τe(x) 6= zt}

Finally, we can establish the theoretical result.

Theorem 1. A well-typed substitution θ is solution of a MiniZinc+model M
iff θT is well-typed solution ofMT .

Proof Idea
We must check that both θ verifies the three items of Definition 4 with respect

toM iff θT verifies the same Definition with respect toMT .
For items 1 and 2, the result is a consequence of a similar auxiliary lemma

applied to expressions:
For every expression e and well-typed substitution θ:

– ‖ τs(‖ e ‖θ) ‖id = ‖ τs(e) ‖θT

– ‖ τe(‖ e ‖θ) ‖id = ‖ τe(e) ‖θT

where id represents the identity substitution. These results can be proven using
structural induction on the form of e.

Analogously, item 3 requires a generalization of the following result: For
every pair of constants k, k′ of some type t in M k ≤ k′ (with the order <
extended to the new types) iff

τe(k) ∗ (b− a+ 1) + τs(k) ≤ τe(k′) ∗ (b− a+ 1) + τs(k′)

where a and b are respectively the minimum and the maximum constants in the
base type for t. A detailed proof can be found in [2].

7 Conclusions and Future Work

The possibility of extending predefined types with new constants allows the rep-
resentation of many constraint satisfaction problems in a more natural way. Some
examples are models representing circuits including undefined entries (represent-
ing for instance failing connections), database problems including null values,
problems that can be modelled using many-valued logics, or scheduling problems
with optional tasks.8

The system MiniZinc+ presented in this paper extends the constraint system
MiniZinc to include this feature. The modeller can define new types by adding
new constants to already existing types, and redefine accordingly the behaviour
of the predefined operations. We present a model transformation that converts
the models in the new system into a standard MiniZinc model. Thus, all the
8 Although for these scheduling problems there are approaches [7] which support
stronger propagation.

42



facilities included in MiniZinc such as intensional lists, local definitions, sets,
or predicates are available in the new setting.

As future work we plan to allow the possibility of extending already extended
types. The framework will give rise to lattices of extensions and will allow mod-
elling more complex problems.
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Abstract. The container pre-marshaling problem (PMP) is an impor-
tant optimization problem that arises in terminals where containers are
stacked in bays before they are collected by vessels. However, if a due
container is stacked underneath other containers, it is blocked, and ad-
ditional relocations are necessary to retrieve the container from the bay,
which can cause significantly delays. To avoid this effect, the PMP is
concerned with finding a minimal number of container movements that
result in a container bay without blocked containers.
In this paper, we introduce a Constraint Programming (CP) formulation
of the PMP and propose a specialized search heuristic that attempts
to try out the most promising moves first. Furthermore, we present a
robust variant of the problem that considers the uncertainty of the arrival
time of collecting vessels. We show how the robust PMP can be very
naturally formulated using CP and give some preliminary results in an
experimental evaluation.

1 Introduction

Containers are an essential means for transporting large quantities of goods.
The main reason for this is the standardized format of containers through which
containers are transportable by all major means of transportation. This is im-
portant since transporting goods often requires a chain of different transport
modes, such as ship, train or truck. For example, a container that transports
goods from a Chinese factory to a European seller, will most likely first travel
by train from the factory to a harbor, then by ship to Europe, and then by truck
to its final destination.

An important aspect in the transportation chain of containers is the hub
between different modes of transport: the container terminal. Container termi-
nals handle the exchange of containers between different vessels, as well as the
storage of containers until their respective vessel arrives. For illustration, Fig. 1
shows a container terminal for trains and trucks. Since container terminals have
to handle an increasingly large amount of incoming and outgoing vessels, it is
increasingly difficult to manage all the traffic as well as the container storage
within the terminal.
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Fig. 1: Container terminal that operates as a hub for trucks (left) and trains
(right). Containers are stored in several container bays in the center. A gantry
crane moves the containers.

One of the many problems in container terminal optimization is the man-
agement of container bays, in which incoming containers are stored until they
are due for another vessel. A container bay consists of a row of adjacent stacks
in which containers are stacked upon arrival. When a container is due, it is
removed from the bay by the gantry crane. However, due containers are often
blocked by other containers in the stack, which results in additional re-locations
to access the container. This can significantly increase the loading time of a vessel
and cause dramatic (chains of) delays, resulting in displeased terminal clients.
Therefore, terminals pre-marshal their container bays by re-locating containers
to free all blocked containers before incoming vessels arrive. Thus, all containers
in the pre-marshaled bay are directly accessible at their due date.

1.1 Related Work

Pre-marshaling is known to be NP-hard [6] and different solution approaches
have been proposed for tackling it. Among them are dynamic programming [7,
12], corridor method based approaches [7], neighborhood search based meth-
ods [10], greedy heuristics [9], an A∗-search [9], a tree-search based approach [5],
a multi-commodity flow formulation [11] as well as an integer linear programming
approach [11]. However, to the best of our knowledge, no Constraint Program-
ming (CP) approach has been proposed so far for the PMP. In this paper, we
show how the PMP can be formulated and solved using Constraint Program-
ming.
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Fig. 2: Container bay before (a) and after (b) pre-marshaling. Shaded containers
are blocking other containers; lower numbers indicate earlier due dates.

The PMP is only one of several optimization problems arising in container
terminals; we refer to [15–17] for an overview. Furthermore, the PMP is closely
related to the famous Blocks World Problem (BWP) [14] where the objective is
to relocate an initial configuration of blocks into a specific goal configuration. We
want to highlight, however, the differences between the PMP and the BWP [13]:
unlike the BWP, in the PMP the number of stacks, as well as their height, is
limited. Furthermore, in the BWP, the objective is to arrange the blocks in a
pre-specified configuration, while in the PMP, the final configuration is unknown,
but simply characterized by some features.

2 The Pre-marshaling Problem (PMP)

In container terminals, containers are stored in bays that consist of a number
of stacks of maximal height. Every container has a due date at which a vessel
will arrive to collect it. The due time of a container c is typically represented
by priority pc. The smaller the value of pc, the sooner c is due for delivery.
For instance, container with priority pc = 3 is the third container that will
be removed from the bay. Figure 2(a) shows a container bay with 6 stacks of
maximal height 4 that holds 15 containers that are labeled with their priority.

The priority of a container is often not known at its arrival in the bay, there-
fore containers are often stacked randomly. As a consequence, due containers are
often blocked by other containers that are due at a later time. In this case, the
gantry crane has to perform additional relocations, so-called idle strokes, to ‘free’
the blocked container. This can result in a severe overhead in processing time
which can lead to significant (chains of) delays within the terminal. Figure 2 (a)
illustrates a bay with five blocking containers.

The pre-marshaling problem (PMP) is concerned with re-locating containers
in a bay such that every container can be removed at its due date without any
further relocations. More specifically, the PMP deals with finding a minimal
number of container movements that result in a container bay without blocking
containers. Figure 2(b) shows the result of pre-marshaling the container bay
from Figure 2(a).
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2.1 Formal problem formulation

We consider a container bay with S stacks of maximal height H where a set of
containers C are stored. Each container c ∈ C is assigned a priority pc ∈ N that
indicates when the container will be transported from the bay: the smaller pc,
the earlier the container will be stowed into a vessel. If a container c is stored
on top of a container that has a lower priority than c, then c is called a blocking
container. The number of containers with priority c (multiplicity of c) is given
by µ(c).

The initial bay setup is denoted B where Bs,t is the t-th container in the
s-th stack, with (s, t) ∈ S × T and write, Bs,t = 0 if slot Bs,t is empty. A stack
Bs, s ∈ S is said to be valid iff

µs(c) ≤ µ(c), for c ∈ C, (1)

Bs,t = 0⇒ Bs,t+1 = 0, for t ∈ T \ {H} (2)

Thus, a stack is valid if it does not contain more containers of priority c than are
available (Eq. 1) and if a slot at position t is empty, all subsequent slots must
also be. A stack Bs, s ∈ S is called perfect, if it is valid and

Bs,t ≥ Bs,t+1, for t ∈ T \ {H} (3)

holds, i.e. no container in the stack lies underneath a container with higher
priority (no containers are blocked). Furthermore, container bay B is valid, iff

Bs is valid, for s ∈ S (4)∑
s∈S

µs(c) = µ(c), for c ∈ C (5)

thus, if each stack in B is valid (Eq. 4) and for every priority c ∈ C, the bay
contains exactly the number of corresponding containers (Eq. 5). A bay is called
perfect if all stacks are perfect.

The bay can be altered by performing particular moves (actions): the topmost
container from one stack can be moved to the top of another stack. Therefore,
we define the container relocation r = (i, j) as the movement of the topmost
container of stack Bi to the top of stack Bj . A move is valid iff Bi,1 6= 0 and
Bj,H = 0, i.e., at least one container is stored in the i-th stack and the number
of containers in the j-th stack is less than the maximum height.

The aim of the PMP is to find a sequence of moves that transforms the
initial bay B into a bay without blocking containers. Thus, σ = (r1, . . . , rK) is
a solution to the PMP if every move r ∈ σ is valid and σ transforms B into a
perfect bay. A solution σ∗ = (r1, . . . , rK∗) is said to be optimal if K∗ ≤ K for all
valid solutions σ. Let us denote by K = {1, . . . ,K} the set of steps in a solution
and by K0 = K ∪ {0}.

3 A Constraint Model for the PMP

We can easily solve the PMP via Constraint Programming (CP) by iteratively
trying to find a solution with exactly k ≥ 0 container moves, as outlined in
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Algorithm 1: PMP(bay layout B)

Input: initial bay layout B
k ← getLowerBound(B);1

while true do2

σ ← solveDecisionProblem(k,B);3

if σ 6= NIL then4

return solution;5

k ← k + 1;6

Alg. 1. When starting with a lower bound for k and iteratively increasing k if no
solution could be found, the first returned solution provides an optimal solution
for the original PMP formulation. If the lower bound on k is tight, the number of
iterations is kept low. Therefore, we utilize the lower bound computation meth-
ods proposed by Bortfeldt and Forster [5] deriving the lower bound according to
different features of the container bay, such as the number of blocking containers.

Our constraint model is based on an AI planning perspective [3, 2], where we
consider states that can be altered by a limited set of actions (moves). Starting
with an initial state (the initial bay layout), we search for a sequence of moves,
until a desired end state (perfect bay) is reached. In our model, the main decision
variables concern the container bay states.

3.1 Variables

We use two kinds of variables to represent the PMP. First, variables bayk
s,t rep-

resent the bay state after performing move k, with k ∈ K0, 1 ≤ s ≤ W , and
1 ≤ t ≤ H. All variables bayk

s,t range over the domain C0 (set of containers

including the empty slot). Thus, bayK
s,t represents the final bay state and bay0

s,t

corresponds to the initial layout.
Second, we introduce 0-1-variables movek

s,t that indicate whether a container
is moved to the t-th tier of the s-th stack during move k (with 1 ≤ s ≤ W ,
1 ≤ t ≤ H, and k ∈ K).

3.2 Constraints

First, we assign the initial state of the bay, B, to the variables bay0:

bay0
s,t = B[s][t] for (s, t) ∈ S × T (6)

Next we state that no container may disappear or appear twice in a bay after
each move k. More specifically, we state that each priority c must occur as often
as its multiplicity µ(c):∣∣∣{bayk

s,t : bayk
s,t = c

}∣∣∣ = µ(c) for c ∈ C0, k ∈ K (7)
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We implemented Constraint (7) using multiple occurrence constraints. Further-
more, the multiplicity of the empty slot is µ(0) = S∗H− ĉ where ĉ is the number
of containers in the bay. Constraints (8) ensure that unchanged slots stay the
same: all slots that are neither ‘0’ at steps k − 1 and k have obviously not been
changed and must stay the same:

bayk−1
s,t 6= 0 ∧ bayk

s,t 6= 0⇒ bayk−1
s,t = bayk

s,t for (s, t) ∈ S × T , k ∈ K (8)

Since expressing Constraints (8) with standard available (global) constraints
resulted in considerably more, additional variables (and constraints), we decided
to implement a user defined constraint which straightforwardly checks whether
the Constraints (8) are fulfilled. Furthermore, we state that only one container
may be moved in each step k:∑

(s,t)∈S×T

movek
s,t = 1 for k ∈ K (9)

and we link the bay variables with the move variables, i.e. we ensure that the
corresponding move variable is set when a container is moved to a (new) position
in step k.

movek
s,t ≤ bayk

s,t for (s, t) ∈ S × T , k ∈ K (10)

movek
s,t ≤ 1−min

{
1, bayk−1

s,t

}
for (s, t) ∈ S × T , k ∈ K (11)

movek
s,t ≥ min

{
1, bayk

s,t

}
− bayk−1

s,t for (s, t) ∈ S × T , k ∈ K (12)

(13)

Finally, we specify the perfect bay setup by stating that priority of slot t in stack
s has to be less or equal to the priority in slot t− 1.

bayK
s,t ≤ bayK

s,t−1 for (s, t) ∈ S × T \ {1} (14)

Note that this is feasible since we represent empty slots by ‘0’.

3.3 A Specialized Search Heuristic

Variable Selection Search is only performed on the bay variables; the move
variables are set by the constraints. We apply a (semi) static variable ordering
assuring that all variables bayk for step k are instantiated before variables for
step k′ > k are selected. This way we search the bay states step by step. However,
since the value selection (that determines which container to move within the
bay) is dynamic, the variable order within one step k is determined heuristically,
as explained below.

49



Constraint Models for the Container Pre-Marshaling Problem 7

Value Selection A smart value selection heuristic requires some knowledge about
which container move would be beneficial in the current bay state. Therefore,
we employ the heuristic of Bortfeldt and Forster [5] that, given a bay layout,
returns a sorted list of promising movesM, where the potentially best moves are
first in the list. The list M is calculated by classifying moves according to how
they improve or impair the current bay state. For instance, a move that renders
an imperfect stack perfect, is called a bad-good move, since it transforms a bad
into a good state. In the same fashion, good-bad, good-good and bad-bad moves
are defined. Note, that moves that worsen the bay state, good-bad and bad-bad,
are often essential to ‘dig out’ containers and thus reach a solution.

In summary, we compute M for the current state at step k ∈ K, and try
out every move m ∈M, starting with the first (the most promising one). Then,
the selected move m determines which state variable to search on next, as well
as its value. More specifically, we set the state variable of the target position of
the moved container with the container value. This choice sets all other state
variables, which is essential since therefore mainly one variable-value choice is
needed to reach the next step k + 1.

4 A robust variant of the PMP

In real-world settings, the exact arrival time of a vessel is quite uncertain. In
fact, most vessels are expected to arrive within a time window instead of at
an exact time. Since the container priorities in the classical PMP are based
on the scheduled arrival times instead of time windows of vessels (and those
time windows often overlap), the initially expected priority of a container may
differ from the actual priority. Thus, perfect bays that are obtained through the
classical PMP approach are easily rendered imperfect, if the arrival time windows
of vessels are not considered. We therefore aim at finding a sequence of container
moves that produces a final bay setup that is robust concerning expected vessel
delays.

The (expected) arrival time of a vessel can be represented by some probability
distribution, for instance a normal distribution with the scheduled arrival time
as mean and the expected delay as standard deviation. However, we simplify
this notion by considering the arrival time as a simple time window (where the
arrival at any time within the time window has the same probability and thus
represents a uniform distribution). Based on the arrival time window, we can
deduce a priority range for the container that will be collected. More specifically,
a container c has a priority range pc = {al, au} where al is the earliest possible
priority, and au is the latest. For instance, a priority range of pc = {4, 6} denotes
that container cmay be the fourth, fifth or sixth container to be removed from the
container bay. Figure 3 illustrates a bay where for some containers the priorities
are given as ranges.

A stack Bs, s ∈ S is called robust, if it is valid and

p
Bs,t

l ≥ pBs,t+1
u , for t ∈ T \ {H} (15)
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Fig. 3: Container bay where the priorities of some containers are ranges

holds, i.e. the upper bound of the priority of the container at Bs,t+1 that is
stacked upon container Bs,t, has to be smaller or equal to the lower bound of
container c2. We say that the container bay B is robust, iff it is valid and all
stacks are robust.

Please note, that a given container bay with priority ranges may not have a
robust configuration. For instance, consider a 4 × 4 bay with 5 containers that
all have the same priority range 0..5. This bay cannot be altered to a robust
bay configuration, since in some stack, two containers with range {0..5} have to
be stacked over another. Therefore, it can be useful to determine beforehand if
a robust configuration exists, which can be easily formulated using CP. This is
part of our current work.

To the best of knowledge, very little has been investigated into studying
robust or stochastic variants of the pre-marshaling problem. In very recent work,
Borjan et.al. [4] present a mathematical model for the dynamic version of the
Container Relocation Problem (CRP), and also consider uncertainty. The CRP
is very similar to the PMP, where the goal is to additionally empty the bay while
performing relocations.

5 A Constraint Model for the Robust PMP

The constraint model for the robust PMP is based on the PMP model from
Sec. 3. The main difference lies within the notion of container priorities: in the
robust PMP, we consider container priorities as range {lb..ub} where lb < ub and
lb denotes the lower bound of the container’s priority, and ub the upper bound.

Furthermore, we assign a unique id c ∈ {1, . . . , C} to each container. This is
necessary in order to track containers to assure that no container occurs multiple
times or disappears during a move. More specifically, in the PMP model (Sec. 3),
we were able to assure that all containers stay in the bay after each move by
checking the multiplicity of each priority (Constraint (7)). However, in the robust
PMP, priorities are ranges and considering the multiplicity of ranges is much
more expensive. Therefore, we assign a unique id to each container to enhance
modeling.
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The priority range for container c is denoted by pci with i ∈ {l, u} where pcl
is the lower bound, and pcu is the upper bound. Note, that the empty slot ‘0’
has priority p0l = p0u = 0 and containers c with a single priority value v have the
same upper and lower bound pcl = pcu = v.

5.1 Variables

We apply the same set of variables as for the classical PMP (see Section 3.1).
However, the meaning of the bay variables is slightly different: while in the
classical PMP model the domain C of variables bay represented the container
priorities, in the robust PMP its domain represents the container id.

5.2 Constraints

The constraints for the robust PMP are the same as for the classical PMP, with
the exception of the final bay configuration. Therefore, after stating constraints
(6)-(12), we constrain the final bay setup by:

p
bayK

s,t
u ≤ pbay

K
s,t−1

l for (s, t) ∈ S × T \ {1} (16)

More specifically, Constraint (16) states that the upper bound of the priority
range of the container in slot t has to be less or equal than the lower bound
of the container in slot t − 1. This is necessary to avoid an overlap within the
container priority range of two stacked containers. For instance, container c1
with priority range pc1 = {0..4} may not be stacked upon container c2 with
pc2 = {2..9} since the ranges overlap: {0..4} ∩ {2..9} = {2..4}. Therefore, if for
instance, c1’s priority is realized with 3 and c2 with 2, then c1 would block c2.

6 Preliminary Results

We conducted a computational evaluation to assess the performance of the pre-
sented CP models. Note that the CP models were implemented in Java 7 using
the freely available Choco framework [8] version 2.1.5 as CP solver. We first
discuss results for the PMP model and then continue with the robust PMP
model.

6.1 Evaluating the CP Model for the PMP

We compare the PMP model from Sec. 3 to one of the fastest current ap-
proaches [12]: a dynamic program combined with branch-and-bound, denoted
DPBnB. Each approach is given a maximum of 600s computation time to find
an optimal solution for the test instances.

As test instances, we decided to rely on the instance generator provided by
Expósito-Izquierdo et al. [9] via [1]. Unfortunately, the original instances used
in [9] are not publicly available. The instances are grouped into sets according
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DPBnB CP
#solved time[s] #solved time[s]

0
4

x
0
4
0
5
0

001 100 0.03 100 1.79
002 100 0.02 100 0.55
003 100 0.02 100 0.49
004 100 0.02 100 0.43

0
7
5

001 100 0.12 – –
002 100 0.10 51 117.41
003 100 0.06 87 46.96
004 100 0.06 85 26.16

Table 1: Results for solving the PMP on instances with 4 stacks of maximal
height 4 with either 50% or 75% of container coverage and 4 difficulty levels
(001 is the most difficult level).

to the bay size (4 × 4 stands for 4 stacks of maximal height 4), the utilization
rate (either 50% or 75% of the available tiers are filled with containers), and the
difficulty level (1 to 4) that is a rough estimation on how disordered the bays are
(with 1 being the hardest). Each of these sets contains 100 (pairwise different)
instances.

The experiments were carried out on a single core of an Intel R© Core
TM

2 Quad
CPU Q9300 with 2.50GHz and 3GB RAM.

Table 1 documents how often each algorithmic setup reached an optimal solu-
tion, as well as the average computation times (over all 100 instances). Columns
report the number of instances solved to optimality and the average computa-
tion time for each approach; rows represent the set of 100 instances with respect
to their size, coverage rate, and difficulty level.

We observe that the CP model is not yet competitive with the current state
of the art, in particular on dense instances, where the container bay contains a
lot (75%) of containers. While for less dense instances (50% coverage), the CP
model can solve all instances, it only manages to solve 85% of the easiest dense
instances, and for the most difficult level, cannot solve a single instances within
the given time limit.

We believe that one major drawback of the current CP formulation is the lack
of a mechanism (in form of a constraint or search heuristic) that stops search
on bay states that have already been reached (and thus should not be part of
an optimal solution). This is difficult to formulate effectively as a constraint in
CP. However, since the DPBnB approach is able to eliminate these bay states
naturally, we are currently working on an integration of this approach into our
CP model.

6.2 Evaluating the CP Model for the Robust PMP

We conducted some first tests on the robust PMP model from Sec. 5. The in-
stances for the robust PMP are based on the instances for the PMP that we
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instance # moves time [s] nodes backtracks

0 5 0.186 41 66
1 6 0.625 474 933
2 5 0.222 66 116
3 5 0.125 41 51
4 5 0.938 1301 2561

Table 2: Preliminary results for the robust PMP on instances with 50% coverage
and medium difficulty level.

modify: we first randomly assign each container to a vessel (train, truck or ship)
and assign each vessel an arrival time that is reflected by the priority of the
container in the PMP instance. Then we deduce each container’s priority range
by the vessels’ arrival time window. More specifically, we create an arrival time
window for each vessel that is based on a distribution of expected delays.

The experiments were carried out on a single core of an Intel R© Core
TM

i7
CPU M 640 with 2.80GHz and 1GB RAM.

The preliminary results are summarized in Tab. 2 that shows the number of
moves to render the bay perfect, the solving time, as well as some information on
search. We see that we are able to solve these rather small instances quickly, how-
ever, we still need to assess our approach on larger and more complex problem
instances.

7 Conclusions

In this paper, we introduced a new problem to the Constraint Programming com-
munity, the container pre-marshaling problem (PMP). The PMP is concerned
with finding a minimal sequence of container relocations such that the resulting
container bay hosts no blocked containers. Our contributions are two-fold: first,
we present the first constraint model for the PMP and second, we introduce a
robust variant of the PMP and show how the CP model for the PMP can be
easily and naturally extended to the robust formulation.

In an initial experimental evaluation, we assess both constraint models. We
observe that the PMP model is still not competitive and requires enhancement.
In particular, we compare the CP model to a dynamic programming based ap-
proach that represents the current state of the art. Our current (and future)
work is focused on improving the constraint model by integrating features of the
mentioned DP-based approach into the CP model. Some initial experiments on
the robust PMP (for which there are no alternative approaches yet) show good
results on small instances.

For future work, we plan to enhance and extend both our CP models to
render them competitive with existing approaches. Furthermore, we want to
consider alternative formulations and explore alternative solving approaches for
tackling the robust PMP.
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Abstract. We present a new approach for solving Weighted Constraint
Satisfaction Problems (WCSP). The method is based on encoding the
violation cost of soft constraints as a pseudo-Boolean objective function,
and successively calling a decision procedure bounding the maximum al-
lowable cost. The novelty of our approach consists in building a Binary
Decision Diagram (BDD) for the objective function, using state-of-the-
art generalized arc-consistent SAT encodings for it. Moreover, with our
approach we maximize the reuse of the BDDs for the objective function
between successive calls to the decision procedure by creating a shared
BDD. The method has been incorporated into the WCSP solving system
WSimply, based on reformulation into SMT, with preliminary encourag-
ing results.

1 Introduction

A Constraint Satisfaction Problem (CSP) is a decision problem where the goal
is to determine whether an assignment of values to a set of variables exists which
satisfies a given set of constraints. It is usually to find CSPs where, additionally
to determine if there exists a solution for the problem, the possible solution has
to minimize or maximize some objective function. These kind of CSP are known
as Constraint Optimization Problems (COP).

Occasionally, some real-world CSP instances have no solution. In such situ-
ations, we can relax the CSP by allowing the violation of a subset of the con-
straints, and try to maximize the number of satisfied constraints. This CSP
variant is known as Maximum CSP (MaxCSP) [18]. Furthermore, there can ex-
ist preferences over which constraints to violate. A convenient way of expressing
these preferences is by giving a weight to each constraint, denoting its violation
cost. The constraints that can be violated (the ones with a non-infinite weight)
are usually called soft, while those constraints that must be satisfied are called
hard. Then, the objective is to find an assignment which satisfies all hard con-
straints and minimizes the aggregated cost of the violated soft constraints [21].
These problems are known as Weighted CSP (WCSP) [20] or, alternatively, as
Cost Function Networks (CFN) [14].

? Partially supported by the Spanish Ministry of Science and Innovation through the
projects TIN2012-33042, and by the Universitat de Girona under grant BR2010.
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WSimply [4,6] is a language and system for solving intensionally represented
WCSPs by reformulation into Satisfiability Modulo Theories (SMT) [8], namely,
into SAT modulo Linear Integer Arithmetic (LIA). An SMT formula can be seen
as a generalization of propositional Boolean formula, where some predicates have
predefined interpretations from background theories, and any satisfying assign-
ment has to be compatible with those theories. Leveraging the advances made in
SAT solvers in the last decade, SMT solvers have proved to be competitive with
classical decision methods in many areas, and in particular in CSP solving [5,10].
Most modern SMT solvers integrate a SAT solver with decision procedures (the-
ory solvers) for sets of literals belonging to each theory. For example, variations
of the simplex method are used for dealing with LIA predicates. This way, one
can hopefully get the best of both worlds: in particular, the efficiency of the SAT
solver for the Boolean reasoning and the efficiency of special-purpose algorithms
for the theory reasoning.

WSimply benefits from the expressiveness of the SMT language and the per-
formance of current SMT solvers. However, SMT solvers are decision procedures,
and they scarcely support optimization. A few solvers support (weighted par-
tial) MaxSMT [16,15,13], and there is a recent attempt to introduce optimization
into SMT by means of a theory of costs [12]. In WSimply, optimization is imple-
mented by means of successive calls to the decision procedure in several (user
choosable) ways: performing sequential or binary search, or using algorithms
based on unsatisfiable cores like WPM1 [7].

In this paper we extend the WCSP solving capability of WSimply by introduc-
ing a new optimization approach, based on representing the objective function
(generated from the violation cost of the soft constraints) as a BDD [2]. This
allows us to encode the objective function as a pure propositional formula, fol-
lowing the generalized arc-consistent encodings proposed in [1]. This way, we
tighten the link between optimization and the logical structure of the problem,
with the hope of benefiting from crucial capabilities of the underlying solver, such
as conflict driven learning. An interesting aspect of our approach is the reutiliza-
tion of BDDs in successive calls to the decision procedure. Although changing
the bounds of the objective function implies building a new BDD, some parts
can be easily reused. We create a Shared BDD [19], also known in the literature
as Multi-Rooted BDD, keeping all the generated BDDs. This allows not only to
improve the performance of the BDD construction algorithm, but also to keep a
number of learned clauses from the solver, as we reuse the clauses representing
the previous BDDs.

Since the size of BDDs strongly depends on the number of variables involved,
and we use them to represent objective functions encoding the violation cost
of soft constraints, our method is especially well suited for WCSP instances
involving a small number of soft constraints. We provide encouraging preliminary
results on the Soft Balanced Academic Curriculum Problem introduced in [4,6]
and on a WCSP version of the Maximal Density Still Life Problem.

The paper is structured as follows. In Section 2 we introduce the required
background on Weighted Constraint Satisfaction Problems (WCSP). In Sec-
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tion 3 we introduce Pseudo-Boolean constraints and (Reduced Ordered) Binary
Decision Diagrams (ROBDD). In Section 4 we present our method for solving
WCSPs using shared ROBDDs. In Section 5 we study the performance of the
new method and we compare it with the previous ones implemented in WSimply.
Finally, in Section 6 we conclude and propose future work.

2 Solving WCSPs with SMT

The expert reader can skip the first two subsections and directly go to the solving
algorithms described in Subsection 2.3.

2.1 CSPs, WCSPs and COPs

A Constraint Satisfaction Problem (CSP) instance is defined as a triple 〈X,D,C〉,
where X = {x1, . . . , xn} is a set of variables, D = {d(x1), . . . , d(xn)} is a set of
domains containing the values the variables may take, and C = {C1, . . . , Cm} is
a set of constraints. Each constraint Ci = 〈Si, Ri〉 is defined as a relation Ri over
a subset of variables Si = {xi1 , . . . , xik} (called the constraint scope) which spec-
ifies the allowable combinations of values for that subset. Usually, the relation
Ri is represented intensionally as a condition that the assignments to the vari-
ables must satisfy (e.g., x1 < x2). An assignment v for a CSP instance 〈X,D,C〉
is a mapping that assigns to every variable xi ∈ X an element v(xi) ∈ d(xi).
An assignment v satisfies a constraint 〈{xi1 , . . . , xik}, Ri〉 in C if and only if
〈v(xi1), . . . , v(xik)〉 ∈ Ri. A solution to a CSP instance is an assignment to its
variables that satisfies all the constraints. The Constraint Satisfaction Problem
for a CSP instance consists in finding a solution for that instance.

A weighted CSP (WCSP) instance is a triple 〈X,D,C〉, where X and D
are variables and domains, respectively, as in a CSP. A constraint Ci is now
defined as a pair 〈Si, fi〉, where Si = {xi1 , . . . , xik} is the constraint scope and
fi : d(xi1)×· · ·×d(xik)→ N∪{∞} is a cost (weight) function that maps tuples
to its associated cost (a natural number or infinity). Forbidden tuples receive in-
finite cost. The cost of a constraint Ci induced by an assignment v in which the
variables of Si = {xi1 , . . . , xik} take values bi1 , . . . , bik is fi(bi1 , . . . , bik). A solu-
tion to a WCSP instance is an assignment to its variables which makes the sum
of the costs of the constraints minimal. The Weighted Constraint Satisfaction
Problem for a WCSP instance consists in finding a solution for that instance.

In this paper we assume to deal with weighted constraints (c, w(c)), where c
is a constraint as defined for a CSP and w(c) is the cost corresponding to its fal-
sification, which can be a natural number or infinity. Note that this corresponds
to an intensional formulation of the definition of cost function given above. We
call those constraints whose associated cost is infinity hard, if otherwise soft.
In this setting, the cost of a variable assignment corresponds to the sum of all
weights of the constraints that are violated under the assignment.

A Constraint Optimization Problem (COP) instance consists of an optimiza-
tion variable O matched to an objective function to be minimized (or maximized)
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subject to the constraints of a CSP instance 〈X,D,C〉 where O ∈ X. A solu-
tion to a COP instance is a solution to the CSP instance that minimizes (or
maximizes) the value of the optimization variable O.

2.2 SMT and Weighted SMT

A Satisfiability Modulo Theories (SMT) instance is a generalization of a Boolean
formula in which some propositional variables have been replaced by predicates
with predefined interpretations from background theories such as, e.g., linear
integer arithmetic. For example, a formula can contain clauses like p ∨ q ∨ (x+
2 ≤ y) ∨ (x > y + z), where p and q are Boolean variables and x, y and z
are integer variables. A solution to an SMT instance is an assignment that
satisfies the formula. Predicates over non-Boolean variables, such as linear integer
inequalities, are evaluated according to the rules of a background theory [8]. As
in the CSP case, we can extend SMT to weighted SMT (WSMT) as follows.

A weighted SMT clause is a pair (C,w), where C is an SMT clause1 and w is
a natural number or infinity (indicating the penalty for violating C). A weighted
SMT formula is a multiset of weighted SMT clauses

{(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}

where the first m clauses are soft and the last m′ clauses are hard. The optimal
cost of a formula is the minimal cost of all its assignments. An optimal assignment
is an assignment with optimal cost. The WSMT problem2 for a WSMT formula
is the problem of finding an optimal assignment for that formula.

2.3 Solving WCSPs

Now we describe the reformulations and solving procedures of WSimply that are
relevant for the present work. We remark that in this paper we assume that costs
of soft constraints are constant natural numbers.3

The input of WSimply is a WCSP instance written in the WSimply language
(we refer the reader to [9,6] for details). This is reformulated (according to a
command line option indicating the solving method) either as a COP or as a
WSMT instance:

– When reformulating a WCSP instance into a COP instance, each soft con-
straint Ci with weight wi is replaced by the following constraints:

Ci → (oi = 0) (1)

¬Ci → (oi = 1) (2)

1 In fact these can be general SMT formulas, not necessarily disjunctions of literals.
2 In the literature the weighted SMT problem is also referred to as weighted MaxSMT,

same as in the SAT formalism. We prefer to talk about WSMT because it is closer
to WCSP.

3 In WSimply costs can be defined by a linear integer arithmetic expression.
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where oi is a fresh (pseudo-Boolean) variable reifying the violation of Ci.
Secondly, the objective function is defined by introducing a fresh integer
variable O to be the aggregation of violation costs, with the constraint:

O =
m∑
i=1

wi ∗ oi (3)

The variable O is the variable to be minimized in the resulting COP. Original
hard constraints are kept without modification.

– The reformulation of a WCSP instance into a WSMT instance is trivial: each
soft constraint Ci with weight wi is replaced by the WSMT clause (C ′i, wi)
where C ′i is the translation of Ci into SMT as described in [9] (recall that
our method is based on translation of CSPs into SAT modulo linear integer
arithmetic). Finally, hard constraints are replaced by their equivalent hard
SMT clauses.

Once the WCSP instance has been reformulated, the system can solve it by
means of one of three methods, called yices, core and dico respectively. The
two first methods allow to solve WSMT instances, while the last one allows to
solve COP instances:

– The yices method uses an algorithm that performs a sequence of satisfiabil-
ity checks until the optimum is found. It is the default Yices [16] algorithm
for solving WSMT (WSimply is built on top of Yices). This algorithm is not
exact since Yices defines a maximum number of iterations for the search.4

We are not aware of any document describing the procedures used there.
– The core method is an implementation, introduced in [6], of the core based

WPM1 algorithm [7] from the MaxSAT field.
– In the dico method, the system first translates the constraints of the COP

into SMT formulae, and then incrementally calls an SMT solver, bounding
the optimization variable O by adding the unit clause O ≤ K, where K is an
integer constant determined by the system using binary search. Note that
bounding the objective function of a COP which encodes a WCSP instance,
where the weights of soft constraints are natural numbers, results into a
pseudo-Boolean constraint (see Section 3).

3 SAT Encodings of Pseudo-Boolean Constraints using
BDDs

Pseudo-Boolean (PB) constraints [11] are constraints of the form a1x1 + · · · +
anxn # K, where the ai and K are integer coefficients, the xi are pseudo-
Boolean (0/1) variables, and the relation operator # belongs to {<,>,≤,≥,=}.
For our purposes we assume that # is ≤ and that the ai and K are positive.
Under these assumptions, these constraints are monotonic (decreasing) Boolean

4 http://yices.csl.sri.com/language.shtml
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functions C : {0, 1}n → {0, 1}, i.e., any solution for C remains a solution after
flipping input values from 1 to 0.

A typical data structure to represent Boolean functions is a Binary Decision
Diagram (BDD), which consists of a rooted, directed, acyclic graph, where each
non-terminal (decision) node corresponds to a Boolean variable x and has two
child nodes with edges representing a true and a false assignment to x, respec-
tively. We talk about the true child (resp. false child) to refer to the child node
linked by the true (resp. false) edge. Terminal nodes are called 0-terminal and
1-terminal, representing the truth value of the formula for the assignment lead-
ing to them. A BDD is called ordered if different variables appear in the same
order on all paths from the root. A BDD is said to be reduced if the following
two rules have been applied to its graph until fixpoint:

– Merge any isomorphic subgraphs.
– Eliminate any node whose two children are isomorphic.

A Reduced Ordered Binary Decision Diagram (ROBDD) is canonical (unique)
for a particular function and variable order. Figure 1 and Figure 2 illustrate,
respectively, a BDD and a ROBDD for the same PB constraint.

x1

x2

x3 x3

x2

x3 x3

01

0 1

0 1 0 1

0

1 0

1

0

1

0

1

2x1 + 3x2 + 4x3 ≤ 7

3x2 + 4x3 ≤ 7 3x2 + 4x3 ≤ 5

4x3 ≤ 7 4x3 ≤ 4 4x3 ≤ 5 4x3 ≤ 2

Fig. 1. BDD for 2x1 + 3x2 + 4x3 ≤ 7.

There exist several BDD-based approaches for reformulating PB constraints
into SAT clauses [17]. We focus on the recent work of [1], that proposes a simple
and efficient algorithm to construct ROBDDs and a corresponding Generalized
Arc Consistent (GAC) SAT encoding for monotonic Boolean functions.

A key point of that ROBDD construction algorithm is the reuse of BDDs,
which is sustained by the so-called concept of PB intervals. Therefore, first of
all we define the concept of PB interval. Let C be a constraint of the form
a1x1 + · · ·+ anxn ≤ K. The interval of C is the set of all integers M such that
the constraint a1x1 + · · ·+anxn ≤ M , seen as a Boolean function, is equivalent
to C (i.e., that the corresponding Boolean functions have the same truth table).
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Fig. 2. ROBDD for 2x1 + 3x2 + 4x3 ≤ 7.

For instance, the interval of 2x1 +3x2 +4x3 ≤ 7 is [7, 8] since, as no combination
of coefficients adds to 8, we have that the constraint 2x1 + 3x2 + 4x3 ≤ 7 is
equivalent to 2x1 + 3x2 + 4x3 ≤ 8. Since each node in a BDD represents a PB
constraint, we can naturally overload the notion of interval and refer also to
intervals of nodes.

The algorithm of [1] is a dynamic, bottom up BDD construction algorithm,
which keeps the BDD intervals corresponding to the already visited nodes in
layers: for a given variable ordering of a PB constraint, say x1, x2, . . . , xn, a list
of layers L = L1, . . . , Ln+1 is created. A layer Li is a set of pairs of the form
([β, γ],B), where B is the ROBDD of the constraint aixi + · · ·+ anxn ≤ K for
every K ∈ {β..γ}. These intervals are used to detect if some needed ROBDD has
already been constructed. That is, if for some node at level i, the ROBDD for
the constraint aixi + · · ·+ anxn ≤ K is needed for a given K, and K belongs
to some interval already computed in layer Li, then the same ROBDD can be
used for this node. It is important to recall here that ROBDDs are unique for a
given function and variable ordering.

The algorithm first initializes each layer Li, with i in 1..n+ 1, with the pairs
((−∞,−1],0) and ([

∑n
j=i aj ,∞),1). The ROBDD construction procedure has

the following parameters: a PB constraint aixi + · · · + anxn ≤ K, the list of
layers L and an index i denoting the current layer.

For instance, following the example of 2x1 + 3x2 + 4x3 ≤ 7, the algorithm
initializes L with:

L1 =
{

((−∞,−1],0), ([9,∞),1)
}

L2 =
{

((−∞,−1],0), ([7,∞),1)
}

L3 =
{

((−∞,−1],0), ([4,∞),1)
}

L4 =
{

((−∞,−1],0), ([0,∞),1)
}

Then, the construction procedure is called with 2x1 + 3x2 + 4x3 ≤ 7, the list of
layers L, and index 1.

The first step of the construction procedure consists in searching in layer Li

if there exists a ROBDD B for the current K, i.e., if a pair ([β, γ],B) with K ∈
{β..γ} exists in Li. If so, the existing pair is returned, otherwise the procedure is
recursively called for the two descendants increasing the index layer to i+ 1 and
updating the K of the true child to K − ai. Once the two descendants’ ROBDD
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are returned a new pair for the layer Li is created. If the two returned ROBDDs
are different, the B of the new pair will be a new ROBDD created from them,
otherwise B will be the returned ROBDD of the children.

Following our example, the algorithm recursively calls the construction pro-
cedure for the two descendants with the parameters:

– True child: 3x2 + 4x3 ≤ 5, L and 2
– False child: 3x2 + 4x3 ≤ 7, L and 2

Since the two returned ROBDDs are different, the algorithm creates a new
ROBDD B1 with pair [7, 8], which will be inserted into L1, resulting in:{

((−∞,−1],0), ([7, 8],B1), ([9,∞),1)
}

With the ROBDD constructed, we only have to encode it to SAT. As usual,
the encoding introduces an auxiliary variable for every node. Let v be a node
with selector variable x and auxiliary variable n. Let f be the variable of its false
child and t be the variable of its true child. We only need to add two clauses per
node:

f̄ → n̄ t̄ ∧ x→ n̄

and a unit clause with the variable of the 1-terminal and another one with the
negation of the 0-terminal. Finally, we only have to add a unit clause forcing the
variable of the root node to be true. This encoding is GAC.

Additional details of the BDD construction or the SAT encoding can be found
in [1].

4 Solving WCSPs using Shared ROBDDs

As we have seen in Subsection 2.3, we can use a PB constraint to encode the
objective function of a COP (possibly resulting from a WCSP). Moreover, we
can use a ROBDD to represent this PB constraint and then encode it into SAT,
as a GAC formula.

Our WCSP solving method consists in reformulating a WCSP into a COP,
written in the SMT language, and solving the optimization problem by itera-
tively calling an SMT solver with the problem instance together with successively
tighter bounds for the objective function. This is accomplished by adding the
SAT encoding of the (tighter) PB constraints representing the objective function.

The fact of constructing ROBDDs to represent the PB constraints, using
the same variable ordering and the same coefficients (we only change the K),
may lead to have isomorphic subgraphs between ROBDDs. When multiple BDDs
have isomorphic subgraphs they can be joined into a single Shared BDD (SBDD),
that is, a BDD with several roots [19].

The key point of our solving method is to construct a SBDD, in our case a
Shared ROBDD (SROBDD), using the ROBDD construction method presented
in Section 3. Note that when the ROBDD construction procedure finishes, in L
we will have all the ROBDD nodes, with their corresponding intervals. Using
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Fig. 3. ROBDDs and intervals for 2x1 + 3x2 + 4x3 ≤ 7 (top left), 2x1 + 3x2 + 4x3 ≤ 3
(top right), 2x1 + 3x2 + 4x3 ≤ 5 (bottom left) and 2x1 + 3x2 + 4x3 ≤ 4 (bottom right),
illustrating the reuse of previous ROBDDs.

these pairs during the creation of all new constraints to bound the objective
function, it is possible to create a SROBDD.

Figure 3 shows the evolution of the SROBDD representing the bounding
constraint 2x1 + 3x2 + 4x3 ≤ K, for K = 7 (sat), K = 3 (unsat), K = 5 (sat)
and K = 4 (sat).

4.1 Optimization algorithm

Algorithm 1 describes our new WCSP solving method. First of all, we reify
the soft constraints, we create a formula ϕ with the reified soft constraints to-
gether with the hard constraints, and check the satisfiability of ϕ. The function
SMT algorithm returns a tuple with the satisfiability (st) of ϕ and, if satisfiable,
a model (M) of ϕ. If ϕ is unsatisfiable then the problem does not have any solu-
tion. Otherwise, we use the solution found to compute an upper bound ub of the
objective function by aggregating the weights of the violated soft constraints,
and set the lower bound lb to −1.
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Algorithm 1 Binary Search Algorithm using Shared ROBDD

Input: ϕs = {(C1, w1), . . . , (Cn, wm)} , ϕh = {Cm+1, . . . , Cm+m′)}
Output: Cost of ϕs ∪ ϕh or UNSAT
ϕ← ϕh ∪ reif soft(ϕs)
(st,M)← SMT algorithm(ϕ)
if st = UNSAT then

return UNSAT
else
ub← sum({wi | (Ci, wi) ∈ ϕs and Ci is falsified in M})

end if
lb← −1
L ← init layers(ϕs)
while ub > lb+ 1 do
K ← b(ub+ lb)/2c
([β, γ],B)← construct ROBDD(ϕs,K,L)
root← BDD2SAT(B, ϕ)
ϕ← ϕ ∪ root
(st,M)← SMT algorithm(ϕ)
if st = UNSAT then
lb← γ
ϕ← (ϕ \ root) ∪ ¬root

else
ub← min(β, sum({wi | (Ci, wi) ∈ ϕs and Ci is falsified in M}))

end if
end while
return ub

Before starting a binary search procedure, we initialize the list of layers L
using the objective function, i.e., the weights of the soft constraints ϕs, as we
have explained Section 3.

In the first step of the while statement, we determine a new tentative bound
K for the objective function. Then, we call the ROBDD construction method
described in Section 3, with the set of soft clauses ϕs, K and L, being this
last an input/output parameter. This way, L will contain the SROBDD with
all the computed ROBDDs, and may be used in the following iterations of the
search, significantly reducing the construction time and avoiding the addition
of repeated clauses. This procedure returns the ROBDD B representing the
objective function for the specific K in the current iteration.

In the next step we call the BDD2SAT procedure, which generates the SAT
clauses from B, as explained in Section 3, but only for the new nodes. Then
the procedure inserts these clauses into ϕ and returns the auxiliary variable
associated to the root node of B. This variable is inserted into ϕ as a unit clause
to effectively force that the objective function has to be less or equal than K.

At this point we call the SMT solver to check the satisfiability of ϕ. If ϕ
is satisfiable we can keep all the learned clauses. Otherwise, we only have to
remove the unit clause for the root node. This way, we will only remove the
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learned clauses related to this unit clause. In addition, we add a unit clause with
the negation of the root node variable, stating that the objective function is not
less or equal than K, i.e., it has to be greater than K.

Finally, we update the bounds of the search using the interval [β, γ] of B:

– If ϕ is unsatisfiable: lb = γ
– If ϕ is satisfiable: ub = min(β, sum({wi | (Ci, wi) ∈ ϕs, Ci = false}))

Note that, thanks to the intervals, in fact we are checking the satisfiability of the
PB constraints for several values at the same time and, hence, we can compute
more refined bounds.

Since we have the invariant that the lower bound always corresponds to an
unsatisfiable case, while the upper bound corresponds to a satisfiable case, when
ub = lb+ 1 we are done.

5 Benchmarking

In this section we compare the performance of our new solving method to that
of the methods already existing in WSimply. In particular, we use the following
two problems (and some variants of them) for benchmarking:

– A softened version of the well-known Balanced Academic Curriculum Prob-
lem (BACP), the so-called Soft BACP (SBACP) [4,6]. In the BACP, a num-
ber of courses have to be scheduled in a limited number of periods, balancing
students’ load, and satisfying some prerequisite constraints between courses.
In the SBACP the number of periods is reduced until all instances become
unsatisfiable due to the prerequisites chain, and then the prerequisite con-
straints are considered to be soft. We use the five variants of the SBACP
presented in [4,6] for this performance study.

– The Maximal Density Still Life Problem (Still Life) is to place the maximum
number of live cells in a given board, so that the board configuration is
stable under the Conway’s Game of Life. We have translated this COP into
a WCSP written in WSimply. We have considered the three harder variants
of the problem found in the benchmarks folder of the MiniZinc distribution.5

This COP is well-suited for our purposes because it has a PB optimization
function.

Experiments have been run on an Intel R© CoreTM i5 CPU@2.66GHz, with
3GB of RAM, under 32-bit openSUSE 11.2 (kernel 2.6.31). We use WSimply

with the API of the Yices 1.0.33 [16] SMT solver, with a cutoff of 600 seconds
per run. By calling Yices through its API, we are able to keep learned clauses
from previous calls that are still valid.

Table 4 shows the aggregated time per problem variant and solving method.
We consider the solving methods yices, core and dico, already described in
Subsection 2.3, plus the new method using SROBDDs, with two different variable

5 http://www.minizinc.org/
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orderings: sbdd≤ where variables in the BDD are ordered from small (root) to
big (leaves) coefficients, and sbdd≥ where variables are ordered from big (root)
to small (leaves) coefficients.

# dico yices core sbdd≤ sbdd≥
sbacp 28 95.95 58.94 394.48 (15 t.o.) 12.79

sbacp h1 28 5.68 13.28 544.22 (12 t.o.) 5.99

sbacp h2 28 32.01 35.05 1128.93 (13 t.o.) 10.68

sbacp h2 ml2 28 344.95 153.40 114.29 (19 t.o.) 126.35 94.30

sbacp h2 ml3 28 866.63 741.48 59.42 (24 t.o.) 145.76 258.32

still life 10 160.87 (1 t.o.) 382.76 (1 unk.) 0.87 (4 t.o.) 269.64

still life free 10 553.95 (2 t.o.) 553.33 (3 unk.) 46.86 (3 t.o.) 126.28

still life no border 10 296.77 (1 t.o.) 407.96 (1 unk.) 0.57 (4 t.o.) 220.74

Fig. 4. Aggregated times in seconds for the solved instances of the 5 variants of the
SBACP and the 3 variants of Still Life. The column # indicates the number of instances
per set. The indication (n t.o.) refers to the number of unsolved instances, with a cutoff
of 600s per instance. The indication (n unk.) refers to the number of instances for which
the solver returned unknown.

In the first three variants of the SBACP and in the Still Life sets, the sbdd≤
and sbdd≥ methods are the same because the coefficients are 1 for all variables
of PB constraints (with an average of 67 variables per PB constraint in the
SBACP and of 30 in Still Life).

In the last two variants of the SBACP the coefficients are different. In the
sbacp h2 ml2 set, PB constraints have an average of 312 variables, with coeffi-
cients 1 and 246, while in the sbacp h2 ml3 set, PB constraints have an average
of 332 variables, with coefficients 1, 21 and 5166. In both cases the coefficients are
stratified, for example, in the sbacp h2 ml2 set, PB constraints have an average
of 245 variables with coefficient 1 and 67 variables with coefficient 246.

In these two latter sets of instances of the SBACP, the two distinct variable
orderings for constructing the BDDs result into alternated best performance be-
tween sbdd≤ and sbdd≥. In any case, our new solving method with SROBDDs
is clearly the best for all sets of instances (except for sbacp h1 ), the improve-
ment being even clearer in the hardest sets, sbacp h2 ml3 and still life free. It is
worthy to notice that in still life free, dico gives two time outs while yices three
unknowns (recall that the Yices MaxSMT solver is non exact and incomplete).

Finally, the core method has really bad performance for these kind of prob-
lems. This is probably due to the bad quality of the cores found during the
solving process.

We also provide particular comparisons between the sbdd≤ and dico meth-
ods, and between the sbdd≤ and yices methods. Figure 5 shows the comparison
for all the 140 (28× 5) instances of the SBACP variants, where sbdd≤ is able to
solve 104 instances in less time than yices (left), and 100 instances in less time
than dico (right).
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Figure 6 shows the comparison for all the 30 (10 × 3) instances of the Still
Life variants, where the sbdd≤ method is able to 19 instances in less time than
yices, and yices cannot find a solution in 5 instances (left), and the sbdd≤
method is able to solve 23 instances in less time than dico (right).
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Fig. 5. Scatter plot of the solving times (in seconds) of the sbdd≤ and yices methods
(left), and of the sbdd≤ and dico methods (right), for the 140 (28 × 5) instances of
the SBACP. The sbdd≤ method solves 104 instances in less time than yices, and 100
in less time than dico.
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Fig. 6. Scatter plot of the solving times (in seconds) of the sbdd≤ and yices methods
(left), and of the sbdd≤ and dico methods (right) for the 30 (10× 3) instances of Still
Life. The sbdd≤ method solves 19 instances in less time than yices, which moreover
cannot find a solution for 5 instances (marked with a triangle). The sbdd≤ method
solves solves 23 instances in less time than dico.
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We have tried to figure out where is the gain in efficiency when using BDDs
to deal with the objective function. Therefore, we have analyzed the time spent
per iteration due to SROBDD construction, clauses assertion and satisfiability
checking in the sbdd≤ method, which in general is the best solving method.

Since Still Life instances have in average 30 variables in the PB constraint
representing the bound of the objective function, all of them with coefficient 1,
and we do binary search when seeking for the optimum, the number of iterations
of the solving algorithm is at most 6 for these sets. A similar behavior appears
for the three first sets of instances of the SBACP. For this reason, we only
illustrate the time analysis for the sbacp h2 ml2 and sbacp h2 ml3 sets, in which
the variables of the PB constraint have bigger coefficients, resulting in an average
of 13 and 16 iteration steps respectively. Moreover, to see how useful is the usage
of shared BDDs we have also computed the average percentage of node reuse in
the construction of the new SROBDD per iteration.

Figure 7 has two plots showing this analysis for the sbacp h2 ml2 set (top)
and the sbacp h2 ml3 set (bottom). As we can see, the majority of the time is
spent in clauses assertion (this is the difference between the total time and the
others). However, between iterations 5 and 9, in both sets, node reuse raises from
15% to almost 90% and therefore, the clauses assertion time strongly decreases.
Naturally, at the same iterations we can appreciate a decrease on the total solving
time, which in the last five iterations turns to be (nearly) just the time to check
the satisfiability of the instance.

The node reuse behavior is similar for the rest of the instances of the SBACP
and of Still Life, where the coefficients of the variables are always 1, making the
BDDs very reusable. The only exception with respect to reuse is in the sbdd≥
method, which has a high node reuse percentage in the sbacp h2 ml2 set (being
fairly better than the sbdd≤ method on the same set) and a low node reuse
percentage in the sbacp h2 ml3 set. This can be appreciated in Table 4, where
sbdd≤ and sbdd≥ swap their performance. We want to remark that, for the
sbacp h2 ml3 set, the size of the first constructed ROBDD is very similar for
both the sbdd≤ and sbdd≥ methods, with an average of 10395 nodes and an
average of 11411 nodes, respectively. But the final SROBDD has in average 66128
nodes for sbdd≤ and of 146791 nodes for sbdd≥. Clearly, an important aspect
to study in the future is how to find a good variable ordering for the objective
function in order to get a highly reusable SROBDD.

6 Conclusions and future work

We have presented a new WCSP solving method, implemented in the WSimply

system, based on using SROBDDs to generate SAT clauses representing the ob-
jective function. Although this is a preliminary work, we have shown that the new
method clearly outperforms the previous WSimply solving methods on the two
tested problems. In addition, we have shown how to boost the ROBDD genera-
tion for objective functions taking advantage of previously generated ROBDDs,
more precisely constructing a SROBDD.
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Fig. 7. Average of the percentage of SROBDD reused nodes per iteration (dashed
line), aggregated SROBDD construction time (blue cross line), aggregated SROBDD
construction time plus aggregated check time (red circle line) and aggregated total time
(black triangles line) for the sbacp h2 ml2 set (top) and the sbacp h2 ml3 set (bottom).

As future work we want to study more deeply the efficiency of our method
on other weighted constraint satisfaction problems and compare it with state-of-
the-art WCSP solvers like toulbar2 [3]. Also, as pointed out, an important aspect
to study is how to find a good variable ordering for the objective function. Al-
though the problem of finding the optimal variable ordering in order to generate
a minimal BDD is known to be NP-hard, we are interested in finding a variable
ordering that maximizes the node reuse through iterations. Another aspect that
could be interesting to explore is to extend the new method to deal with objec-
tive functions with (finite domain) integer variables, using Multi-valued Decision
Diagrams (MDDs) to represent them. Finally we also would like to check the
efficiency of our new method on weighted MaxSAT and MaxSMT instances.
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Eichberger. A New Look at BDDs for Pseudo-Boolean Constraints. Journal of
Artificial Intelligence Research (JAIR), 45:443–480, 2012.

2. S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
27(6):509–516, June 1978.

3. D. Allouche, S. de Givry, and T. Schiex. Toulbar2, an open source exact cost
function network solver. Technical report, INRIA, 2010.
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Abstract. Maintenance planning of heavy trucks at Scania is presently
done using static cyclic plans where each maintenance occasion contains
a fixed set of components. Using vehicle operational data gained from
on-board sensors we will be able to predict at which intervals each com-
ponent needs to be maintained. However, dynamic planning is needed
to take this new knowledge into account. Another benefit using dynamic
planning is that vehicle owners can influence maintenance plans with re-
gard to their business. For this reason we have implemented a prototype
of an automated maintenance planner based on constraint programming
techniques. The planner has successfully been tested on vehicles belong-
ing to Scania’s internal haulage contractor. In this paper we will describe
the planner and what we have learned using and developing it as well as
ongoing work on how the planner will be developed further.

1 Introduction

Scania Commercial Vehicles (Scania) is a manufacturer of heavy trucks, coaches
and engines for industrial and marine usage. This paper is concerned with Sca-
nia’s ongoing effort of improving its maintenance service offer. Better mainte-
nance planning is beneficial for the customers because they can utilize their Sca-
nia products in a more efficient manner and it makes Scania more competitive.
To achieve better maintenance planning, we have developed a new maintenance
planner that uses constraint programming techniques.

Customers are currently offered services such as Repair and Maintenance
Contracts enabling the customer to fixate the operating costs of the vehicle
[12]. When the vehicle manufacturer has full responsibility for vehicle repair and
maintenance, the cost of the repair and maintenance contract can be reduced by
customizing the maintenance planning for each individual vehicle. To achieve this
customization, more information regarding the current and predicted status of
the vehicle is needed. This information can be obtained by employing techniques
for Integrated Vehicle Health Management (IVHM) which is an area interested
in improving the safety, availability and reliability of vehicles [1, 7].

Using vehicle operational data gained from on-board sensors we can predict
when and how often a component needs to be maintained. The components’
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individual maintenance requirements make it possible to create more efficient
maintenance schedules than using the present scheduling method where, three
modules consisting of fixed sets of components are scheduled for maintenance
with a preset periodicity [11]. The maintenance of an individual component is re-
ferred to as a maintenance point. When the maintenance points can be scheduled
freely with irregular periodicity, the task of creating an efficient maintenance plan
becomes too difficult for a human planner and there is need for an automated
planner.

As a Proof of Concept (PoC), we have implemented a maintenance planner
prototype using finite domain constraint programming techniques and evaluated
it on the haulage contractor responsible for driving goods to Scania’s factories
with promising results. We will also report ongoing work with the next generation
of the maintenance planner based on the lessons learned from the PoC with the
haulage contractor.

2 The Problem

A customer that utilizes a Repair and Maintenance contract wants to maximize
the availability of the vehicle and Scania as an issuer of the contract wants to
minimize the maintenance costs. Downtime is when the vehicle is intended for use
but not available. This time is costly for the customer because of loss of profit. We
want a maintenance plan where each component is maintained sufficiently often
to prevent components from breaking down and that has minimal interference
with the vehicle’s intended use. The customer cost of a maintenance plan is
dependent on the downtime, the number of maintenance occasions, the part
costs, and the time spent at the workshop.

The maintenance need of a component depends on how the vehicle is operated
by the owner. A vehicle that is operating with heavy loads may need oil changes
more frequently than one that is operating with lighter loads. The better we
can predict wear, the more correct maintenance intervals we can use for each
component. The vehicle has an internal network of connected computers for
controlling functions in the vehicle. The computers collect data about the vehicle
which can remotely be sent to a central server for further processing with the
purpose of computing the required maintenance intervals.

The inputs to the maintenance planner are the maintenance point intervals
of each component and optional user preferences in form of when maintenance
can be done and when it cannot be done. The output is a maintenance schedule
listing the dates for each maintenance occasion and, for each occasion, a list of
components that should be maintained, see Figure 1.

3 Current Solution

Today the maintenance plan for a vehicle is set when the vehicle is sold. This is
typically done by the seller together with the buyer by selecting one of a set of
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Fig. 1. Inputs and outputs of the maintenance planner.

predefined maintenance plans that best matches the vehicle specifications and
the buyers intended usage.

The predefined maintenance plans are developed and maintained by skilled
personnel having knowledge about both the products and the customer’s usage.
Vehicle usage is divided into six typical applications types. For each application
type and vehicle specification, a cyclic maintenance plan is given as the number
of kilometers between maintenance occasions with fixed maintenance protocols.
Maintenance is always done in a cycle of S-M-S-L occasions, where S = Small,
M = Medium, and L = Large are different maintenance modules for maintaining
different sets of components.

There are a number of problems with the way maintenance plans are created
today:

– Much responsibility is put on the salesperson to know the product as well
as the customer’s usage of the product.

– Once created the plans are seldom updated even if the application of the
vehicle changes. Thus, it is possible that the maintenance a vehicle receives
does not correspond to its needs.

– Although the fixed S, M, and L modules make it convenient to plan, they
contain maintenance points that do not need to be grouped together with
the effect that components are maintained more than necessary.

– The current maintenance plans are coarse in the sense that the precision in
the type of application must be fitted into one of the six types of application.
Therefore the experts dictating when maintenance ought to be done, use a
safety margin given the uncertainty of the actual usage of a particular vehicle.
This has the consequence that plans are not individualized to the degree that
they could be.

4 An Automated Maintenance Planner

We have used Constraint Programming to create an automated maintenance
planner which has been installed and used by two workshops servicing 20 ve-
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hicles belonging to the Scania Transport Laboratory which is a Scania-owned
transport company responsible for transporting goods between Scania’s factories
in Europe.

4.1 Motivation

The work load of the trucks is high and usage of around 16 hours a day is
not unusual. To avoid interference with the daily operation of the trucks, a
requirement from the fleet planner was that the trucks could only be maintained
every forth week for a maximum of four hours. Such requirements together with
previously mentioned goals of minimizing maintenance costs and offering better
services to customers was the main driving force for developing this maintenance
planner. The prototype was created to gain knowledge of how a solution could
be implemented and what aspects are critical for Scanias customers.

The planning problem is too complex to be solved manually. We therefore
chose to formulate the problem as a constraint satisfaction problem because
many of the requirements on the plan are naturally translated into constraints
and also because Constraint Programming techniques has historically been suc-
cessful for applications similar to this. For example see [10, 8, 5, 2, 6].

4.2 Formulation of the Constraint Satisfaction Problem

The maintenance planning of a single vehicle is formulated as an independent
Constraint Satisfaction Problem (CSP). A solution is a plan for all maintenance
points with a resolution of one week and a limited horizon. In the Scania Trans-
port Laboratory PoC each vehicle had around 80 maintenance points that needed
to be scheduled 52 weeks ahead.

Each variable in the CSP corresponds to a maintenance point that needs to
be scheduled in time. Where the Dmi refers to the domain of the i:th mainte-
nance point. The latest completion time (lct) of a maintenance point refers to
its calculated maintenance interval. To reduce the solution space, a constraint
is added that dictates the minimum maintenance interval of each maintenance
point, i.e. earliest start time, (est). The est is user defined and typically between
one third to half of the calculated maintenance interval as shown in equation 1.
This also ensures an offset between two maintenance occasions are no closer than
the est. In all equations, I refer to the set of maintenance point variable indexes.

EarliestStartT ime : ∀i ∈ I : esti = lcti −
lcti

offsetParam ∈ [2, 3]
(1)

Domain : ∀i ∈ I : Dmi = [esti, lcti] (2)

The usage of esti affects the i:th maintenance points domains as in equa-
tion 2. Maintenance point dependency chains are defined by assigning a starting
variable which has a domain value between esti and lcti. Each variable in these
dependency chains corresponds to an occasion of a maintenance point and the

77



value corresponds to the time when the maintenance should occur. Successive
maintenance points are then created until the planning horizon is reached. In
the dependency chains each new variable gets a domain with a earliest plan
starting time mpvj that is equal to or greater than the preceding maintenance
point variable mpvi + estj and a latest plan completion time for mpvj that is
less than or equal to mpvi + lctj , shown in equation 3 and equation 4.

EarliestP lanStartT ime : ∃i,j ∈ I : mpvj ≥ mpvi + estj (3)

LatestP lanCompletionT ime : ∃i,j ∈ I : mpvj ≤ mpvi + lctj (4)

After the maintenance point dependency chains have been created, then, if
the user has defined certain periods when maintenance can be done (cbd), or
when it cannot be done (cnbd), these periods are handled as show below.

CanPeriod : ∀i ∈ I : Dmi = Dmi ∩ cbd (5)

CannotPeriod : ∀i ∈ I : Dmi = Dmi \ (Dmi ∩ cnbd) (6)

In practice this means that cnbd periods are excluded from the variable do-
mains. If cbd is defined, then these periods constitute the variables domain. Each
dependency chain is related to one maintenance point which means that for our
PoC there are around 80 dependency chains.

Input and Output. The input consists of the periodicity of each maintenance
point expressed in kilometers and the times when each maintenance point was
last maintained. The periodicity is then converted into weeks based on the ex-
pected number of kilometers the vehicle will be used per week which can either
be set by the user or be learned from previous vehicle behavior.

If it exists, the solver finds a maintenance plan that satisfies all the con-
straints. This plan is then presented to the user as an Excel worksheet listing
the dates, expected mileages, and durations of all the scheduled maintenance
occasions, see Figure 2. The dates are approximate because the planner only
plans with a resolution of one week. The exact date within that week must be
set in dialogue between the fleet owner and workshop. The maintenance planner
can also output the maintenance protocols that shall be used for each occasion.

Heuristics and Propagators. The solver in the clp(FD) library is set such
that it will return the first maintenance plan it finds that satisfies all the con-
straints. This means that the search heuristics are important for the behavior of
the planner. The user can select between two search heuristics.

The first heuristic uses the built in parameters of the clp(FD) library so
that the variable, not yet assigned, with the smallest domain is chosen and the
maximum value of its domain is selected.

The second heuristic is specific for this problem formulation. Variables to
assign are selected in the same way as the first heuristic, but the value selection
is different. If assigned values corresponding to different maintenance points lie
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Fig. 2. An example of the maintenance plan of a vehicle.

within the domain of the selected variable, we select the assignment with the
highest value. If such a value does not exist, the variable is assigned to the highest
value in its domain like the first heuristic. The motivation for this heuristic is
that we want to co-locate maintenance points in time so that we get as few
maintenance occasions as possible.

Pseudo-code for the value selection heuristics are shown in Algorithm 1.
The search heuristic takes a constraint store as input and returns a modified
constraint store. The function ValSel uses the constraint store and the variable
with the smallest domain to assign a value to the variable using the function
GetBestValue. The function GetBestValue uses the constraint store and
the variable with the smallest domain and returns either the highest value of
the intersection between the selected variable and any other assigned variable
or, if no such intersection exists, returns the highest value in the domain of the
selected variable. The function Max returns the highest value of a domain and
the functions GetNextAssigned iterates over assigned variable in constraint
store and returns false when all has been shown. The function Intersect returns
the elements in the intersection and the function FirstBound returns true if it
is the first time its argument variable is assigned and false otherwise.

A new propagator was implemented for the controlling the maximum time
of each occasion. This propagator is executed whenever a variable is assigned a
value. Each maintenance point has a standard time associated with it, i.e. the
time for the mechanic to complete the maintenance point task. The propagator
has a week-time-list where it keep track of current summarized work time for
each week up to the horizon. For each new assignment this list is updated, and
each variable that is not assigned, is checked one at a time, if the summarized
standard time exceed the time limit or not. If the time limit is breached, the
week is removed from the variable’s domain. If the propagator cannot exclude a
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Algorithm 1 Search heuristic for few maintenance occasions

Inputs: constraintStore, selV ar
Outputs: constraintStore

function ValSel(constraintStore, selV ar)
tV al← GetBestValue(constraintStore, selV ar)
if FirstBound(tV al) then selV ar ← tV al
else

selV ar 6= tV al
selV ar ← GetBestValue(constraintStore, selV ar)

end if
return constraintStore

end function

function GetBestValue(constraintStore, selV ar)
tempV al← 0
maxV al← 0
while var ← GetNextAssigned(constraintStore) do

intSect← Intersect(selV ar, var)
if ∅ 6= intSect then

tempV al← Max(intSect)
if tempV al > maxV al then maxV al← tempV al

end if
end while
if maxV al > 0 then

return maxV al
else

return Max(selV ar)
end if

end function
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value from any variable’s domain the propagator fails. The pseudo-code for the
propagator are shown in Algorithm 2.

The input is the constraint store, maximum time, week-time-list and the as-
signed week, the output is a possibly modified constraint store. The function
SumAssignedStandardTimes uses week-time-list and the assigned week to
update the week-time-list with the standard time of the corresponding mainte-
nance point. The function GetNextUnAssigned iterates over the constraint
store and returns the next not assigned variable. The function Intersect re-
turns the intersection between the variable and week. GetStTime returns the
standard time for the variable, i.e. a maintenance point standard time. Get-
Next iterates over a week-time-list and if no value are left return false. ReVal
removes the current week from the variable domain and, finally the function
NoMoreUnAssigned returns true if no more unassigned values are left to
iterate over in the constraint store.

Algorithm 2 Maximum time propagator

Inputs: constraintStore, week, weekT imeL,maxT ime
Output: constraintStore

weekT imeL′ ← SumAssignedStandardTimes(weekT imeL,week)
repeat

var ← GetNextUnAssigned(constraintStore)
intSect← Intersect(week, var)
if ∅ 6= intSect then

varWeekT ime← GetStTime(var)
if maxTime < varWeekT ime then

var′ ← ReVal(var, week)
if var′ = ∅ then return Fail

end if
end if

until NoMoreUnAssigned(constraintStore)
return constraintStore

4.3 Implementation

The maintenance planner is implemented in SICStus Prolog [14] using the clp(FD)
library for Constraint Logic Programming over Finite Domains [3]. Users inter-
act with the planner through a simple command prompt interface providing
functions for setting certain constraints, creating maintenance plans, and out-
putting maintenance protocols. A screenshot from the user interface is shown
in Figure 3. The user has the ability to create new maintenance plans, update
existing ones, view maintenance history, and set various settings.

81



Fig. 3. Main menu of the user interface.

4.4 Typical Usage Pattern

During the PoC at the Scania Transport Laboratory, the typical usage of the
maintenance planner was as following:

– One week before a scheduled maintenance occasion, the workshop planner
checks using telemetry the actual mileage of the vehicle and regenerates the
maintenance plan. If the mileage is lower or higher than expected, fewer or
more maintenance points needs to be done at this occasion.

– With the content of the next maintenance occasion fixed, the workshop plan-
ner prints out the maintenance protocol and orders the parts needed for the
occasion as specified by the protocol.

– When the vehicle is at the workshop, a mechanic performs maintenance
according to the protocol.

– After the maintenance, the workshop planner reports back into the system
which maintenance points that were addressed and creates a new updated
plan for the vehicle. When the new maintenance plan is created the workshop
planner may use the current mileage per week or manually set it to a new
value if a different driving behavior is anticipated in the future.

5 Results

The vehicles that participated in the study were all of similar type and had simi-
lar driving patterns. Table 1 shows a comparison between S, M, and L plans and
the automated planner for a representative vehicle from the Scania Transport
Laboratory. This vehicle is a long haulage truck that has the expected usage of
6 760 km per week. The interval between maintenance occasions with the S, M
and L program for such a vehicle is once every 90 000 km, or once every 13.3
weeks. For each maintenance occasion we have reported the standard time for
completing all maintenance points scheduled for the occasion. Despite that the
S, M, L program neither respects the periodicity or the time limit constraints
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the sum of all standard times is higher. This is because the intervals for certain
maintenance points could be stretched further when it no longer has to fit within
the S, M, and L modules. The gain is potentially much larger, because for this
study only a handful of the maintenance points had their intervals re-evaluated
while most were the same as in the S, M, L program (90 000, 180 000, or 360 000
km).

Table 1. Comparing standard method and new automated planner.

Standard New Automated Planner

Visits 8 11
Total Time 33.4 28.9

The experiment with the haulage contractor was intended as a PoC of gener-
ating maintenance plans automatically at a much finer granularity than before.
The haulage contractor requirements on the maintenance plan that could not
be satisfied with the previous planning method. For example, the largest main-
tenance module, L, takes longer than the required maximal four hours of stand
still.

6 Thoughts on the Next Generation Planner

The maintenance planner should, in the future, be extended to do optimization
instead of only returning the first solution. Hence we have started doing some
experiments using this set up. This section is dedicated to describing our current
findings in this experimental work.

The maintenance planning problem, as formulated, has few constraints asso-
ciated with it. Therefore, we must resort to using search while exploring possible
solutions. Using multi-core parallel search will let us explore a larger part of the
solutions space in a smaller amount of time than a single-core solution.

We choose to use the Gecode [13] toolkit for exploring a possible multi-core
solution. The reasons for this choice is that Gecode has built-in support for
parallel search, using a variant of work stealing [4] for handling and assigning
computational tasks to idle threads without more involvement from the user
than selecting the number of threads to be used. Gecode also has an excellent
performance record, winning the MiniZinc Challenge [15, 9].

Our intention is to use branch-and-bound techniques for optimization. So
far we have implemented an objective function to test the branch-and-bound
approach. The objective function allows users to set their preferences for few
maintenance occasions or minimizing waste using weights, where waste refers to
not utilizing maintenance point intervals fully:

cost = noOccassions× occasionsWeight + waste× wasteWeight. (7)
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Fig. 4. Deadline interval constraint for the matrix problem formulation.

When using a multi-core solution, it is important how much memory a par-
ticular problem formulation needs, because it will need multiple copies of the
constraint store. For our problem description we have identified two different
problem formulations. We will describe them and run experiment focusing on
their respective memory and CPU time needs.

Matrix Problem Formulation. One way to formulate the problem is to create
a matrix with the same number rows as there are maintenance points and the
same number of columns as there are days within the planning horizon.

– Variables. For each cell in the matrix a constraint variable is defined with
domain between zero or one. The assigned value at a specific row and column
denotes whether the maintenance point associated to the row should be
performed during the day associated to the column. A one means that the
maintenance point should be performed and a zero means that it should not.

– Constraints. Maintenance point intervals for a row are regulated by a con-
straint that all cells in the row up to the deadline interval should sum to
1. Hence only one maintenance occasion should occur within interval, as is
shown in equation 8. This constraint is repeated for each interval up to the
planning horizon.

SumToOne :

interval∑
i=0

celli = 1 (8)

This is however not enough to ensure that the plans are correct because it can
be the case that a solution ends up with a distance between two one’s (1) that
is greater than the interval. This is illustrated in Figure 4. Here two constraints
are set, where each of their interval must sum to one but still we can end up
with a plan that violates the deadlines.

One way of correcting this is to add a constraint which keep track of the
number of zeros in a row and make sure that the length of the zeros do not ex-
ceed the deadline. This constraint is illustrated in equation 9, where zerosInRow
takes the i:th row and returns the maximum consecutive number of zeros and,
maxZeros is the limit for consecutive zeros on this row.

zerosInRow(rowi) < maxZerosi. (9)

Unable to express this constraint as an extensional constraint, we imple-
mented a new propagator. The propagator uses the notion of ’blocks’ of zeros,
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Fig. 5. Comparison of memory needs.

which can be merged if two blocks are adjacent to each other, creating a bigger
block. New blocks are created when a new zero is assigned that has no adjacent
blocks. The propagator first checks the constraint store so that no deadline in-
terval is breached. Then it propagate a one if there exists a block with the same
length as the interval minus one. With this propagator the planner behaves as
desired.

As with the previous planner, the user can specify the minimal interval with
a parameter.

Dependency Chains. The second problem formulation is the same as the one
used for the first single-core maintenance planner. Each variable corresponds to
an occasion of a maintenance point and the value corresponds to the time when
this occasion should occur.

Experiment. We have implemented both formulations of the problem in Gecode
3.7.3 and examined their CPU usage and memory needs when conducting an
exhaustive search for a planning problem with one maintenance point and a
maintenance interval of 10 days. The planning horizon varied from 20 days to
80 days, which causes the total number of possible solutions to vary from 100 to
100 million.

They executed on a quad-core Intel i7-2760QM processor running at 2.4 GHz.
The comparison of the memory need is shown in Figure 5 and the comparison
of the CPU times is shown in Figure 6.

As expected, the matrix problem formulation consumes more memory and
more CPU time to complete the exhaustive search problems. In this experiment
we had only one maintenance point and the maximum planning horizon was 80
days. In a realistic setting we have almost a hundred maintenance points and
we need a planning horizon of up to 365 days. Thus in our application using the
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Fig. 6. Comparison of CPU time.

dependency chain problem formulation is preferable to using the matrix problem
formulation.

7 Discussion

Scania gained much experience from developing a maintenance planning system
for its internal haulage contractor, both in terms of what functionality a work-
shop planner needs and how constraint programming can be used to realize this
functionality. Based on this new knowledge, work has begun with the next gen-
eration of the maintenance planner, as already mentioned. Apart from improved
user interface we will implement more ways for the user of the planner to in-
fluence what constitutes good plans. Here we are considering more constraints
and optimization parameters. Furthermore, the group of intended users of the
planner is expanded to include fleet planners and sales personnel. We also want
to do more exact planning and have decided to use a time scale of days instead
of weeks for this next generation of the planner.

Development The development of the planning prototype was not more dif-
ficult than a single developer familiar with constraint programming techniques
could design and implement the entire application in a few months. However,
more effort was required from the experts that had to set maintenance intervals
since this was made manually. The intention is that in the future these intervals
will be set automatically based on data.

When the application was delivered to the workshops, a Scania engineer cre-
ated the first plan for all the vehicles based on a default expected mileage. The
users at the workshops were only supposed to use the application to read out
maintenance plans and protocols and to input the actual times and mileages
when each maintenance point is performed. Early in the experiment, it became
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evident that a re-plan functionality was needed to make sure that the main-
tenance plan was correct at the designated date for maintenance. Usually the
workshop planner re-planned the schedule for a vehicle scheduled a couple of
days before the planned maintenance occasion. After this functionality had been
added we saw that sometimes planned maintenance occasions could be avoided
due to less vehicle usage than predicted. In some cases it was the opposite and
more maintenance was needed than in the previous plan.

Another appreciated functionality that was added later was the possibility
to output a list of consumable goods (e.g. oil quantities and part numbers of
filters) together with the maintenance protocol. This made it possible for the
workshop to make sure that all necessary products were in place in time for the
maintenance occasion. This was not as important with the fixed maintenance
protocols since the list of consumable goods are always the same.

Release to Customers Because of the rather primitive user interface, educa-
tion of the managers responsible for planning at the workshop, was important
for the users to understand how the system worked. As a part of this, users were
encouraged to create simulated maintenance plans using the system.

One user at the workshops was assigned as superuser. The superuser and
developer had regular meetings where they could discuss problems and questions
regarding the application. The superuser could collect opinions about the system
from the other users and also educate them. During the first two months many
changes to the application were made because of feedback from the users.

Initially the program was unstable and would crash if fed with illegal input or
if the constraints were set so that no valid plan existed. Also there were problems
with the dynamic creation of maintenance point variables causing unnecessary
maintenance points to pile up at the end of the plan. This had no real conse-
quence for the performance of the plans because the remainder of the plan was
correct and the unnecessary maintenance points would always be pushed ahead
whenever the maintenance plan was re-planned. However it looked bad and con-
fused the users. All data such as previous maintenance and mileages were saved
in Prolog using its program state. This prevented users from correcting erro-
neous input. Instead users were instructed to store and keep copies of previous
entire program states to do roll-back upon if the system contained information
that did not align with reality.

Once these and other problems were corrected and the users had become
acquainted with the program, we started getting positive feedback from the
users. Some users even preferred the command prompt interface over a graphical
user interface because interaction with the program was really fast.

Apart from the obvious fact that we could not satisfy the requirement of
having fixed maintenance occasions every fourth week with a time limit of four
hours, using the standard maintenance program, a preliminary comparison show
that gains in time and money can be made with the new planning system.
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8 Conclusion

The possibility to individually plan each maintenance point allows us to create
more efficient maintenance plans that also consider the needs of the vehicle
owner. Previously, many of these needs have been disregarded. A purpose of the
PoC was to gain a better understanding of these needs and the potential gain of
creating an automated maintenance planner based on constraint programming
techniques.

The PoC was developed with limited resources, but the testers at the Scania
Transport Laboratory were tolerant and put up with the initially buggy planner
and gave back precious feedback on how to develop it further. This way of
working is fine when, as in this case, the test group is a small group of users
belonging to a subsidiary company. However, it would not be feasible for a test
on a larger scale. We learned that, even with a primitive maintenance planner
such as this PoC, the maintenance costs can be significantly reduced and user
preferences that previously were ignored now can be regarded.

The PoC maintenance planner showed us that a planner based on constraint
programming techniques is a good way to go. Constraint programming is a good
framework for expressing and solving combinatorial problems for which human
capabilities are not sufficient to cope with. The maintenance planning prob-
lem, as it has been formulated so far, has not been very constrained and had
more characteristics in common with a search problem. However, if more user
constraints are added, the planning problem may well prove to move from a
problem with a dense distribution of solutions to one where they are sparse.
Then the benefit of constraint programming may become even greater.

For example, we may want to consider when and where there is a workshop
that can perform maintenance on a vehicle. This may make it necessary to
extend the planning to multiple vehicles. Also the fleet planner may have its
requirements on where the vehicles must be at given times and how far and fast
they can travel.

Methods for estimating the remaining useful life of components to create pre-
dictive models for maintenance is currently under investigation at Scania. The
maintenance interval of a component would then change dynamically, which
could affect the stability of maintenance plans. This may not be a desired be-
havior of the planner and therefore the maintenance planner must support con-
straints regulating how an existing plan may change when new input arrives.

For all these possible extensions to the maintenance planning problem, a
solution based on constraint programming appears the most promising.
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Abstract. Concurrent behavior is present in most information and com-
munication technologies, from Web Services to Social Networks and Cloud
Computing. For these systems, the knowledge representation of the in-
volved agents are of crucial importance for an accurate description and
modeling of their behavior. Further, the distributed nature of informa-
tion forces to analyze system constraints in both processing and stor-
age capabilities. On this regard, we present simple implementations of
the send+more=money puzzle using several scenarios in which the in-
formation is distributed among a set of agents that may know certain
information while ignoring other. We use a constraint-based interpreter
to model the puzzle according with spatial and epistemic specifications.
We use three well-know examples to illustrate agent interaction.

Introduction

Concurrent behavior is present in most information and communication tech-
nologies, from Web Services to Social Networks and Cloud Computing. For these
systems, the knowledge representation of the involved agents are of crucial im-
portance for an accurate description and modeling of their behavior. Indeed,
reasoning about other agents’ knowledge is a fundamental aspect on behavioral
approaches, e.g., game theory [10], artificial intelligence [12] and logic [3]. In each
scenario, see [3, 7] for some examples, where epistemic interactions takes place,
the sharing of knowledge, e.g., commercial strategies, connections, logins and
passwords, allows different properties to emerge.

On this regard, we present simple implementations of the send+more=money
puzzle using several scenarios in which the information is distributed among a
set of agents that may know certain information while ignoring other. Special
attention should be paid to the representation of knowledge and distributed
information. We use a constraint-based interpreter [4] to model the puzzle ac-
cording with spatial and epistemic specifications. The interpreter is based on
two novel process calculi that use spatial and epistemic modal operators as its
underlying logic [11]. In consequence, the interpreter allow to play with agents
that have different processing and storage constraints. The distributed nature of
information enables a large family of problems to be specified in the calculi and
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to be simulated by the interpreter. The addressed puzzle shows the potential
expressive power of the calculi and its modeling benefits. Along the paper we
use three well-know examples to illustrate agent interaction.

The paper is structured as follows. The section 1 is dedicated to a brief
description of the puzzle, the spatial and epistemic ccp calculi and the tool we
use. Next, we describe the notion of inconsistency confinement which reinforces
the spatial model. Section 3 illustrates the concept of distributed knowledge
among a set of rational agents. We present the implementation of a spatial and
epistemic send+more=money in section 4. The last section is dedicated to some
remarks and related work. Finally, a bibliography is included.

1 Preliminaries

In this section we present puzzle specification along with the mathematical model
and the programming environment we use for the implementation. As the paper
does not focus on the model nor the tool but in modeling, the read interested
in more information should look it in the references. The reader should know,
however, that it is not mandatory to deepen in the mathematical foundations,
a basic understanding of constraint programming will suffice.

1.1 The puzzle

The well-known puzzle send+more=money was created almost a century ago.
The man who created it was Henry Dudeney [6], a recognized mathematician
of his time. Dudeney argued that the simplest puzzle should not be passed over
without careful attention. He considered in particular arithmetic problems, like
the send+more=money, to be the most interesting ones. Indeed, mathematicians
and logicians reason about the underlying true behind the puzzles using differ-
ent representation and intuitions. Nonetheless, although the send+more=money
puzzle was not conceived to be studied within a particular model, it seems that
the the problem fits neatly with the declarative nature of the constraint pro-
gramming paradigm. The basic description of the puzzle is shown next. The
specification is taken from the Oz Programming Interface webpage [1].

Send+more=money The Send More Money problem consists of finding dis-
tinct digits for the letters D, E, M, N, O, R, S, Y such that S and M are different
from zero (no leading zeros) and the equation SEND+ MORE=MONEY is sat-
isfied. The unique solution of the problem is 9567+1085= 10652.

1.2 Spatial and epistemic concurrent constraint calculi

The traditional concurrent constraint programming viewpoint is not well equipped
for the modeling of distributed information. This is due to the local computing
constraints agents may have, i.e., both local processing and storage. Spatial ccp
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and Epistemic ccp [11] extend concurrent constraint programming calculus in
order to capture some notions of spatiality and knowledge that have not been
addressed by other extensions. We encourage the reader to study the theoretical
model created by Knight et al. as described in [11] to get a better understanding
of the calculi. In the following, we describe the language of constructions terms.

Let P and Q be two spatial-epistemic ccp processes. The language of con-
struction terms as:

P,Q := | tell(c) | ask(c)→ P | P ‖ Q | [P ]i | X

Assuming that for each process variable X there exists a process definition,

possibly recursive, of the form X
def
= P .

Intuitively, each agent i has his own local store [·]i where processes and other
agents’ stores may reside. Consequently, the spatial construct [P ]i represents the
process P within the store of agent i. Ask and parallel semantics remains as in
classic ccp. However, the application of tell semantics has two different meaning.

Essentially, a tell operation may be seen as spatial or epistemic. Used as a
spatial operator, a tell only adds partial information to the agent’s store. This
is akin to the notion of belief; agent i may believe that it is raining while agent
j believes it is not. Consequently, no spatial tell operation can cause the overall
computation to fail, i.e., [tell(false)]i 6= false and [tell(c)]i t [tell(d)]j 6= false
even when ctd = false1. On the other hand, tell operator in its epistemic forms
allows to represent facts. Thus, [tell(c)]i t [tell(d)]j = false when ct d = false.
Intuitively, the process [tell(c)]i is that c is added to the knowledge of agent
i. Some interesting properties of the epistemic tell operator are that; a) after
[tell(c)]i is executed, the store entails c (for any constraint c); meaning that if an
agent knows something then it is true; b) [tell(c)]i is idempotent; meaning that
agent i knows that he knows c; and c) after [[tell(c)]j ]i is executed, c will be in
i’s store. This is because if i knows that he knows c, he can conclude c from this
fact. The details of spatial and epistemic constraint systems, along with their
operational and denotational semantics, can be found in [11].

1.3 K-stores: Sccp and Eccp Interpreter

In essence, an interpreter is a computer program that executes expressions of a
particular programming language. Such program, often called the defined lan-
guage, is built using other programming language, also called the defining lan-
guage [13]. An useful characterization for programming languages is related with
the underlying logic the language is based on. Most programming languages and
interpreters are based in the well-studied logic of the λ-calculus [2]. This cal-
culus is universal in the sequential computation, i.e., any computable function
can be expressed using the calculus. However, most of real-life system do not
exhibit a sequential behavior but a concurrent and reactive one. Thus, using the
λ-calculus for the modeling of concurrent-reactive systems is not likely.

1 The symbol t, least upper bound, represent the join of information.
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The K-stores interpreter is a Prolog implementation of the operational se-
mantics of the spatial and epistemic ccp calculi allowing the programmer to
simulate distributed information systems [4]. Its main feature consists of an im-
plementation of a spatial (distributed) store that allows epistemic information
in it. In particular, it implements the S4 epistemic logic axiomatic system [3, 9].
The system supports the specification of (named) processes along with the ccp
classic primitives, namely, ask and tell operations. The interpreter is built with
the SWI-Prolog programming environment [15] and uses its constraint logic pro-
gramming module as its underlying constraint system. For further information
about this tool refer to [4].

2 Important Properties

Distributed Knowledge K-stores allows the programmer to simulate real-life
scenarios. Scenarios are characterized by having spatial properties or epistemic
ones. Perhaps, a given system exhibits spatial and epistemic properties at the
same time, however, our decision is to define programs specified either epistem-
ically or spatially.

It is worth noting the difference between spatial and epistemic information. If
an agent makes a spatial tell operation in his own store, the information added
does not affect other agent’s stores. On the contrary, an epistemic tell will,
potentially, change other stores. For instance, if the agent A knows that agent B
knows φ, then B must know φ. This is due that epistemic structure S4 does not
allow people to know false statements [3, 9]. Conversely, if agent A knows that
X is equal to 0 and agent B knows that X is equal to 1, an incosistency is raised.

In this section we give some intuition about possibles scenarios in a give
problem. Such intuition will allow us to describe the distributed information
that may be present in a system. We use the example called The logicians [7]
because it makes evident the distributed nature of information and that agents
can gain information independently of each other. In scenarios such as this, any
given agent has his own processing and storage constraints. Consequently, all
agents, represented with different stores, use a particular (possibly) disjoint set
of constraints to draw its own conclusions.

The logicians The logicians Alice and Bob are sitting in their windowless of-
fice wondering whether or not it is raining outside. Now, none of them actually
knows, but Alice knows something about her friend Carol, namely that Carol
wears her red coat only if it is raining. Bob does not know this, but he just saw
Carol, and noticed that she was wearing her red coat.

The fact that is raining can become knowledge for Alice and Bob if they make
the right assumptions and question. This is due that the fact “it is raining” is
distributed knowledge among Alice and Bob. In short, an event φ is distributed
knowledge among a group of agents G if and only if φ follows from the knowledge
intersection of all individual agents inG. Semantically, φ is distributed knowledge
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among G if and only if φ is true in all worlds that every agent in G considers
possible [14]. Distributed knowledge can be modeled as DG(φ) =

∧
i∈GKi

Where Kiφ means the event that “agent i knows φ”. The result of the op-
erator K over an agent can be seen as a projection over the state of possible
worlds that shapes the agent behavior. This notion is found materialized in most
distributed information systems as social networks.

Isolation One of the most important intuitions of the spatial ccp calculus is
the isolation of information, also referred to inconsistency confinement in [11]. A
graphical representation may help us understand the relevance of store isolation
to represent agents’ knowledge. In particular we want to reason about agents that
reason about other agent’s knowledge. The next example, taken from [5], and
its representation shows us the importance of first order knowledge and higher
order knowledge. The graphic makes clear that knowledge can be modeled using
the constraint programming paradigm which is one of our goals.

Hats puzzle Three people, Adam, Ben and Clark are siting in such a way that
Adam can see Ben and Clark, Ben can see Clark and Clark can see no one.
Without seeing the color, a white hat or a red hat is put in the head of each
agent. Suppose that all three hats are red. Then, with open eyes, they are asked
whether they know what the colors of their hats are. In this setup all agents
answers are negative. However, when an agent makes the next announcement
“there is at least one of you wearing a red hat” the result is quite different. They
are asked again which color they are wearing. Then Adam answers that he does
not know. Then Ben answers that he does not know either. Finally Clark says
that he knows the color of his hat. What color is Clark’s hat?

The possible state of knowledge for the puzzle, shown in fig 1, may be repre-
sented2 as a set of vertices [9]. Each corner of the cube is defined by three values.
All of them may be either W or R representing whether the hat of the agent i
is white or red, respectively. Each of those vertices in the cube models a given
state of affairs in the agents’ minds. Thus, the first cube is the moment when no
body has answer the questions; they think that any combination of hats’ colors
is possible.

An agent is sure about his hat color in a given state, if none of their vertices
connects with another vertex in which the color of his hat is different. It is
worth noting that Clark’s knowledge is unambiguous; Clark knows that his hat
is actually red. Public announcements of his two friends enabled Clark to find the
answer. Distributed knowledge is generated only when Adam and Ben answer
the question aloud. We leave the reasoning of this puzzle to the reader.

2 The graphical representation is an adaptation of one presented in [9].
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Fig. 1. Evolution of the puzzle graphical representation.

3 Spatial and epistemic send+more=money

Bearing in mind the send+more=money puzzle we describe above, we create
program specifications of the puzzle involving spatial hierarchies and knowledge.
The distributed nature of the spatial and epistemic ccp language implies that
any agent is running in a separate computer node or processor core. Although
the interpreter does not allow execution on different nodes, it is easy to map
the specification in a programming environment that allows parallel execution
of programs. In addition, in order to understand the programs, we need to keep
in mind that any tell operation with an agent as argument translates into a tell
operartion in that agent store (this resembles post operations in social networks)
and that the semantics of askI is asking some information in the owned (nested)
store (see [4] for further details).
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Scenario 1: The first attempt to solve the problem uses a spatial division. Two
agents are trying to reach a solution. Agent katherine ignores that all variables
are pairwise distinct, whereas agent andrew does not know that s and m can not
be zero.

parallel ([

spatial(katherine , [tell([S,E,N,D,M,O,R,Y] ins 0..9) ,

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10,

E*1],

#=, [M*10000 , O*1000, N*100, E*10, Y*1])),

tell( M #\= 0), tell(S #\= 0),

tell(solve ([S,E,N,D,M,O,R,Y]))]),

spatial(andrew , [tell([S,E,N,D,M,O,R,Y] ins 0..9) ,

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10,

E*1],

#=, [M*10000 , O*1000, N*100, E*10, Y*1])),

tell(all_different ([S,E,N,D,M,O,R,Y])),

tell(solve ([S,E,N,D,M,O,R,Y]))])

]).

Knowledge for agent katherine --> {9,0,0,0,1,0,0,0}

Knowledge for agent andrew --> {2,8,1,7,0,3,6,5}

In this specification, agents have different information about the state of
affairs, i.e., the complete set of constraints. Thus, neither agent is able to reach
the valid answer.

Scenario 2: In the second specification the agent katherine gives information
(post) to andrew about the constraints she knows. The only new information is
that m can not be zero. Thus, andrew reach a new and valid conclusion.

parallel ([

spatial(katherine , [tell([S,E,N,D,M,O,R,Y] ins 0..9) ,

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10,

E*1],

#=, [M*10000 , O*1000, N*100, E*10, Y*1])),

tell(M #\= 0),

tell(andrew , tell(M#\=0)),

tell(solve ([S,E,N,D,M,O,R,Y]))]),

spatial(andrew , [tell([S,E,N,D,M,O,R,Y] ins 0..9) ,

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10,

E*1],

#=, [M*10000 , O*1000, N*100, E*10, Y*1])),

tell(all_different ([S,E,N,D,M,O,R,Y])),

tell(solve ([S,E,N,D,M,O,R,Y]))])

]).

Knowledge for agent katherine --> {9,0,0,0,1,0,0,0}

Knowledge for agent andrew --> {9,5,6,7,1,0,8,2}
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Scenario 3: The third case presents an agent that has some local representation,
nested store, of other agent’s knowledge. In this specification, katherine beliefs
that andrew knows certain set of constraint. Using that beliefs, she can reach
the valid conclusion.

parallel ([

spatial(katherine , [tell([S,E,N,D,M,O,R,Y] ins 0..9) ,

spatial(andrew , [tell([S,M] ins 0..9) , tell( M #\= 0),

tell(S #\= 0)]),

askI(’andrew:own’, M#\=0 -> M#\=0) , askI(’andrew:own’, S

#\=0 -> S#\=0) ,

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10,

E*1],

#=, [M*10000 , O*1000, N*100, E*10, Y*1])),

tell(all_different ([S,E,N,D,M,O,R,Y])),

tell(solve ([S,E,N,D,M,O,R,Y]))])

]).

Knowledge for agent katherine --> {9,5,6,7,1,0,8,2}

Knowledge for nested:katherine ’s representation of andrew -->

{1..9 ,1..9}

Scenario 4: In this specification, and the next one, we use an epistemic viewpoint
to solve the problem. In this case, both katherine and andrew reach different
assignments for the variables. Thus, an inconsistency among stores is raised.

parallel ([

epistemic(katherine , [tell([S,E,N,D,M,O,R,Y] ins 0..9),

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10,

E*1],

#=, [M*10000 , O*1000, N*100, E*10, Y*1])),

tell( M #\= 0), tell(S #\= 0),

tell(solve ([S,E,N,D,M,O,R,Y]))]),

epistemic(andrew , [tell([S,E,N,D,M,O,R,Y] ins 0..9),

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10,

E*1],

#=, [M*10000 , O*1000, N*100, E*10, Y*1])),

tell(all_different ([S,E,N,D,M,O,R,Y])),

tell(solve ([S,E,N,D,M,O,R,Y]))])

]).

Global store failed: inconsistency among stores

aborting execution ...

Scenario 5: Finally, this epistemic scenario models the case where katherine has
a local epistemic representation of andrew. The information in it, the fact that
all variables are pairwise distinct, enables katherine to find the valid answer to
the puzzle.
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parallel ([

epistemic(katherine , [tell([S,E,N,D,M,O,R,Y] ins 0..9),

epistemic(andrew , [tell([S,M] ins 0..9), tell(

all_different ([S,E,N,D,M,O,R,Y]))]),

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10,

E*1],

#=, [M*10000 , O*1000, N*100, E*10, Y*1])),

tell( M #\= 0), tell(S #\= 0),

tell(solve ([S,E,N,D,M,O,R,Y]))])

]).

Knowledge for agent katherine --> {9,5,6,7,1,0,8,2}

Knowledge for nested:katherine ’s representation of andrew -->

{1..9 ,1..9}

4 Conclusions

Social networks, mainly web-based networks, are a growing field of research be-
cause of their complexity and ubiquity. In such multi-agent systems information
flows in huge magnitudes from client to client. Two fundamental features in these
networks are the private data locality and the (possibly constrained) public in-
formation posting that is allowed for agents. Furthermore, information exchange
may take place within a subset of agents inside the network. Moreover, differ-
ent information (knowledge) shared inside the network may become common
knowledge throughout the entire network (e.g. worldwide disasters).

Such distributed information and knowledge in systems with concurrent be-
havior are too complex to understand using an unique language or model [8, 7].
Nonetheless, modeling tools , such as the K-stores interpreter, can be used to
simulate processes that have their own local storage and may gain information
by means of a shared medium, such as cloud computing and social networks. We
presented some implementations of the send+more=money puzzle using spatial
and epistemic interactions. We show how distributed information among a set
of agents may reach solutions or inconsistency depending on locality properties,
thus, illustrating the modeling properties of the sccp and eccp calculi and the
K-stores tool. A more elaborated study should include the implementation of
the puzzle using various processing nodes.

We acknowledge that in order to solve a distributed problem an agent needs
to know all constraints over the variables. Nonetheless, the proposed modeling
capabilities are enough to represent evident real life scenarios in which no agent
has all information. Moreover, there exists a global store where all information
is posted, given the chance to reach an inconsistency or a solution. However, we
chose not to search for a solution in that global store because it does not belong
to an agent with reasoning capabilities. Instead, we want the global store to help
us to respect the epistemic logic axioms. More effort should be put on different
views of such global store.
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