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Abstract. The optimal search path (OSP) problem is a single-sided
detection search problem where the location and the detectability of a
moving object are uncertain. A solution to this NP-hard problem is a
path on a graph that maximizes the probability of finding an object that
moves according to a known motion model. We developed constraint pro-
gramming models to solve this probabilistic path planning problem for
a single indivisible searcher. These models include a simple but power-
ful branching heuristic as well as strong filtering constraints. We present
our experimentation and compare our results with existing results in the
literature. The OSP problem is particularly interesting in that it gener-
alizes to various probabilistic search problems such as intruder detection,
malicious code identification, search and rescue, and surveillance.

1 Introduction

The optimal search path (OSP) problem we address in this paper is a single-sided
detection search problem where the location and the detectability of a moving
search object are uncertain. The single-sided search assumption means that the
object’s movements are independent of the searcher’s actions. In other words,
the object does not act, neither to meet nor to escape the searcher. A solution to
this NP-hard problem [1] is a path on a graph that maximizes the probability
of finding an object that moves according to a known motion model. In the
OSP problem, a moving agent must plan its optimal path in order to detect a
mobile search object subject to constraints. This is a path planning problem for a
detection search with uncertainty on the whereabouts of the search object, on the
detection capabilities of the searcher, and on the movement of the search object.
This type of problem arises in many applications related to detection searches
namely, search and rescue [2], military surveillance, malicious code detection [3],



covert messages (violating the security policies of the system) on the Internet [4],
and locating a mobile user in a cellular network for optimal paging [5]. In this
paper, we introduce constraint programming (CP) models that we developed in
order to solve the OSP problem. We assume a single indivisible searcher where
search effort corresponds to the time available for searching and a probability of
detection is associated with each time step. Furthermore, the movement of the
searcher is constrained to an accessibility graph.

Most work on the single searcher OSP problem in discrete time and space
involved branch and bound (BB) algorithms. In [6], Stewart proposed a depth-
first BB algorithm using a bound that does not guarantee optimality. Eagle
[7] considered a Markovian object’s motion model and proposed a dynamic pro-
gramming approach. Eagle and Yee [8] presented an optimal bound for Stewart’s
BB algorithm. With an object following a Markovian motion model and an ex-
ponential probability of detection (pod) function, their approach produced an
optimal bound by relaxing the search effort indivisibility constraint on a set of
vertices while maintaining the path constraints. The bound is computed in poly-
nomial time. A review of the BB algorithm procedures and of the OSP problem
bounding techniques before 1998 can be found in [9]. Among the recent develop-
ments linked to the OSP problem, Lau et al. [10] proposed the DMEAN bound
which was derived from the MEAN bound found by Martins [11].

The advantage of using CP in the OSP problem context lies in the CP model’s
expressivity. The model stays close to the formulation of the problem while en-
abling the use of problem specific constraints, heuristics and bounds. Further-
more, previous results on similar problems (e.g., [12]) show that CP allows to
find high quality solutions quickly, an interesting property we explore in this
paper.

According to [13], uncertainty in constraint problems may arise in two situ-
ations:

– the problem changes over time (dynamically changing problems), and
– some problem’s data or information are missing or are unclear (uncertain

problems).

The OSP problem formulation as a constraint program is not uncertain in this
sense since it has a complete description. Nonetheless, the location of the search
object, its detectability, and its motion are represented by probability distribu-
tions. Our CP is not a dynamic formulation since the searcher’s detection model,
the object’s motion model and the prior probability distribution on its location
are known a priori. More specifically, the OSP problem is a path planning prob-
lem with a Markov Decision Process formulation that uses negative information
for updating the probabilities in the absence of detection. In the case where the
total number of plausible search object’s paths is sufficiently low, a situation
that rarely occurs in realistic search problems, the problem could potentially
be formulated using multiple scenarios and thus be considered a stochastic CP
(e.g., [14]) where a scenario would correspond to a possible path of the search
object. However, this is not an interesting approach since the Markov OSP prob-
lem specialization from search theory enables us to solve the problem without



enumerating all the object’s plausible paths [15]. Surveys on dealing with uncer-
tainty in constraint problems may be found in [13,16].

Section 2 presents the OSP formalism. Sections 3 and 4 respectively de-
scribe the proposed constraint program and the experimentation. The results
are discussed in Section 5 and compared to existing results in the literature. We
conclude in Section 6.

2 The OSP problem in its general discrete form

When solving the OSP problem, the goal is to find a path (a search plan),
constrained by time, that maximizes the probability of detecting a moving object
of unknown location. A continuous search environment may be discretized by
a graph4 GA = (V (GA) , E (GA)) where V (GA) is a set of discrete regions. A
vertex r is accessible from vertex s if and only if the edge (s, r) belongs to the
accessibility graph GA. The search operation is defined over a given finite set
T = {1, . . . , T} of time steps. Let yt ∈ V (GA) be the searcher’s location at time
t ∈ T . When yt = r, we say that vertex r is searched at time t with an associated
probability of detection. A search plan P (i.e., the sequence of vertices searched)
is determined by the searcher’s path on GA starting at location y0 ∈ V (GA):

P = [y0, y1, . . . , yT ] . (1)

The unknown object’s location is characterized by a probability of contain-
ment (poc) distribution over V (GA) that evolves in time, due to the search
object’s motion and to updates following unsuccessful searches. The poc1 distri-
bution over V (GA) is the a priori knowledge on the object’s location. A local
probability of success (pos) is associated with the searcher being located in ver-
tex r at time t. It is the probability of detecting the object in vertex r at time t
defined as:

post(r) = poct(r)× pod(r), (2)

where pod(r) is the probability, conditional to the object’s presence in r at time
t, of detecting the object in vertex r at time t. This detection model is known a
priori. For all t ∈ T , r ∈ V (GA), the detection model is

pod(r) ∈ (0, 1] , if yt = r; (3)
pod(r) = 0, otherwise. (4)

The OSP formalism assumes that a positive detection of the object stops the
search. The probabilities of containment change in time following an assumed

4 We restrict ourselves to the case of undirected reflexive graphs (i.e., every vertex has
a loop) since they are more natural in search problems. Furthermore, loops enable
the searcher and the object to stay at their current location instead of moving on.



Markovian object motion model M and according to the negative information
collected on the object’s presence. Thus, for all time t ∈ {2, . . . , T}, we have that

poct(r) =
∑

s∈V(GA)

M(s, r) [poct−1(s)− post−1(s)] , (5)

where M(s, r) is the probability of the object moving from vertex s to vertex
r within one time step. The optimality criterion for a search plan P is the
maximization of the global and cumulative success probability of the operation
(COS) over all vertices and time steps defined as:

COS(P ) =
∑
t∈T

∑
r∈V(GA)

post(r). (6)

2.1 An optimal search plan example

Figure 1 shows an example of an environment with doors and stairs accessibility.
Considering the accessibility graph, and assuming T = 5, y0 = 3, poc1(4) =
1.0, pod(yt) = 0.9 (∀t ∈ T ) and a uniform Markovian motion model between
accessible vertices, an optimal search plan P ∗ would then be

P ∗ = [y0, y1, . . . , y5] = [3, 6, 7, 7, 7, 7] . (7)

Using Table 1, we explain why search plan P ∗ is optimal. Starting from vertex 3,

0 1 2 3 4

5 6 7 8

9 10 11 12

Fig. 1: A fictive building OSP problem environment (left) and its accessibility
graph (right).

the searcher first moves to vertex 6 since the probability of containment is high in
vertex 4. Then, the only accessible vertex where the probability of containment
is nonzero is vertex 7. Therefore, the searcher moves from vertex 6 to vertex 7.
Finally, the search plan stabilizes in vertex 7 since it has the highest probability
of containment at each subsequent time step. The objective (COS) value of the
optimal search plan P ∗ is equal to 0.889. For a search plan P , the objective value
is computed as follows:



– compute the local probability of success in vertex y1 at time step 1 (post(y1))
using Equation (2);

– for all vertices r, compute the probability of containment at time step 2
(poc2(r)) using Equation (5);

– apply the same process for time steps 2 to T ;
– sum all the local success probabilities obtained in time steps 1 to T to com-

pute the objective (COS) value of the search plan P .

The objective value at time step t, i.e., COSt, is

COSt =
∑
t′≤t

∑
r∈V(GA)

post′(r). (8)

For all search plans P , COST is the objective value, i.e., COST (P ) = COS(P ).

Table 1: The probability of containment for each vertex at each time step and
the cumulative overall probability of success for each time step for the search
plan P ∗ of the example of Figure 1. The probabilities are rounded to the third
decimal.

Probability of containment in vertex r at time t (poct(r))
@
@@t
r 0 1 2 3 4 5 6 7 8 9 10 11 12 COSt(P

∗)

1 - - - - 1 - - - - - - - - 0
2 - - - - .500 - - .050 - - - - - .450
3 - - - - .263 - .012 .026 .012 - - - - .686
4 .001 .001 .001 .001 .138 .001 .008 .015 .013 .001 .001 .001 .001 .817
5 .001 .001 .001 .001 .073 .001 .008 .008 .01 .002 .002 .002 .002 .889

3 A Constraint Programming Model for the OSP

We present in this section the CP model and the heuristic we developed to guide
the resolution process. We define the following constants:

– T , the set of all time steps;
– GA = (V (GA) , E (GA)), the accessibility graph representing the search en-

vironment;
– y0 ∈ V (GA), the initial searcher’s position;
– poc1(r), the initial probability of containment in vertex r (∀r ∈ V (GA));
– pod(r), the conditional probability of detecting the object when yt = r (∀t ∈
T ,∀r ∈ V (GA));



– M(s, r), the probability of an object’s move from vertex s to vertex r in one
time step (∀s, r ∈ V (GA)).

Furthermore, we define pocMarkov
t (r), the updated probability of containment in

vertex r at time t in the absence of searches as:

pocMarkov
t (r)

def
=

{
poc1(r), if t = 1;∑
s∈V(GA) M(s, r)pocMarkov

t−1 (s), otherwise. (9)

The Markovian probability of containment pocMarkov is an upper bound on the
probability of containment in vertex r at time t, i.e., poct(r) ≤ pocMarkov

t (r). This
is due to the fact that an unsuccessful search in vertex r at time t decreases the
probability of the object being there at time t (from Equation (5)). Moreover, we
observe that the probability of success post(r) in vertex r at time t is bounded
by the probability of detection in r (pod(r)), i.e., post(r) ≤ pod(r). Both of these
observations will be used to bound the domains of the probability variables in
the CP model.

3.1 The variables

The model’s decision variables used to define the search plan P are:

– Y0 = y0, the initial searcher’s position;
– Yt ∈ V (GA), the searcher’s position at time t (∀t ∈ T ).

The non-decision variables used to compute the COS criterion value are:

– POC1(r) = poc1(r), the probability of containment in vertex r at time 1
(∀r ∈ V (GA));

– POCt(r) ∈ [0, pocMarkov
t (r)], the probability of containment in vertex r at

time t (∀t ∈ T , r ∈ V (GA)) where pocMarkov
t (r) is defined by Equation (9);

– POSt(r) ∈ [0, pod(r)], the probability of success in vertex r at time t (∀t ∈
T , r ∈ V (GA));

– COS ∈ [0, 1], the COS criterion value, i.e., the sum of all local probabilities
of success up to time T .

The domain of Yt is finite (∀t ∈ T ). The domains of the probability variables are
infinite since these variables are real. Interval-valued domains are used to define
these domains, i.e., non-enumerated domains whose values are implicitly given
by a lower bound and an upper bound.

3.2 The constraints

Constraint (10) defines the searcher’s path, i.e., the search plan P . It constrains
the searcher to move from one vertex to another according to the accessibility
graph edges E (GA).

(Yt−1, Yt) ∈ E (GA) , ∀t ∈ T . (10)



The constraints (11) to (13) compute the probabilities required to evaluate the
COS criterion. The first two constraints, (11) and (12) compute the probability
of success. Constraint (13) is the probability of containment update equation.

Yt = r =⇒ POSt(r) = POCt(r)pod(r), ∀t ∈ T ,∀r ∈ V (GA) . (11)
Yt 6= r =⇒ POSt(r) = 0.0, ∀t ∈ T ,∀r ∈ V (GA) . (12)

POCt(r) =
∑

s∈V(GA)

M(s, r) [POCt−1(s)− POSt−1(s)] , ∀t ∈ {2, . . . , T} ,

∀r ∈ V (GA) . (13)

3.3 The objective function

We have experimented with two different encodings of the objective function.
The first one encodes the objective function as a sum, the second one encodes it
as a max. Both encodings are equivalent and lead to the same objective value.

The sum objective function. The sum encoding of Equation (14) consists of
encoding the objective function as it appears in (6). It is the natural way to
represent this function.

maxCOS, (14)

COS =
∑
t∈T

∑
r∈V(GA)

POSt(r). (15)

The max objective function. The sum constraint does a very poor job of filtering
the variables: the upper bound on a sum of variables is given by the sum of the
upper bounds of the variable domains. However, since we know that in the
summation

∑
r POSt(r) only one variable is non-null, a tighter upper bound

on this sum is given by the maximum domain upper bound. A tighter upper
bound on the objective variable generally leads to a faster branch and bound.
We therefore have implemented the objective function defined by Equation (6)
using the following constraints:

maxCOS, (16)

COS =
∑
t∈T

max
r∈V(GA)

POSt(r). (17)

3.4 The proposed value selection heuristic

In this section we describe the value selection heuristic we developed. The idea
of our heuristic is based on a stochastic generalization of a graph based pur-
suit evasion problem called the cop and robber game [17]; the description of its
theoretical bases is beyond the scope of this paper. We were also inspired by



a domain ordering idea that was successfully used for the multiple rectangular
search areas problem [12].

Our novel heuristic simplifies the probability system in the OSP problem by
ignoring the negative information received by the searcher when s/he fails to
detect the object. That is, at each time step t ∈ T , the heuristic chooses the
most promising accessible vertex based on the total probability of detecting the
object in the remaining time. Therefore, we call our heuristic the total detection
(TD) heuristic.

Let GA = 〈V (GA) , E (GA)〉 be the accessibility graph where the searcher and
the object evolve. Let t ∈ T be a time step, and y, o ∈ V (GA) the positions of
the searcher and the object. Let wt(y, o) be the conditional probability that the
searcher detects the object in the time period [t, t+ 1, . . . , T ] given that, at time
t, the searcher is in y and the object in o. The function wt(y, o) is recursively
defined as follows:

wt(y, o)
def
=


pod(o), if o = y and t = T,

0, if o 6= y and t = T,

pod(o) + (1− pod(o))pt(y, o), if o = y and t < T,

pt(y, o), if o 6= y and t < T,

(18)

where

pt(y, o) =
∑

o′∈N (o)

M(o, o′) max
y′∈N (y)

wt+1(y
′, o′), (19)

is the probability of detecting the object in the period [t+ 1, . . . , T ]. Equations
(18) and (19) have the following interpretation:

– If t = T , the searcher has a probability pod(o) of detecting the object when
the searcher and the object are co-located, i.e., o = y; otherwise, the searcher
and the object are not co-located and the probability is null.

– If t < T and o = y, then the searcher can detect the object at time t with
probability pod(o) or fail to detect it at time t with probability 1−pod(o). If
the searcher fails to detect the object at time t, s/he may detect it during the
period [t+ 1, . . . , T ]. The probability of detecting the object in the period
[t+ 1, . . . , T ] is given by pt(y, o) (Equation (19)) and may be interpreted as
follows:
• in the case where there is only one edge leaving vertex o to vertex o′,

the searcher chooses the accessible vertex y′ that maximizes the condi-
tional probability of detecting the object in the time period [t+ 1, . . . , T ],
given his/her new position y′ and the new object’s position o′, i.e.,
maxy′∈N (y) wt+1(y

′, o′);
• In the general case where vertex o has many neighbors, pt(y, o) is the av-

erage of all the maximal wt+1(y
′, o′) weigthed by the probability M(o, o′)

of moving from o to o′.
This is reasonable since we do not control the object’s movements but we can
move the searcher to the vertex that has the highest probability of success.



– Finally, if the search time is not over (i.e., t < T ) and the object and the
searcher are not co-located (i.e., o 6= y), the probability of detecting the
object at time t is null and the probability of success depends entirely on the
probability pt(y, o) of detecting the object within the period [t+ 1, . . . , T ].

A searching strategy S : T × V (GA) assigns to each time step and plausible
searcher’s position a set of vertices that are considered to be optimal according
to some heuristic. In the TD heuristic case, the strategy sets the new searcher’s
position to be the accessible vertex that maximizes the probability of detecting
the object in the remaining time:

St(Yt)
def
= argmax

y′∈dom (Yt)

∑
o∈V(GA)

wt(y
′, o)poct(o), ∀t ∈ T . (20)

In order to apply this value selection heuristic, the following static ordering of
the decision variables is used: Y0, . . . , YT . That is, the solver branches first on
Y0, then on Y1 and so on. Each time the solver branches on a new path variable
Yt, the strategy St(Yt) is computed in polynomial time.

4 Experimentation

Our experiments were conducted in two phases. In Phase 1, we compared the
two versions of the CP models presented in Section 3 (i.e., CpMax and CpSum).
In Phase 2, we examined the performance of the TD heuristic presented in
Section 3.4 when used as a value selector along with the best CP model retained
from Phase 1. The TD heuristic is compared with the CpMax model using an
increasing domain5 value selection heuristic. For all experiments, the following
static ordering is used for branching: Y0, . . . , YT .

Fig. 2: The 11 × 11 grid G+ (left), the 11 × 11 grid G∗ (center), the graph GL
(right)

The graphs used in our benchmark along with the searcher’s initial position
y0 and the initial probability of containment distribution poc1 are shown on
5 When branching on Yt, the solver selects the integer with the smallest value.



Figure 2.G+ is a reflexive 11×11 grid where all adjacent vertices except diagonals
are linked by an edge. G∗ is a reflexive 11× 11 grid where all adjacent vertices
(diagonals included) are linked by an edge. GL is a reflexive graph generated
using the Université Laval tunnels map. It is almost a tree. We tried these
graphs with three different probabilities of detection: pod(r) ∈ {0.3, 0.6, 0.9}
(∀r ∈ V (GA)). The assumed Markovian object’s motion model is

M(s, r) =

{
1−ρ

deg(s)−1 , if (s, r) ∈ E (GA) ,
ρ, if s = r,

(21)

where deg(s) is the degree of s and ρ ∈ {0.3, 0.6, 0.9} is the probability that the
object stays in its current location. The total times allowed for the searches are
T ∈ {9, 11, 13, 15, 17, 19}. Usual OSP problem experiments use grids similar to
G+ (e.g., [8], [10]). Therefore, our G+ problem instances are comparable with
those used in the literature.

All tests consisted of a single run on an instance
(
GA, T, pod(r)r∈V(GA), ρ

)
, as

described above. We allowed a total number of 5,000,000 backtracks and a time
limit of 20 minutes. All implementations are done using Choco Solver 2.1.3 [18],
a solver developed in the Java programming language, and the Java Universal
Network/Graph (JUNG) 2.0.1 framework [19].6 The probabilities of the OSP
CP model were multiplied by an integer for implementation purposes. Because
of numerical errors, our results are accurate to the fourth decimal. All tests were
run on an Intel(R) Core(TM) i7-2600 CPU with 4 GB of RAM.

5 Results and discussion

In this section, we compare the time required to obtain various incumbent solu-
tions (i.e., the best feasible solutions found so far). The time to the last incum-
bent is the CPU time spent by the solver to obtain the incumbent with the best
objective value within a 20 minutes or 5,000,000 backtracks limit.

5.1 Phase 1: Comparing the CP models.

Table 2 compares the results obtained with the CpMax model with the ones
obtained with the CpSum model on a 11 × 11 G+ grid with T = 17, various
probability of detection values (pod) and various motion models (ρ). In all cases,
the COS value of the last incumbent solution obtained with the CpMax model is
higher or equal to the one obtained with the CpSum model. Furthermore, when
there is a tie on the COS value, the time required with the CpMax model is lower
than the one required with the CpSum model. The tendency of the CpMax model
to outperform the CpSum model is present on G∗ and on GL instances with T =
17 (not shown). On most instances, the CpMax model requires fewer backtracks
than the CpSum model to achieve a higher quality last incumbent solution. We
6 The source code of our experiments is available upon request.



conclude that the use of the constraint “max” leads to a stronger filtering on the
variable COS, and thus, computes a tighter bound on the objective function.
For this reason, further comparisons involve only the CpMax model.

Table 2: The COS value of the last incumbent solution on a 11 × 11 G+ grid
with T = 17. Bold font is used to highlight the best objective value (higher is
better). Ties are broken using the time to last incumbent value.

CpMax CpSum
pod(r) ρ Time to last COS value of the Time to last COS value of the

incumbent (s) last incumbent incumbent (s) last incumbent
0.3 0.3 1197.15 0.0837 1045.66 0.0831

0.6 1198.56 0.1276 990.61 0.1267
0.9 1026.02 0.3379 1165.88 0.3379

0.6 0.3 959.18 0.1532 999.45 0.1532
0.6 1168.98 0.2202 1015.64 0.2172
0.9 1166.29 0.5122 942.36 0.5014

0.9 0.3 1161.59 0.2162 1184.86 0.2162
0.6 692.16 0.3151 727.57 0.3151
0.9 1169.91 0.6283 879.59 0.6252

5.2 Phase 2: Evaluating the TD value selection heuristic.

Figures 3 shows the COS value as a function of time (ms) obtained on the G+,
G∗ and GL environments with pod(yt) = 0.6 (∀t ∈ T ) and a motion model such
that the probability ρ that the object stays in its current location equals 0.6. On
all instances shown, the benefits of using the TD heuristic as a value selection
heuristic are clear as the solver finds incumbent solutions of higher quality in
less time when compared to the CpMax model using an increasing domain value
selection heuristic. In all cases shown, the COS value of the first incumbent so-
lution found with the TDValSel+CpMax configuration, a solution encountered
after less than 1 second of solving time, is within 5% of the COS value of the last
incumbent solution. On the G+ instance with T = 17, TDValSel+CpMax en-
countered 21 solutions before settling to an incumbent with COS = 0.2978 while
the CpMax configuration encountered 98 solutions before settling to an incum-
bent with COS = 0.2202. On the G∗ instance with T = 17, TDValSel+CpMax
encountered 46 solutions before settling to an incumbent with COS = 0.3478
while the CPMax configuration encountered 70 solutions before settling to an
incumbent with COS = 0.2959. Finally, on the GL instance with T = 17, TD-
ValSel+CpMax encountered 29 solutions before settling to an incumbent with
COS = 0.7930 while the CPMax configuration encountered 23 solutions before
settling to an incumbent with COS = 0.6676. By looking at the total number of
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Fig. 3: The COS value as a function of time (ms) (log scale) obtained with the
TDValSel+CpMax and the CpMax configurations on a 11×11 G+, on a 11×11
G∗ instance and on a GL instance with T = 15 (left column) and T = 17 (right
column). The pod(yt) = 0.6 (∀t ∈ T ), and the ρ = 0.6.

solutions encountered by the two configurations on the three instances, it seems
that varying the graph structure leads to very different problem instances. This
is partly due to the motion model of the object and to the probability of staying
in place ρ: Given an object’s position r, the remaining probability mass 1− ρ is
distributed among the neighbors of r leading to smaller probability of contain-
ment poc values in the neighborhood of r on G∗ and G+ than on most vertices



Table 3: The COS value of the last incumbent solution on a 11 × 11 G+ grid
with T = 17. Bold font is used to highlight the best objective value (higher is
better). Ties are broken using the time to last incumbent value.

TDValSel+CpMax CpMax
pod(r) ρ Time to last COS value of the Time to last COS value of the

incumbent (s) last incumbent incumbent (s) last incumbent
0.3 0.3 5.31 0.1055 1197.15 0.0837

0.6 19.42 0.1645 1198.56 0.1276
0.9 3.70 0.4418 1026.02 0.3379

0.6 0.3 159.42 0.1893 959.18 0.1532
0.6 31.02 0.2978 1168.98 0.2202
0.9 225.66 0.6559 1166.29 0.5122

0.9 0.3 54.94 0.2595 1161.59 0.2162
0.6 37.73 0.4119 692.16 0.3151
0.9 467.34 0.8194 1169.91 0.6283

of GL. For this reason, G∗ and G+ are significantly harder instances to solve
than GL. Furthermore, the G+ and the G∗ accessibility graphs involve more
symmetric instances than GL.

Table 3 compares the results obtained with the TDValSel+CpMax configu-
ration to the ones obtained with the CpMax model using an increasing domain
value selection heuristic on a 11 × 11 G+ grid with T = 17, various probabil-
ity of detection values (pod), and various motion models (ρ). Again, the TD-
ValSel heuristic is dominant with a time to last incumbent up to 300 times
faster for a higher quality solution in terms of COS value. The tendency of
the TDValSel+CpMax configuration to outperform the CpMax model using an
increasing value selection heuristic is present on G∗ and on GL instances with
T = 17 as well. For this reason, the tables for the G∗ and the GL instances are
omitted.

Figure 4 compares the COS values obtained on several G+ 11× 11 grid with
pod(yt) = 0.6 (∀t ∈ T ), and ρ = 0.6 instances of increasing complexity in T . For
all values of T and instance types, the COS value of the last incumbent found
with the TDValSel+CpMax configuration is higher or equal to the one found
with the CpMax model alone. On the G+ instance, we notice that the solution
is found in less than 5 seconds up to T = 17. By comparing the first row of
figure 4 showing the G+ instance to the other rows, we notice that time to last
incumbent curve of the TDValSel+CpMax is more erratic on the G∗ and the GL
instances. We believe that this may be due to the precision we used to compute
the probability variables (a limitation of our solver).

In order to get an idea of the relative performance of our model and value
selection heuristic, we compared our results with results published in the litera-
ture using a BB algorithm [10]. After communications with the authors of [10]
we were able to validate that our solutions for the G+ instances are optimal up
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Fig. 4: The COS value (left) and the time to last incumbent (ms) (right) as a
function of the total number of time steps (T ) with the TDValSel+CpMax and
the CpMax configurations on a G+, a G∗ and a GL instance where pod(yt) = 0.6
(∀t ∈ T ), and ρ = 0.6.

to the fourth decimal. However, the instances are too large for our solver to prove
optimality in a reasonable time. Table 4 presents the time to last incumbent on
a 11 × 11 G+ grid with pod(r) = 0.6 and ρ = 0.6, and the time spent by a
BB procedure to prove the optimality of its last incumbent solution when using
various bounds from the literature. The hardware and software configurations
used to produce these results differ from ours. Consequently, the goal of this
comparison is simply to show the general tendency on the instances for which
the optimal value is published rather than proving that our approach outper-



Table 4: The time to last incumbent on a 11 × 11 G+ grid with pod(r) = 0.6
and ρ = 0.6 compared to the time spent by a BB procedure to prove optimality
when using various bounds [10].

Time to incumbent (s) Time to optimality (s)*
T TDValSel+CpMax DMEAN MEAN PROP FABC
15 2.80 3.14 12.27 8.16 62.64
17 31.02 23.76 71.57 37.20 352.96

*The time values are taken from [10].
They are used to give a general idea of how our results behave.

forms the BB procedure. Recalling that we are not using any problem specific
bound on the objective function (except a simple objective function simplifica-
tion carried out in the CpMax model), our results, comparable to the ones in
the literature, highlight the performance of the TD value selection heuristic.

One of the main advantage of using constraint programming is expressivity.
The constraint programming model stays close to the natural problem formula-
tion while enabling strong filtering (e.g., the CpMax model) and heuristics (e.g.,
the TD value selection heuristic). We believe that using a CP model is closer
to the natural problem formulation than an IP model for example. In addition,
the model can be easily adapted and extended. For instance, the model and the
heuristic can be generalized to allow searches from a distance, i.e., the searcher
sees a subset of visible vertices including his position.

6 Conclusion

We have presented a CP model to solve the OSP problem. This model includes a
very efficient value selection heuristic that branches on vertices leading to a high
objective value (i.e., probability of success). We refined the objective function
to obtain a tighter bound on the objective value without discarding solutions.
Experiments show that our model is competitive with the state-of-the-art in
search theory and that constraint programming is a good technique to solve the
OSP. Future work includes the development of tight bounds in order to allow
the solver to prove the optimality of its incumbent solution. We believe that
such a bound could be based on the information already computed for the value
selection heuristic presented in this paper.
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