
The Multi-Inter-Distance Constraint

Pierre Ouellet
Université Laval

Département d’informatique et de génie logiciel
pierre.ouellet.4@ulaval.ca

Claude-Guy Quimper
Université Laval

Département d’informatique et de génie logiciel
claude-guy.quimper@ift.ulaval.ca

Abstract

We introduce the MULTI-INTER-DISTANCE constraint that
ensures no more than m variables are assigned to values lying
in a window of p consecutive values. This constraint is useful
for modeling scheduling problems where tasks of processing
time p compete for m identical resources. We present a prop-
agator that achieves bounds consistency in cubic time. Exper-
iments show that this new constraint offers a much stronger
filtering than an edge-finder and that it allows to solve larger
instances of the runway scheduling problem.

Introduction
Constraint solvers offer many ways to model scheduling
problems. The constraint ALL-DIFFERENT (Régin 1994)
ensures that at most one task starts at a given time. When
there are m resources, the GCC (Régin 1996) limits the
number of tasks starting at a given time to m. These
two constraints are useful when tasks have a unit process-
ing time. When processing times are greater than one
unit, the INTER-DISTANCE (Artiouchine & Baptiste 2005;
Quimper, López-Ortiz, & Pesant 2006) constraint makes
sure that the starting times are at least p units of time
apart. When processing times differ for each task, the
CUMULATIVE (Mercier & Hentenryck 2008; Vilı́m 2009)
constraint allows to model this situation. All constraints,
except the CUMULATIVE constraint, offer a complete filter-
ing of the release times and deadlines of the task in polyno-
mial time. This filtering is NP-Hard for the CUMULATIVE
constraint. However, there exists no filtering algorithm that
prunes the release times and deadlines when the process-
ing time of each task is p and when there are m > 1 re-
sources. We introduce the MULTI-INTER-DISTANCE con-
straint and its first filtering algorithm achieving bounds con-
sistency. This constraint complements the offering of con-
straint solvers. We show that this constraint is very efficient
to solve problems such as the runway scheduling problem.

The MULTI-INTER-DISTANCE Constraint
The MULTI-INTER-DISTANCE constraint limits the number
of variables assigned in a window of p consecutive values to
m. Definition 1 formally presents the constraint.

Copyright c© 2011, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Definition 1 MULTI-INTER-DISTANCE([X1, . . . , Xn],m, p)
is satisfied if and only if at most m variables Xi are as-
signed to a value in any window of p consecutive values.
More formally, we have the following logical identity.

MULTI-INTER-DISTANCE([X1, . . . , Xn],m, p)
⇐⇒

∀v |{i | Xi ∈ [v, v + p)}| ≤ m

The MULTI-INTER-DISTANCE is a generalization of
well known constraints. When p = 1 and m = 1,
the MULTI-INTER-DISTANCE constraint specializes into an
ALL-DIFFERENT constraint. When p = 1 and m > 1,
the MULTI-INTER-DISTANCE encodes a GCC where each
value can be assigned to at most m variables. Finally, with
m = 1 and p > 1, the MULTI-INTER-DISTANCE becomes
an INTER-DISTANCE constraint. On the other hand, the
MULTI-INTER-DISTANCE constraint is a specialization of
the CUMULATIVE constraint. Each variable can be seen as
the starting time of a task that consumes one unit of resource
during a period of time p where the cumulative capacity of
the resources is m.

Two results emerge from these relations among the
constraints. Since it is NP-Hard to enforce domain con-
sistency on the INTER-DISTANCE constraint (Artiouchine,
Baptiste, & Dürr 2004), it is necessarily NP-Hard to enforce
domain consistency on the MULTI-INTER-DISTANCE.
Because the edge-finder (Mercier & Hentenryck 2008;
Vilı́m 2009) does not enforce bounds consistency
on the INTER-DISTANCE (Artiouchine & Baptiste
2005), it does not enforce bounds consistency on the
MULTI-INTER-DISTANCE either.

We show how to detect feasibility of the
MULTI-INTER-DISTANCE constraint in quadratic time. We
then show how bounds consistency can be enforced in cubic
time.

General Background
We consider constraint satisfaction problems where vari-
ables are assigned to integer values. The domain of a vari-
able Xi is denoted dom(Xi). We assume that the domain of
a variable dom(Xi) = [li, ui) is a semi-open interval where
li and ui are called the lower bound and upper bound of the
domain. The value of the variable Xi must be greater than
or equal to li and must be strictly smaller than ui.

An interval support for a value v ∈ dom(Xi) with re-
spect to a constraint C(X1, . . . , Xn) is a tuple t satisfy-
ing three conditions for j ∈ 1..n: 1) lj ≤ t[j] < uj ,
2) t[i] = v and 3) the tuple (t[1], . . . , t[n]) satisfies the
constraint C. A constraint is bounds consistent if li and
ui − 1 have an interval support for all i = 1..n. Enforc-
ing bounds consistency on a constraint consists of increas-
ing the lower bounds and decreasing the upper bounds of
the domains until all bounds have an interval support. Ex-
ample 1 shows the result of enforcing bounds consistency on
the MULTI-INTER-DISTANCE constraint.

Example 1 We consider the constraint
MULTI-INTER-DISTANCE([X1, X2, X3, X4, X5],m, p)
with m = 2, p = 3, and the following domains.

dom(X1) = [7, 9) dom(X2) = [2, 4) dom(X3) = [4, 7)
dom(X4) = [2, 7) dom(X5) = [3, 5)

The domains are semi-open intervals which implies that the
value 1 belongs to the domain of X1 but the value 9 does not
belong to the domain of X1.

Enforcing bounds consistency on the
MULTI-INTER-DISTANCE shrinks the domains as fol-
lows.

dom(X1) = [8, 9) dom(X2) = [2, 3) dom(X3) = [5, 7)
dom(X4) = [5, 7) dom(X5) = [3, 4)

Testing for Satisfaction in Polynomial Time
The MULTI-INTER-DISTANCE has a strong connec-
tion to scheduling problems. Consider the constraint
MULTI-INTER-DISTANCE([X1, . . . , Xn],m, p) where the
domain of the variable Xi is the semi-open interval [li, ui).
The variable Xi can be considered as the starting time of a
task whose processing time is p, whose release time is li,
and whose deadline is ui + p − 1. A total of m identical
resources execute the tasks concurrently without preemp-
tion. The MULTI-INTER-DISTANCE constraint is satisfiable
if and only if there exists a schedule.

This scheduling problem can be solved in polynomial
time. The best algorithm (López-Ortiz & Quimper 2011) so
far has a worst-case time complexity of O(n2 min(1, p

m)).
The algorithm finds a valid schedule by computing a short-
est path in a scheduling graph (Dürr & Hurand 2009). This
section provides a description of this graph and its proper-
ties. The scheduling graph is the key concept on which the
filtering algorithm is based.

Let lmin = mini li and umax = maxi ui be the smallest
lower bound and the greatest upper bound of a variable do-
main. The scheduling graph G has a node v for every integer
lmin ≤ v ≤ umax. There is a forward edge of weight m from
node v to node v + p for all lmin ≤ v ≤ umax − p. For ev-
ery pair of lower bound and upper bound li < uj , there is a
backward edge (uj , li) of weight−|{k | li ≤ lk∧uk ≤ uj}|.
The absolute value of the weight of the backward edge
(uj , li) is the number of variables whose domain is con-
tained in the interval [li, uj). A backward edge can have
a null weight. There is a null edge from any node v + 1 to
node v of weight 0 for all v ∈ [lmin, umax). Finally, there is

α\β 2 3 4 5 6 7 8 9
2 2
3 0 2
4 -1 0 2
5 -2 -1 0 2
6 0 2
7 -4 -2 -1 0
8 0
9 -5 -3 -2 -1 0

Table 1: The weight matrix of the scheduling graph of Ex-
ample 1. Empty entries indicate the lack of an edge between
nodes α and β.

.

an edge (lmin, umax) of weight n where n is the arity of the
MULTI-INTER-DISTANCE constraint.

Table 1 shows the weight matrix of the scheduling graph
of the problem depicted in Example 1. The scheduling graph
has important properties that we state here. Theorem 1 pro-
vides the sufficient and necessary condition to test whether
the scheduling problem has a solution.

Theorem 1 ((López-Ortiz & Quimper 2011)) The
scheduling problem has a solution if and only if the
scheduling graph has no negative cycles.

Theorem 2 ((López-Ortiz & Quimper 2011)) Testing
whether there is a negative cycle in the scheduling graph
can be done in O(n2 min(1, p

m)) time.

Theorems 1 and 2 allow to test the satisfiability of the
constraint in quadratic time. In the next sections, we reuse
this result to design an efficient filtering algorithm.

Conditions to Maintain Bounds Consistency
Our filtering algorithm detects forbidden sets of values that
cannot be assigned to a set of variables. For the ALL-
DIFFERENT constraint, these sets are called Hall inter-
vals (Leconte 1996). For the MULTI-INTER-DISTANCE, we
call them forbidden regions. We present lemmas that detect
these forbidden regions.

To test whether an interval [a, b) is a forbidden region to
which a variable Xi is subject, one can modify the domain
of Xi to be [a, b) and test the satisfiability of the problem.
If the scheduling graph of the transformed problem has a
negative cycle, then [a, b) is a forbidden region for Xi.

We define the altered scheduling graph Gv
i like the

scheduling graph with one exception, we alter the upper
bound of the domain of Xi such that the new domain be-
comes [li, v). If Gv

i has a negative cycle, the constraint has
no solution and we conclude that Xi ≥ v. Table 1 gives the
weight matrix of the graph G. Decrementing bold entries
by one results in the altered scheduling graph G5

3. In the
graph G5

3, the edges (5, 2) and(2, 5) form a cycle of weight
-1 which proves that X3 ≥ 5. The following theorem shows
how a forbidden region for one variable can also be a forbid-
den region for another variable.

Theorem 3 Let Xi and Xj be two variables whose domains
satisfy ui ≤ uj . If the values in [li, v) have no interval sup-
port in dom(Xi), then they do not have an interval support
in dom(Xj) either.

Proof: We prove the contraposition: if there exists a
value a ∈ [li, v) that has an interval support in the domain
of Xj then there exists a value b ∈ [li, v) that has an
interval support in the domain of Xi. Suppose there exists
an interval support t such that t[j] ∈ [li, v), we want to
prove that there exists an interval support t′ such that
t′[i] ∈ [li, v). Two cases can occur. If t[i] ≤ t[j] then the
inequalities li ≤ t[i] ≤ t[j] < v hold and t[i] ∈ [li, v).
The theorem holds with t′ = t. However, if t[i] > t[j]
the inequalities lj ≤ t[j] < t[i] ≤ ui ≤ uj hold. We can
permute the values t[i] and t[j] to obtain the support t′. We
have t′[i] = t[j] ∈ [li, v) and t′[j] = t[i] ∈ [lj , uj) hence t′

is a valid support. 2

In Example 1, the graph G5
3 has a negative cycle which

proves that [4, 5) is a forbidden region for X3. Theorem 3
also makes [4, 5) a forbidden region for the variable X4.

The distance matrix DG of a graph G is a square matrix
such that DG[a, b] is the shortest distance between node a
and node b in graph G. This matrix exists only if there are
no negative cycles in the graph G. When comparing the
scheduling graph G of Example 1 and the altered scheduling
graph G5

3, one sees that the weights of a subset of the edges
are decremented by one. This can only lead to shorter paths
in G5

3 than in G. Lemma 1 captures this property.

Lemma 1 Let G be the scheduling graph of a problem
where the domains are given by the intervals [li, ui) for
1 ≤ i ≤ n. Let G′ be the scheduling graph of the same
problem except that the domain of Xi is changed to [l′i, u

′
i)

where li ≤ l′i < u′
i ≤ ui holds. Thus DG[a, b] ≥ DG′ [a, b]

holds for all pairs of nodes (a, b).

Proof: The weight of a backward edge (uj , lk) is minus
the number of variable domains contained in the interval
[lk, uj). If the domain of a variable is shrunk, the weight
of the backward edges can be decremented by one or remain
unchanged. These changes to the scheduling graph can only
favor shorter paths.

However, the backward edges outgoing from ui or incom-
ing to li may not exist in G′ as ui and li may not be domain
bounds after shrinking the domain of Xi. Let (uf , le) be a
backward edge in G such that f = i ∨ e = i. We prove that
the edge (uf , le) in G can be replaced by an equivalent path
in G′

i. Let u′
f = max({uk | uk ≤ uf ∧ k 6= i} ∪ {u′

i}) and
let l′e = min({lk ≥ le ∧ k 6= i} ∪ {l′i}). The weight of the
backward edge (u′

f , l′e) in G′
i is the same as the weight of

the backward edge (uf , le) in G. Moreover, we have le ≤ l′e
and u′

f ≤ uf . Any path in G passing by the edge (uf , le)
can be replaced by a sequence of null edges from uf to u′

f ,
then passing by the edge (u′

f , l′e), and completing with a
sequence of null edges from l′e to le. This path in G′

i has the
same weight as the edge (uf , le) in G. 2

Let U = {ui | i ∈ 1..n} be the set of the domain upper
bounds and let u∗ = min{u ∈ U | u > li} be the smallest
upper bound that does not make the interval [li, u∗) empty.
The altered scheduling graph Gu∗

i gives information about
how the lower bound of Xi can be filtered. If Gu∗

i has a
negative cycle, then Xi ≥ u∗ and the lower bound li can be
safely increased to u∗. If Gu∗

i has no negative cycle, then
Theorem 4 and Theorem 5 indicates how to prune the lower
bound of variable Xi.

Theorem 4 Let Xi be a variable subject to a
MULTI-INTER-DISTANCE constraint. Let u∗ be the
smallest upper bound that is greater than li, and let Gu∗

i be
its associated altered scheduling graph. Suppose this graph
has no negative cycle. Let t be the largest value such that
the distance DGu∗

i
[li, t] is null. Values smaller than t in the

domain of Xi have no interval support.

Proof: Since Gu∗

i has no negative cycles, there exists at
least one solution with Xi ∈ [li, u∗) where u∗ = min{uk |
uk > li}. Let t be the largest value for which the short-
est distance in Gu∗

i from li to t is null. We prove by con-
tradiction that t < u∗. Suppose t ≥ u∗. The weight of
the edge (u∗, li) is at most -1 since it fully contains the
altered domain of Xi. Contradictorily, there is a negative
cycle in Gu∗

i starting from li, going to t through a path of
weight zero (by definition of t), passing by the null edges
(t, t− 1), (t− 1, t− 2), . . . , (u∗ + 1, u∗) with weight zero,
and then going back to li using the edge (u∗, li) with weight
at most -1. Therefore, t < u∗.

Knowing that t < u∗, we construct the altered scheduling
graph Gt

i using the original variable domains except for Xi

for which we use the domain dom(Xi) = [li, t). The edge
(t, li) has a negative weight since the interval [li, t) contains
the domain of Xi. The distance from li to t is null in Gu∗

i
and, by Lemma 1, no greater than 0 in Gt

i. Therefore, there
is a negative cycle in Gt

i passing by the edge (t, li) which
implies that no values in [li, t) have an interval support in
dom(Xi). 2

To illustrate Theorem 4, consider the variable X1 in Ex-
ample 1. The smallest upper bound that is greater than
the lower bound 7 is u∗ = 9. The altered scheduling
graph G9

1 is identical to the scheduling graph G. The path
(7, 2), (2, 5), (5, 8) has a null weight in G9

1. By Theorem 4,
there is no valid assignment with X1 < 8.

Theorem 4 shows there is no interval support Xi ∈ [li, t).
Theorem 5 shows that there is an interval support for Xi = t.

Theorem 5 Let Xi be a variable subject to a
MULTI-INTER-DISTANCE constraint. Let u∗ be the
smallest upper bound that is greater than li, and let Gu∗

i be
its associated altered scheduling graph. Suppose this graph
has no negative cycle. Let t be the largest value such that
the distance DGu∗

i
[li, t] is null. The value t has an interval

support in the domain of Xi.

Proof: We construct the scheduling graph Gt+1
i using

the original variable domains except for Xi for which we
use the domain [li, t + 1). If one proves that Gt+1

i has

no negative cycle, then one proves there is a solution with
Xi ∈ [li, t + 1). Theorem 4 ensures that Xi ≥ t leaving
Xi = t as the unique valid assignment for the variable Xi.
The graph Gt+1

i has no negative cycles when t + 1 = u∗.
Indeed, in that specific case, the graphs Gt+1

i and Gu∗

i are
by construction identical. From the proof of Theorem 4, we
know that t ≤ u∗. We therefore need to prove that Gt+1

i has
no negative cycles when t + 1 < u∗.

Let uq be the greatest upper bound that is strictly smaller
than u∗. By construction, there is no upper bounds greater
than li and smaller than u∗, thus uq < li. The null edges
form a path from li to uq which implies DGt+1

i
[li, uq] ≤ 0.

Consider any lower bound lp that is smaller than or equal to
li. The domain dom(Xi) = [li, t + 1) is the only one that is
not contained in the interval [lp, uq) but is contained in the
interval [lp, t + 1), thus −w(uq, lp) = −w(t + 1, lp)− 1.

The graphs Gu∗

i and Gt+1
i are very similar. They only

differ by the additions of backward edges (t + 1, lq) for all
lower bound lq ≤ li. It is therefore sufficient to prove that
any cycle passing by these edges has a non-negative weight.

Since the addition of the edges leaving t + 1 does not
affect the paths leading to t + 1, we have DGt+1

i
[li, t +

1] = DGu∗
i

[li, t + 1]. By the definition of t, we obtain
0 < DGu∗

i
[li, t + 1] = DGt+1

i
[li, t + 1]. The consequence

of this inequality is that any path going from li to t + 1 has
a positive weight and in particular, a path going from li to
t + 1 passing by the edge (uq, lp) has positive weight.

0 < DGt+1
i

[li, uq] + w(uq, lp) + DGt+1
i

[lp, t + 1] (1)

By substituting −w(uq, lp) = −w(t + 1, lp) − 1 and
DGt+1

i
[li, uq] ≤ 0 in (1) we prove that all cycles passing

by the edge (t + 1, lp) are non-negative.

0 < 0 + w(t + 1, lp) + 1 + DGt+1
i

[lp, t + 1] (2)

0 ≤ w(t + 1, lp) + DGt+1
i

[lp, t + 1] (3)

2

In Example 1, the path (7, 2), (2, 5), (5, 8) in G9
1 has a null

weight which certifies that there exists an interval support
for 8 in the domain of X1. This interval support is t =
[8, 2, 5, 6, 3].

A Filtering Algorithm Achieving Bounds
Consistency

The filtering algorithm for the MULTI-INTER-DISTANCE is
a direct application of Theorem 3, Theorem 4, and Theo-
rem 5. The algorithm on Figure 1 processes the variables in
non-decreasing order of domain upper bounds. When pro-
cessing Xi, the algorithm updates the lower bound li ac-
cording to previously discovered fobidden regions. Then
it computes the value u∗ that is the smallest domain upper
bound greater than li. Based on this value, the algorithm
tests whether the scheduling graph Gu∗

i has a negative cy-
cle. If so, the algorithm stores in the data structure F the
newly detected forbidden region [li, u∗). Because the algo-
rithm processes variables in non-decreasing order of upper

bounds, Theorem 3 ensures that the interval [li, u∗) is a for-
bidden region for all unprocessed variables. On its next iter-
ation, the lower bound li is increased to avoid all forbidden
regions, including the newly discovered one. This process
continues until the scheduling graph Gu∗

i contains no nega-
tive cycles.

When the scheduling graph Gu∗

i contains no negative cy-
cles, Theorem 4 and Theorem 5 apply. The algorithm com-
putes the shortest path from node li to all the other nodes
and finds the node t which is the largest one whose distance
from node li is null. From Theorem 4, we know that val-
ues smaller than t have no interval support in the domain of
the current variable. The algorithm removes them from the
domain by increasing the value of li. Finally, Theorem 5
guarantees that the lower bound of each variable domain has
an interval support upon completion of the algorithm.

Algorithm 1: PruneLowerBounds([X1, . . . , Xn])
Sort the variables such that ui ≤ ui+1

U ← {u1, . . . , un}
F ← ∅
for i ∈ 1..n do

repeat
li ← min([li, ui) \ F)
u∗ ← min((li, ui] ∩ U)
Let Gu∗

i be the altered scheduling graph with
dom(Xi) = [li, u∗)
Compute the shortest distances DGu∗

i
[li, t] from

node li to all the other nodes t
if there is a negative cycle in Gu∗

i then
F ← F ∪ [li, u∗)

until there is no negative cycles in Gu∗

i
li ← max({t | DGu∗

i
[li, t] = 0})

Computing the single-source shortest path in the schedul-
ing graph should be done with care. Indeed, the schedul-
ing graph has as many nodes as the number of values in
the domains. These domains can be very large especially
in scheduling problems where domains represent time in-
tervals. (López-Ortiz & Quimper 2011) showed how to
compute the shortest path from the right-most node to all
the other nodes in O(n2 min(1, p

m)) steps which is strongly
polynomial and invariant in the cardinality of the variable
domains. The algorithm is an adaptation of the Bellman-
Ford algorithm (Cormen et al. 2001) which initializes a dis-
tance vector that keeps track of the distances from the node
li to all the other nodes. Since the right-most node can reach
all the other nodes via the null edges, the distance vector is
initialized to zero and as new paths are explored, the dis-
tance vector is updated with smaller values. To compute
the shortest path from li to all the other nodes, the distance
vector should be initialized to zero for all the nodes smaller
than or equal to li and n for all the nodes that are greater
than li. Indeed, any node t can be reached by going to lmin

through the null edges, then going to umax using the edge
(lmin, umax), and finally using the null edges to go to t. This

simple adaptation to the shortest path algorithm is sufficient
to compute the shortest path from the source node li to all
the other nodes or to detect a negative cycle. The running
time complexity remains O(n2 min(1, p

m)).
The computation of shortest paths dominates the algo-

rithms’s complexity.

Lemma 2 The algorithm PruneLowerBounds performs at
least n and at most 3n−1 shortest path computations where
n is the number of variables.

Proof: Computing the shortest path of an altered schedul-
ing graph leads to two possible outcomes: the graph has
negative cycles or it does not. If the graph has no negative
cycles, the repeat loop terminates. This occurs exactly n
times, once for each variable. If the graph has negative
cycles, the algorithm loops and create the forbidden region
[li, u∗). The value u∗ is a domain upper bound. Each time
a new forbidden region is created, one of two events can
occur: 1) a domain upper bound becomes for the first time
the open upper bound of a forbidden region 2) a domain
upper bound gets included in forbidden region. These two
events can occur only once for each upper bound at the
exception of the largest upper bound umax for which only
the first event can occur. Therefore, the algorithm creates at
most 2n− 1 forbidden regions and performs at most 3n− 1
shortest path computations. 2

The shortest path problem is solved in O(n2 min(1, p
m))

steps when using the algorithm of (López-Ortiz & Quimper
2011) and modifying the initial state of the distance vector
as described above. The total running time complexity of
the filtering algorithm is therefore O(n3 min(1, p

m)) which
is never more than O(n3).

Pruning the upper bounds can be done by pruning the
lower bounds in a symmetric problem where dom(X ′

i) =
[−ui,−li). When pruning the lower bounds, the value −ui

is increased which is equivalent to decrease the upper bound
ui in the original problem.

Experiments
We experiment the MULTI-INTER-DISTANCE on the run-
way scheduling problem as presented in (Artiouchine &
Baptiste 2005). This problem consists of determining the
order in which n airplanes should land on a runway. We
consider an airport with m runways allowing simultaneous
landings. Each airplane labeled from 1 to n has multiple
disjoint time windows [ai

1, b
i
1], . . . , [a

i
ki

, bi
ki

] in which it is
in position to land. The goal is to make each airplane land
within one of its time windows while maximizing the time
gap p between each landing on a same runway.

We model the problem with two variables per airplane.
The variable Si defines at what time the airplane i lands. The
variable Wi ∈ [1, ki] defines in which time window the air-
plane i lands. The two variables are connected with the con-
straints Wi ≤ w ⇐⇒ Si ≤ bi

w and Wi ≥ w ⇐⇒ Si ≥
ai

w. Finally, there is a MULTI-INTER-DISTANCE posted on
the vector of variables S with fixed parameter p and m. We
solve the problem for p = 1, 2, 4, 8, . . . until the problem

becomes infeasible. We then perform a binary search be-
tween the largest p for which there exists a solution and the
smallest p for which we detect infeasibility. We branch on
the variables Wi followed by the variables Si.

For m = 1, we use the benchmark described as the second
set in (Artiouchine & Baptiste 2005). There are 64 instances
for each n ∈ {15, 30, 45, 60, 75, 90}. The number of time
windows per airplane randomly varies from 1 to 5.

We generate instances for m = 2 and m = 3 by merg-
ing instances from the original benchmark. As a rule, we
merge instances having the same size of time windows or
the same gap between the time windows. Merged instances
also have a similar number of airplanes. As m increases, we
obtain instances with more airplanes. We implement our so-
lution (denoted MID) using the Choco Solver and compare
it against two implementations of the cumulative constraint
that the solver provides. The first implementation performs
an overload checking (denoted OC) in O(n log n) using a Θ-
tree as designed by (Vilı́m, Barták, & C̆epek 2004). The sec-
ond implementation (denoted MVH) is an implementation
of the edge-finder (Mercier & Hentenryck 2008) in O(n2).
Experiments are run arbitrarily on an Opteron 275 2.2 GHz
and an Opteron 2376 2.3 GHz . Running times may vary
depending on which processor executes the program.

Figure 1 shows that MID solves more problems in a given
time for m ∈ {1, 2, 3} than MVH and OC. The difference in
performance becomes more prominent as m increases. For
m = 3, MID solves 134 instances in 20 minutes, MVH
solves 3 instances, and OC solves none. Table 2 shows
that MID solves the problem with significantly fewer back-
tracks. MVH performs fewer backtracks as n increases in-
dicating that the filtering gets slower and fewer nodes are
visited within 20 minutes.

m = 1

m ∈ {2, 3}

Figure 1: Number of solved problems vs time.

m = 1 m = 2 m = 3
n OC MVH MID MVH MID MVH MID

15 94% 999194 88% 106325 17% 22
30 95% 2755211 88% 332083 16% 333 100% 722423 31% 177
45 97% 2402617 97% 306429 22% 1040 100% 322937 31% 4607 100% 376261 31% 4
60 100% 1583362 97% 238024 22% 1515 100% 215728 15% 543 100% 213391 50% 2840
75 98% 1101707 94% 152017 28% 3111 100% 129688 33% 1436 100% 120684 38% 128
90 98% 927161 98% 106661 36% 238 100% 82496 29% 4781 100% 86733 33% 61

105 100% 66912 56% 1619 100% 60971 19% 1532
120 100% 58777 50% 785 100% 44511 25% 2583
135 100% 46525 25% 1236 100% 38623 44% 451
150 100% 29326 44% 1324 100% 27765 44% 518
165 100% 25181 47% 775

Table 2: Percentage of problems that generated backtracks and average number of backtracks for a period of 20 minutes for
each of these problems.

Conclusion
We introduced the MULTI-INTER-DISTANCE constraint.
We made the connection between this constraint and the
properties of the shortest paths in the scheduling graph.
We applied these properties in the design of the first fil-
tering algorithm achieving bounds consistency. This new
constraint is very successful at solving large instances of
the runway scheduling problem. The theorems we proved
about the MULTI-INTER-DISTANCE constraint may lead in
the future to the design of better filtering algorithms for
related constraints such as the INTER-DISTANCE and the
CUMULATIVE constraints.

Acknowledgments
We would like to thank Arnaud Malapert for his support with
the Choco solver and the reviewers for helping us simplify-
ing the proof of Theorem 3. This research is supported by a
NSERC Discovery Grant.

References
Artiouchine, K., and Baptiste, P. 2005. Inter-distance
constraint: An extension of the all-different constraint for
scheduling equal length jobs. In Proc. of the 11th Int.
Conf. on Principles and Practice of Constraint Program-
ming, 62–76.
Artiouchine, K.; Baptiste, P.; and Dürr, C. 2004. Runway
scheduling with holding loop. In Proc. of 2nd Int. Work-
shop on Discrete Optimization Methods in Production and
Logistics, 96–101.
Cormen, T. H.; Stein, C.; Rivest, R. L.; and Leiserson, C. E.
2001. Introduction to Algorithms. McGraw-Hill Higher
Education, 2nd edition.
Dürr, C., and Hurand, M. 2009. Finding total unimodu-
larity in optimization problems solved by linear programs.
Algorithmica. DOI 10.1007/s00453-009-9310-7.
Leconte, M. 1996. A bounds-based reduction scheme for
constraints of difference. In Proc. of the Constraint Int.
Workshop on Constraint-Based Reasoning, 19–28.
López-Ortiz, A., and Quimper, C.-G. 2011. A fast algo-
rithm for multi-machine scheduling problems with jobs of

equal processing times. In In 28th Int. Symp. on Theoreti-
cal Aspects of Computer Science (to appear in STACS’11).
Mercier, L., and Hentenryck, P. V. 2008. Edge finding for
cumulative scheduling. INFORMS Journal on Computing
20(1):143–153.
Quimper, C.-G.; López-Ortiz, A.; and Pesant, G. 2006. A
quadratic propagator for the inter-distance constraint. In
Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI
06), 123–128.
Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in CSPs. In Proc. of the 11th National Confer-
ence on Artificiel Intelligence (AAAI-94), 362–367.
Régin, J.-C. 1996. Generalized arc consistency for global
cardinality constraint. In Proc. of the 8th Annual Confer-
ence on Innovative Applications of Artificial Intelligence,
209–215.
Vilı́m, P.; Barták, R.; and C̆epek, O. 2004. Unary resource
constraint with optional activities. In Proc. of the 10th Int.
Conference on Principles and Practice of Constraint Pro-
gramming, 62–76.
Vilı́m, P. 2009. Edge finding filtering algorithm for discrete
cumulative resources in o(kn log n). In Proc. of the 15th
Int. Conference on Principles and Practice of Constraint
Programming, 802–816.

