
Parallel Depth-bounded Discrepancy Search

Thierry Moisan, Claude-Guy Quimper, and Jonathan Gaudreault

FORAC Research Consortium, Université Laval, Québec, Canada
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Abstract. Search strategies such as Limited Discrepancy Search (LDS)
and Depth-bounded Discrepancy Search (DDS) find solutions faster than
a standard Depth-First Search (DFS) when provided with good value-
selection heuristics. We propose a parallelization of DDS: Parallel Depth-
bounded Discrepancy Search (PDDS). This parallel search strategy has
the property to visit the nodes of the search tree in the same order as the
centralized version of the algorithm. The algorithm creates an intrinsic
load-balancing: pruning a branch of the search tree equally affects each
worker’s workload. This algorithm is based on the implicit assignment of
leaves to workers which allows the workers to operate without communi-
cation during the search. We present a theoretical analysis of DDS and
PDDS. We show that PDDS scales to multiple thousands of workers. We
experiment on a massively parallel supercomputer to solve an industrial
problem and improve over the best known solution.

1 Introduction

Parallelization has been of growing interest in recent years, including in the
optimization community. de la Banda et al. [1] consider parallelization as one of
the three main challenges in the future of optimization technologies. Search is
at the core of optimization and constraint solvers. If one wants to parallelize a
solver, it is natural to consider parallelizing search strategies.

Parallelization of constraint programming solver is a hard problem mainly
due to communication between workers. When the number of workers is large,
the time each worker spends communicating with the other workers often exceeds
the time spent at solving the original problem.

We have recently seen good parallel algorithms without communication that
are based on centralized algorithms. Régin et al. [2] split the problem into multi-
ple subproblems. These subproblems are then given to workers that solve them
using classic centralized algorithm.

Parallel Limited Discrepancy-based Search (PLDS1) [3] is based on Limited
Discrepancy-based Search (LDS) [4]. LDS has a huge advantage over traditional
search strategies such as Depth-First Search (DFS) when a good value ordering
heuristic is used. The PLDS parallel version keeps this advantage by preserving

1 In the original article this algorithm was named PDS. In this paper, we name it
PLDS for clarity concerns.



the node visit ordering of the centralized algorithm. Each leaf of the search tree
is implicitly assigned to a worker. Every worker branches in the search tree while
making sure there is at least one leaf in the subtree of the current node that is
assigned to it. An important property of this approach is that, upon pruning the
search tree, workload balance difference can be theoretically bounded. PLDS
scales to thousands of workers.

In this paper, we show that the parallelization mechanism used by PLDS can
also be used to parallelize other search strategies while keeping the same proper-
ties. We parallelize the Depth-bounded Discrepancy Search algorithm (DDS) [5]
to obtain Parallel Depth-bounded Discrepancy Search (PDDS). Our motivation
lies in the observation that in a centralized environment, DDS is generally more
efficient than LDS when it is provided with good value ordering heuristics. We
also show how the same parallelization mechanism can be applied to DFS which
becomes Parallel Depth-First Search (PDFS). The theoretical analysis of PDFS
will simplify the analysis of PDDS.

The rest of this paper is divided as follows. Section 2 describes the DDS
algorithm and reviews related parallel computing work. Section 3 details the
PDFS algorithm while section 4 details the PDDS algorithm. Section 5 presents
a theoretical analysis of the algorithms. Finally, we experiment with an industrial
problem coming from the wood-products industry in Section 6.

2 Literature review

We review the related works by presenting different parallelization approaches.
Then, we describe the original DDS algorithm that we parallelize in Section 4.

2.1 Shared memory

It is possible to parallelize a search strategy by sharing, through a shared memory
space, a list of open nodes, i.e. the visited nodes for which there are still values
to branch on. Each worker can select an open node and process it until no more
work can be done from that point. Then, the worker comes back to the pool of
open nodes to obtain more work.

Perron [6] proposes a framework based on this idea. Good performances are
often reported, as in [7] where a parallel Best First Search is implemented and
evaluated up to 64 processors. However, this approach cannot easily scale up to
thousands of processors due to communication overload.

2.2 Portfolios

Portfolio-based methods use a set of different solvers, parameters and/or search
strategies. Workers are using different configurations to solve the exact same
problem in parallel, increasing the probability of quickly finding a good solution.
The approach can be improved by making use of randomized restarts [8] and
nogoods learning [9].



Finding good alternative configurations for a specific problem can be a dif-
ficult problem by itself. Xu et al. [10] use machine learning to find appropriate
SAT solver configurations to a new problem based on a set of learned examples.

2.3 Search space splitting and work stealing

Space splitting divides the search tree into small subtrees that are assigned to
the workers. As it is unlikely that those subtrees are of equal size, a work stealing
mechanism (see [11,12]) allows busy workers to share their workload with idle
workers and therefore evenly balance the workload among all workers. In [13],
Menouer et al. parallelize the constraint programming solver OR-Tools using a
framework based on work-stealing.

Communication may cause issues when there are too many workers. At some
point, the communication monopolizes the majority of the computing power.
Reducing the amount of communication speeds up the search. For example, Xie
and Davenport [14] allocate specific workers to coordinate the tasks, allowing
more processors to be used before performance starts to decline.

Yun and Epstein [15] combined the use of portfolios with work-stealing. They
start by launching a portfolio phase by making a choice of solver configuration.
Then the search space is divided and work is distributed among the workers.
During the search, information about the success (or lack thereof) is transmitted
from the workers to the manager inducing a change in the future choices among
the portfolio of solvers.

Recent work showed how to implicitly balance the workload while minimizing
the communication during the search. Régin et al. [2] split the problem into a
large number of subtrees. Some are quicker to explore than others, as pruning
occurring during the search does not equally affect each part of the search tree.
However, since a large number of subtrees is assigned to each worker, their
workload tend to balance.

The exclusion of all communication during the search is also the solution we
advocate in our previous work [3] where we introduced PLDS, a parallel version
of Limited Discrepancy Search (LDS) [4]. The parallelization is done by implicitly
assigning leaves of the search tree to workers. We showed how to test whether a
worker has any work assigned to it in the subtree under the current node. This
parallel algorithm has the property to keep the same node visit ordering as the
sequential version. This is the approach we will generalize in this paper.

2.4 Depth-bounded Discrepancy Search

Harvey and Ginsberg [4] introduce the concept of discrepancy. Each time a solver
needs to assign a value to a variable, a value-ordering heuristic is used to select
the value that will most likely lead to a solution. As a convention, when a binary
search tree is represented graphically, the left branch under a node corresponds
to the recommendation of the heuristic while the right one does not. Figure 1
shows such binary search tree. Therefore, each time the solver branches to the
right in this tree, it goes against the heuristic recommendation. Such branching
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Fig. 1: A binary search tree with the number of discrepancies of each node.

is called a discrepancy. Leaves on Figure 1 are labeled with the total number
of discrepancies one must follow to go from the root of the tree to that leaf.
Harvey and Ginsberg show that, when using a good value ordering heuristic, the
expected quality of a leaf decreases as the number of discrepancies increases.

Limited discrepancy search (LDS) [4] is the first search strategy based on
discrepancies. It visits the leaves of the tree in order of discrepancies. Improved
Limited Discrepancy Search (ILDS) [16] is an improvement over LDS since it
visits each leaf at most once (the original LDS has redundancy). There are
other search strategies that take advantage of discrepancies such as Discrepancy-
Bounded Depth First Search (DBDFS) [17] and Limited Discrepancy Beam
Search (BULB) [18].

Depth-bounded Discrepancy Search (DDS) [5] makes the following assump-
tion: it is more probable that the value ordering heuristic makes a mistake at the
top of the search tree than at the bottom. A value-ordering heuristic can make
better decisions lower in the search tree since it has more information about the
problem. Hence, it is more likely that the heuristic makes a mistake at top the
of the tree. Based on this assumption, if the search has to reconsider the choices
it made, it better reconsider choices made at the top of the search tree rather
than at the bottom.

Given a search tree of depth n, DDS performs n+ 1 iterations. At iteration
k = 0, DDS visits the leftmost leaf of the tree. At iteration k, for 1 ≤ k ≤ n,
DDS visits all the branches in the search tree above level k − 1. At level k,
the algorithm visits all value assignments that do not respect the value ordering
heuristic. Beyond level k, DDS visits all value assignments that respect the value
ordering heuristic and therefore have no discrepancies. For example, for k = 2,
DDS visits all nodes down to level 1, branches once on values that do not respect
the heuristic, and then always branches on the leftmost child until it reaches a
leaf.

Algorithms 1 and 2 are a generalization of the original DDS algorithm [5] for
n-ary variables.

In the following description, we suppose that the variable ordering heuristic
is deterministic and only depends on the states of the domains. Hence, under the
same conditions, the algorithm will always make the same choices (otherwise,
the variable ordering heuristics could cause the search strategy to visit multiple



times some leaves and ignore other leaves). This supposition was also made in
[4] and [5].

Algorithm 1: DDS([dom(X1), . . . ,dom(Xn)])

for k = 0..n do
s← DDS-Probe([dom(X1), . . . , dom(Xn)], k)
if s 6= ∅ then return s

return ∅

Algorithm 2: DDS-Probe([dom(X1), . . . ,dom(Xn)], k)

Candidates← {Xi | | dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . , dom(Xn) satisfies all the constraints then
return dom(X1), . . . , dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v| dom(Xi)|−1 be the values in dom(Xi) sorted by the heuristic.
if k = 1 then d← 1 else d← 0

if k = 0 then d← 0 else d← |dom(xi)| − 1

for d = d..d do
s← DDS-Probe([dom(X1), . . . , dom(Xi−1), {vd},

dom(Xi+1), . . . , dom(Xn)],max(0, k − 1))
if s 6= ∅ then return s

return ∅

3 PDFS algorithm

PDFS will simplify the theoretical analysis of DDS and PDDS for the following
reason. At iteration k, DDS (PDDS) performs a DFS (PDFS) over the first k−1
variables of the problem.

To our knowledge, it is the first time that DFS and DDS are parallelized this
way.

We parallelize DFS over ρ workers labeled from 0 to ρ − 1. Let s be a leaf
of the search tree and v(s) its order of visit in DFS, i.e. the first leaf visited by
DFS has a visit order of 0, the second leaf visited by DFS has a visit order of
1, and so on. We implicitly assign a leaf s to worker v(s) mod ρ. Each worker
is aware of its label and the total number of workers ρ. A worker w performs a



standard DFS but only visits the nodes that have at least one leaf, among their
descendants, whose assigned worker is w. Each worker needs to decide whether
a node leads to a leaf of interest. This is done as follows.

Let a be the current node and left(a) its left child. The PDFS search keeps
track of the worker l(a) assigned to the leftmost leaf, in the subtree rooted at
a, to be visited in the current iteration of the centralized search strategy. In
the case of PDFS, there is only one iteration but PDDS is run over multiple
iterations. We necessarily have l(a) = l(left(a)) since both subtrees have the
same leftmost leaf. The function CDFS takes as input a node and returns the
number of its descendants that are leaves to be visited in the current iteration
of the centralized search strategy.

CDFS([X1, . . . , Xn]) =

n∏
i=1

|dom(Xi)| (1)

If all variable domains have cardinality δ, Equation 1 simplifies to Equation 2.

CDFS([X1, . . . , Xn]) = δn (2)

The list of workers that needs to visit left(a) is given by l(a), (l(a)+1) mod ρ, (l(a)+
2) mod ρ, . . . , (l(a) + CDFS(left(a)) − 1) mod ρ. Consequently, the worker w only
needs to visit the node left(a) if it belongs to this list. This can be tested
with the inequality (w − l(left(a))) mod ρ < CDFS(left(a)). One can apply the
same reasoning on the right child right(a) knowing that that l(right(a)) =
(l(left(a)) + CDFS(left(a))) mod ρ.

Algorithm 3: PDFS([dom(X1), . . . ,dom(Xn)], l)

Candidates← {Xi | | dom(Xi)| > 1}
Choose a variable Xi ∈ Candidates
z ← CDFS(Candidates \ {Xi})
for vd ∈ dom(Xi) do

if (currentProcessor − l) mod ρ < z then
s← PDFS([dom(X1), . . . , dom(Xi−1), {vd},dom(Xi+1) . . . ,dom(Xn)], l)
if s 6= ∅ then return s

l← (l + z) mod ρ

return ∅

Algorithm 3 describes PDFS. The first call to PDFS is done with the original
variable domains and l = 0.

4 PDDS algorithm

We show in this section how the same mechanism can be applied to DDS which
becomes a Parallel Depth-bounded Discrepancy Search (PDDS). As in PLDS



Algorithm 4: PDDS([dom(X1), . . . ,dom(Xn)])

l← 0
for k = 0..n do

Candidates← {Xi | | dom(Xi)| > 1}
z ← CDDS(Candidates, k)
if (currentProcessor − l) mod ρ < z then

s← PDDS-Probe([dom(X1), . . . , dom(Xn)], k, l)
if s 6= ∅ then return s

l← (l + z) mod ρ

return ∅

and PDFS, parallelization is done by assigning the leaves of the search tree to
each worker in a round-robin fashion.

Algorithms 4 and 5 show how PDDS operates. Algorithm 4 visits all the leaves
whose discrepancies appear within the first k variables. Algorithm 5 launches an
iteration to visit all those leaves following a DFS search.

As for PDFS, the algorithm requires a function CDDS that counts the num-
ber of leaves under the current node that should be visited during the current
iteration of DDS. The next subsection shows how to implement the function
CDDS.

Algorithm 5: PDDS-Probe([dom(X1), . . . ,dom(Xn)], k, l)

Candidates← {Xi | | dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . , dom(Xn) satisfies all the constraints then
return dom(X1), . . . , dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v| dom(Xi)|−1 be the values in dom(Xi) sorted by the heuristic.
if k = 1 then d← 1 else d← 0

if k = 0 then d← 0 else d← |dom(Xi)| − 1

for d = d..d do
z ← CDDS(Candidates \ {Xi},max(0, k − 1))
if (currentProcessor − l) mod ρ < z then

s← PDDS-Probe([dom(X1), . . . , dom(Xi−1), {vd},
dom(Xi+1), . . . , dom(Xn)],max(0, k − 1), l)

if s 6= ∅ then return s

l← (l + z) mod ρ

return ∅



4.1 Counting functions

We provide two functions that count the number of leaves in a subtree that have
to be visited in the current iteration of the DDS. Both functions take as input
the variables to be explored in this subtree and the number of levels k where
discrepancies are allowed. Function 3 assumes that all variable domains have
cardinality δ. Function 4 assumes that variables are selected in a static ordering.
Without these assumptions, one would need to integrate the knowledge of the
branching heuristic into the computation of the number of leaves. However, it
is always possible to do a workaround and to extend the domains of all vari-
ables with dummy values to match the cardinality of the largest domain. The
dummy values can be filtered out causing a slight workload imbalance among
the processors as it will be discussed in Section 5.6.

If all variable domains have cardinality δ, then one can count the number
of leaves as follows. At iteration k, DDS performs a DFS over a tree of height
k− 1. For each leaf of this tree, DDS explores the δ− 1 solutions that cause one
or more discrepancies to occur.

CDDS([X1, . . . , Xn], k) =

{
1 if k = 0

δk−1(δ − 1) if k > 0
(3)

Interestingly, when all domains have the same size, the number of leaves
depends only on the iteration number k and the cardinality of the domains δ
but not on the number of variables.

We can also suppose a static variable ordering X1, X2, . . . , Xn which is used
in every branch of the search. Under this assumption, variable domains can have
different cardinalities.

CDDS([X1, . . . , Xn], k) =


1 if k = 0

|dom(X1)| − 1 if k = 1

(|dom(Xk)| − 1)
∏k−1
i=1 |dom(Xi)| if k > 1

(4)

If the variables do not have the same domain size and their ordering is not
static, then the number of leaves in the search tree visited at iteration k depends
on the variable ordering. The function CDDS should be redefined according to
the branching heuristic.

5 Analysis

This section provides an analysis of DFS, DDS, PDFS and PDDS. To compare
these search strategies, we count the number of times each strategy visits a node
while exploring an entire search tree of n binary variables.



5.1 Analysis of DFS

In a DFS, each node of the search tree is visited once. Since there are 2n+1 − 1
nodes in a binary tree of height n, we define DFS(n) = 2n+1−1 to be the number
of node visits in a complete DFS.

5.2 Analysis of DDS

Let n be the number of binary variables in a search tree and k the level of the
last discrepancy for k ≤ n. If the level of the last discrepancy is 0, then the
search goes directly to the leftmost leaf of the subtree. Hence, the algorithm
visits one node per variable left to instantiate, which is equal to n plus the root
node which gives n + 1. Otherwise, the search does a DFS over the k − 1 first
variables. For each of the 2k−1 leaves of this DFS, n − k + 1 nodes are visited
down to the bottom of the search tree.

DDS(n, k) =

{
n+ 1 if k = 0

DFS(k − 1) + 2k−1(n− k + 1) otherwise

=

{
n+ 1 if k = 0

2k − 1 + 2k−1(n− k + 1) otherwise

The total number of node visits done by the DDS search strategy is given by
the sum over all levels k = 0..n in the search tree.

DDS(n) =

n∑
k=0

DDS(n, k) (5)

= 4 · 2n − n− 3 (6)

Surprisingly, this is the same number of node visits as a complete LDS search
(the version proposed in [16]). The number of node visits of LDS was previously
shown in [3].

5.3 Analysis of PDFS

We are interested in the number of node visits done by PDFS. To simplify the
analysis, we suppose that the number of workers is a power of two: ρ = 2x. If
there are more workers than leaves (ρ > 2n), then there are 2n workers that
each visits n+ 1 nodes from the root to a leaf. The other ρ− 2n workers remain
idle. If there are more leaves than workers (ρ ≤ 2n), then all nodes at level i,
for n − log2 ρ < i ≤ n, are visited by exactly 2n−i workers, i.e. the 2n leaves
are visited by one worker each, the 2n−1 parents of the leaves are visited by 2
workers each, the 2n−2 grand-parents are visited by 4 workers each and so on
until level n− log2 ρ where all nodes are visited by all workers. All nodes in levels
0 to n− log2 ρ are visited by all processors. The function PDFS(ρ, n) returns the
number of node visits of PDFS with ρ workers in a tree of n binary variables.



PDFS(ρ, n) =

{
(n+ 1)2n if 2n < ρ

ρ ·DFS(n− log2 ρ) +
∑n
i=n−log2 ρ+1 2i2n−i otherwise

(7)

=

{
(n+ 1)2n if 2n < ρ

(2 + log2 ρ)2n − ρ otherwise
(8)

This shows that as the number of workers grows, the computational power
grows linearly while the number of node visits grows logarithmically until we
reach the degenerate case where the workers outnumber the leaves of the tree.

5.4 Analysis of PDDS

An iteration of PDDS can be seen as a PDFS over k − 1 variables. For each of
the 2k−1 leaves in this PDFS, PDDS completes the search by instantiating the
remaining n − k + 1 variables. Let PDDS(ρ, n, k) be the number of node visits
in iteration k of PDDS with ρ workers.

PDDS(ρ, n, k) =

{
n+ 1 if k = 0

PDFS(ρ, k − 1) + 2k−1(n− k + 1) otherwise
(9)

which can be expanded to

PDDS(ρ, n, k) =


n+ 1 if k = 0

(n+ 1)2k−1 if k > 0 and 2k−1 ≤ ρ
(log2 ρ+ n− k + 3)2k−1 − ρ otherwise

(10)

We can further analyze the behavior of PDDS by summing the node visits over
all the levels k = 0..n.

PDDS(ρ, n) =

n∑
k=0

PDDS(ρ, n, k) (11)

= n+ 1 +

min(log2 ρ,n)∑
k=1

PDDS(ρ, n, k) +

n∑
k=log2 ρ+1

PDDS(ρ, n, k)

(12)

=

{
(4 + log2 ρ)2n − ρ(n− log2 ρ+ 3) if ρ ≤ 2n

(n+ 1)2n otherwise
(13)

In comparison, as reported in [3], equation (14) shows the number of node visits
done by PLDS when searching a complete binary tree.

PLDS(ρ, n) = 2n + 2n
n∑
i=1

i∑
k=0

1

2i
min(ρ,

(
i

k

)
) (14)



5.5 Speedup analysis

The speedup is the ratio between the time for a single worker to accomplish
a task over the time required for ρ workers to accomplish the same task. We
measure the time in number of node visits while supposing that all nodes have
an equal processing time. A single worker visits PDDS(n, 1) nodes to explore

an entire search tree of n binary variables while ρ workers each visits PDDS(n,ρ)
min(ρ,2n)

nodes to collectively explore the entire search tree. We therefore have a speedup

of min(ρ,2n)PDDS(n,1)
PDDS(n,ρ) . A similar computation applies for PDFS.
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Fig. 2: Theoretical speedup of PDDS and PDFS algorithms.

Figure 2a and Figure 2b show the speedup for PDDS and PDFS. For n = 11
variables, the speedup stops growing after 2048 workers. Beyond this point, there



are more processors than leaves in the search tree. Since any additional worker
is an idle worker, the speedup reaches a plateau. The number of variables affects
the performance of PDDS, especially when there are few variables. However, as
the number of variables grows, the effects become negligible.

One can see from Figure 2a and Figure 2b that the speedups in function of
n for PDDS and PDFS are almost linear. In fact, while analyzing the functions
PDDS(ρ, n) (Equation 10) and PDFS(ρ, n) (Equation 8), one sees that the most
dominant term, 2n, is multiplied by log2 ρ. This shows that the number of nodes
to be visited logarithmically increases with the number of workers. However, the
computation power increases linearly with ρ. It results in a speedup in Θ( ρ

log2 ρ
).

PDDS shows a greater speedup than PDFS when a complete search of the
tree is performed. However, it is uncommon in practice to completely visit a
search tree. Actually, even in a centralized environment we expect DDS to find
a solution sooner than DFS as we better exploit the value ordering heuristic.

Figure 2c shows the speedup obtained when the search is interrupted after
some fraction of the search space has been covered. The speedup increases until
it reaches a peak from where it decreases. The peak is reached at iteration log2 ρ,
when the number of visited leaves reaches the number of workers.

Since there are few leaves visited from iteration 0 to iteration log2 ρ, not
all workers contribute to these iterations. As k grows, more leaves need to be
explored and more workers contribute to these iterations which explains why the
speedup increases. After the peak, there are more leaves to visit than workers.
The decrease in the speedup is due to the increase in the redundancy among the
workers. Indeed, at iteration k, the redundancy occurs when the workers visit
the first k − 1 levels of the tree. The greater k is, the greater is the subtree in
which the redundancy occurs.

5.6 Workload analysis

Theorem 1. Let n be the number of variables in the problem. If a branch is
pruned from the search tree during the PDDS search, the number of leaves re-
moved from the workload of each worker differs by at most n.

Proof. If a branch of the tree is pruned, all the nodes under this branch are
removed. Each leaf in the removed subtree are associated to a worker w and to
an iteration k in which DDS visits the leaf. The leaves belonging to the same
iteration are assigned to the workers in a round-robin fashion. Therefore, for
the same iteration k, the workload among the workers differs by at most one.
Since there are n+ 1 iterations (k = 0..n), one concludes that the accumulated
workload gap is bounded by n+ 1.

However, the leaf visited at iteration 0 and the leaf visited at iteration 1
cannot be both filtered without filtering the whole tree. If the whole tree is
filtered, then the workload between each worker is the same as there is no work
to do. Otherwise, either iteration 0 or 1 does not create a workload difference of
one. Hence, the maximum workload gap is bounded by n. ut



Theorem 1 shows the benefit of implicitly assigning leaves to workers in a
round-robin fashion.

6 Experiments with industrial data

We carried out experiments with industrial data for an integrated planning and
scheduling problem from the forest-products industry. Planning and schedul-
ing lumber finishing operations is very challenging for the following reason: (1)
the manufacturing operations lead to co-production (we simultaneously produce
many different types of products from a single input) and (2) there are many
alternative operations that can be used to transform a given raw product (each
operation leads to a different basket of products). The result is that each op-
eration contributes to partially fulfill many orders at the same time and each
order can be fulfilled by many operations. The lumber finishing problem is fully
described in [19] which provides a good heuristic to solve this problem. This
heuristic inspired a search procedure (variable/value selection heuristics) [20]
that allowed a constraint programming model to outperform standard mathe-
matical programming. In [3], DFS, LDS and PLDS were compared using indus-
trial data. LDS outperformed DFS, and PLDS allowed an impressive speedup
and and solution quality that were never obtained before.

Using the same datasets and methodology as in [3], we compare DFS, LDS,
PLDS, DDS, and PDDS. The search only considers integer variables. Once the
values for these variables are known, the remaining continuous variables define a
linear program that can be easily solved to optimality using the simplex method.
Therefore, each time a valid assignment of the integer variables is obtained, we
consider we have reached a leaf in the search tree and a linear program is solved
to evaluate the value of this solution. The linear programs were solved using
CPLEX version 12.5.

We used Colosse, a supercomputer with 7680 cores (dual, quad-core Intel
Nehalem CPUs, 2.8 GHz with 24 GB RAM). Two Canadian lumber companies
involved in the project provided the industrial instances.

Figures 3a to 3c show the objective value (minimizing backorder costs) ac-
cording to computation time (maximum one hour) for 1, 512 and 4096 workers.
DDS and PDDS with one worker showed the same performance. For this reason
we omit the latter in the chart. The same comment applies to LDS (PLDS) and
DFS (PDFS).

As expected, DDS outperformed LDS since we use a specialized value and
variable ordering heuristic adapted to this problem. This shows that the assump-
tion of DDS is true in this case: exploring discrepancies at the top of the search
tree first leads to better solution faster. The centralized DDS even catches up
PLDS running on 512 workers (see Figure 3b).

PDDS using 4096 workers obtains solutions of quality that was never reached
before. The gap between the solutions obtained with PLDS (4096 workers) and
PDDS (4096 workers) is considerable from an industrial point of view. PDDS has
reduced the backorders by a ratio ranging between 68% and 85% when compared
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Fig. 3: Best objective value found depending on time for various datasets.

to DDS. Finally, if one needs a solution of a given quality, PDDS finds it with
much less computation time than PLDS and PDFS.

Table 1 reports statistics computed during these experiments. The speedup is
computed as the ratio of the number of leaves visited by multiple workers divided
by the number of leaves visited by one worker.2 The true speedup measure based
on wall-clock time is not used since it was not practical from an experimental
point of view. For example, with dataset M1, DDS visits 615 leaves in one hour.
The same leaves are visited in a few seconds with PDDS 1024 workers while
409 workers are idle. With the same dataset, PDDS 1024 workers visits 614885
leaves in 10 minutes which is equivalent to 110 days of work for a centralized
DDS. Experiments with such high difference in task size would not lead to any
significant results.

2 The super-linear speedup obtained on instance M1 with ρ = 512 workers is explained
by the uneven time required to solve the linear programs associated to each leaf. The
average solving time is greater for the leaves both reached by DDS and PDDS than
for the additional leaves visited by PDDS. Other instances do not show this behavior.



dataset ρ speedup χ σχ max(χ)−min(χ)

M1 512 517.9 622.04 1.94 12
M1 1024 1001.0 601.21 4.95 24
M1 2048 2008.2 603.06 4.68 24
M1 4096 4087.0 613.66 4.37 24

M2 512 475.0 756.11 2.68 14
M2 1024 945.4 752.41 2.44 14
M2 2048 1886.7 750.82 2.53 17
M2 4096 3732.8 742.72 2.76 18

M3 512 469.0 830.79 11.16 84
M3 1024 926.5 820.67 13.55 90
M3 2048 1844.2 816.75 11.8 85
M3 4096 3695.4 818.3 14.29 113

Table 1: Statistics of the industrial datasets experiments. The column χ is the
average number of leaves visited by each worker. The column σχ standard devia-
tion of the number of leaves visited by each worker. The column max(χ)−min(χ)
is the maximum difference of processed leaves between workers.

Even if the whole search tree is not visited, we wanted to measure the dif-
ference of workload between workers, in terms of visited leaves. Let χj be the
number of leaves processed by worker j. Let min(χ) be the minimum value of
χj for every j ∈ 0, 1, . . . , ρ− 1 and max(χ) the maximum. Let χ be the average
number of leaves visited by each worker. The standard deviation of the number
of leaves visited by each worker is σχ. This measure shows that processors have
visited roughly the same number of leaves.

7 Conclusion

We proposed a parallelization of DDS that we named Parallel Depth-bounded
Discrepancy Search (PDDS). We theoretically showed that PDDS scales to un-
limited number of workers until there are more workers than leaves in the search
tree, thanks to the fact that there is no communication between the workers.
When only a part of the tree is searched, as it is most common, the instances
with more variables lead to a greater speedup.

We theoretically analyzed the numbers of node visits of DDS and PDDS.
These numbers of node visits are used to analyze the theoretical speedup of
PDDS. We showed that the number node visits of DDS is the same as LDS
when visiting a complete search tree.

Finally we used an industrial problem from the forest-products industry to
experiment with PDDS. We showed that PDDS consistently performs better
than PLDS in our industrial context for which a good heuristic was provided.
From an industrial point of view, the computation time is reduced and the
solution quality is enhanced.
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