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Thierry.Moisan.1@ulaval.ca, Jonathan.Gaudreault@ift.ulaval.ca,

Claude-Guy.Quimper@ift.ulaval.ca

Abstract. Backtracking strategies based on the computation of dis-
crepancies have proved themselves successful at solving large problems.
They show really good performance when provided with a high-quality
domain-specific branching heuristic (variable and value ordering heuris-
tic), which is the case for many industrial problems. We propose a novel
approach (PDS) that allows parallelizing a strategy based on the com-
putation of discrepancies (LDS). The pool of processors visits the leaves
in exactly the same order as the centralized algorithm would do. The
implementation allows for a natural/intrinsic load balancing to occur
(filtering induced by constraint propagation would affect each processor
pretty much in the same way), although there is no communication be-
tween processors. These properties make PDS a scalable algorithm that
was used on a massively parallel supercomputer with thousands of cores.
PDS improved the best known performance on an industrial problem.

1 Introduction

Constraint solvers have been used for decades and were successful at solving
numerous operations research problems. For instance, these solvers are used
for optimizing computer networks by better routing the traffic [1, 2], and for
planning and scheduling problems [3] in different industries, among them the
forest products industry [4, 5]. A solver accepts as input a combinatorial problem
defined by a set of variables and a set of constraints posted on these variables.
The solver usually explores the candidate solutions by doing a backtracking
search in a tree.

With the rise of multi-core servers, there has been an increase in research
for parallelizing constraint solvers. Parallelization is not trivial as there is need
for a trade-off between the workload balance, the communication cost, and the
duplication (redundancy) of work between the processors.

The choice of an efficient search strategy is instrumental in solving large in-
dustrial problems, even in a centralized environment (for performance reasons, it
is essential to explore the most promising leaves first). Among others, backtrack-
ing strategies based on the analysis of discrepancies such as LDS [6], DDS [7],
and DBDFS [8] have proved themselves successful at solving large problems.
They show really good performance when provided with a high-quality branch-
ing heuristic (that is, variable and value ordering heuristic), which is the case
for many industrial problems (e.g. [5]).



In this article, we propose a novel approach (PDS) that allows parallelizing
a strategy based on the computation of discrepancies (i.e. LDS). The proposed
approach shows the following characteristics:

– The pool of processors globally visits the leaves in exactly the same order as
the centralized version of LDS would do.

– There is no need for communication between the processors.
– The implementation allows for a natural/intrinsic load balancing to oc-

cur (filtering induced by constraint propagation would affect each processor
pretty much in the same way).

– The method provides robustness (if a processor dies, it can be replaced by
a new one that must however restart the work allocated to this processor).

– It offers good scaling: adding additional processors can never slow down the
global process, unlike approaches using communication.

These properties make PDS a scalable algorithm that we used to solve in-
dustrial problems from the forest products industry (see [4, 5]) using a massively
parallel supercomputer called Colosse deployed at Université Laval.

The remainder of this paper is organized as follows. Section 2 reviews basic
concepts related to parallel tree search. Sections 3 and 4 describe the original
algorithm and the parallel version. Section 5 reports theoretical results and eval-
uates statistically the performance of the algorithm in order to illustrate different
characteristics. Section 6 describes the experiments run on industrial problems
and their results. Section 7 concludes the paper.

2 Basic Concepts

This section provides an overview of the main approaches regarding parallel tree
search. We then give an overview of previous attempts that were made in order
to parallelize discrepancy-based strategies.

2.1 Search space in shared memory

The simplest method for parallel tree search is implemented by having many
cores share a list of open nodes (nodes for which there is at least one of the chil-
dren that is still unvisited). Starved processors just pick up the most promising
node in the list and expand it. By defining different node evaluation functions,
one can implement different strategies (DFS, BFS and others). A comprehensive
framework based on this idea was proposed in [9]. Good performance is often
reported, as in [10] where a parallel Best First Search was implemented, and
evaluated up to 64 processors.

Although this kind of mechanism intrinsically provides excellent load bal-
ancing, it is known not to scale beyond a certain number of processors; beyond
that point, performance starts to decrease. For this reason, the approach cannot
easily be adapted for massively parallel supercomputers with thousands of cores.



2.2 Search space splitting / work stealing

This family of approaches is often reported as the most frequently seen in the
literature [11]. The main idea is to have the search tree split into different regions
allocated to processors (e.g. one processor branches to the left, the other proces-
sor branches to the right). As it is unlikely those subtrees will be of equal size,
a work stealing mechanism (see [12, 13]) is needed. Because it uses both com-
munication and computation time, this cannot easily be scaled up to thousands
of processors. In practice, we observe a decrease in performance when reaching
a certain number of processors. However, interesting work was reported in [14];
the authors allocated specific processors to coordination tasks, allowing more
processors to be used before performance starts to decline.

Another promising approach is reported in [11]. The authors used a search
space splitting mechanism allowing good load balancing without needing a work
stealing approach. They use a hashing function allocating implicitly the leaves to
the processors. Each processor applies the same search strategy in its allocated
search space, which solves the load balancing problem. However, like previous
approaches, leaves are globally visited in a different order than they would be on a
single-processor system. This could be a pity in situations where we know a really
good domain-oriented search strategy, a strategy that the parallel algorithm
failed to exploit to its full potential.

2.3 Las Vegas algorithms / portfolios

This approach consists in allocating the same search space to each processor.
Each processor explores it using a different strategy, leading to a different vis-
iting order of the leaves. No communication is required and an excellent level
of load balancing is achieved (they all search the same search space). Even if
this approach causes a high level of redundancy between processors, it shows re-
ally good performance in practice. Shylo et al. [15] greatly improves the method
using randomized restart [16–18] on each processor.

As there is no communication between processors, this approach is fully scal-
able, although on small multi-core computers some authors increase the efficiency
of the method by allowing processors to share information learned during the
search (e.g. nogoods, see [19]).

In general, the main advantage of the algorithm portfolio approach is that
one does not need to know a good search strategy beforehand: many strategies
will be automatically tried at the same time by the parallel system, thanks
to randomization. This is very useful because, as mentioned by [20] and [21],
defining good domain-specific labelling strategies (that is, variable and value
ordering heuristic) is a difficult task.

However, for complex applications where general strategies are inefficient and
where very good domain-specific strategies are known (e.g. [4, 5]) one would like
to have the parallel algorithm exploit the domain-specific strategy.

To the best of our knowledge, it is the first time that LDS is parallelized this
way. In [14] LDS was used locally by processors to search in the trees allocated



to them (by a tree splitting / work stealing algorithm) but the global system did
not replicate an LDS strategy. The original centralized LDS being an iterative
algorithm, Boivin [22] tried running the first k iterations at the same time on k
processors. The approach did not prove to be efficient for the following reason:
when LDS is provided with a good labelling strategy, the kth iteration of LDS
visit leaves that have considerably less expected probability of success than those
in the first iterations. For domain-specific problems where centralized LDS is
known to be good, only the first few processors were really helpful in the parallel
implementation. Moreover, they were experiencing load balancing problems.

Finally, LDS was adapted for distributed optimization in [23, 24]. However,
distributed problems (DisCSP [25], DCOP [26] and HDCOP [27]) refers to a dif-
ferent context than parallel computing. These are problems that are distributed
by nature; different agents are responsible for establishing the value of distinct
variables and communication/coordination are inherent to those approaches.
Therefore, the algorithm called MacDS we proposed in [23, 24, 27] could not
serve as a basis for a scalable parallel LDS algorithm.

The next section provides a comprehensive description of the centralized
version of LDS that will be parallelized in Section 4.

3 LDS

Harvey and Ginsberg [6] describe LDS with binary search trees, i.e. trees where
each non-leaf node has two children. We present a generalization of LDS to n-
ary trees which includes a modification by Walsh [7] that prevents visiting a leaf
more than once. The search space of a problem can be represented as a tree where
each node corresponds to a partial assignment. The root is the empty partial
assignment and the leaves are complete assignments (also called solutions). Each
child has one more variable assigned than its parent.

The value ordering heuristic is a function that orders the children of a node
from the most likely one to lead to a solution to the least likely one. When
represented graphically, the left child is the most likely one to lead to a solution
and the right child is the least likely one. A discrepancy is a deviation from
the first choice of the heuristic. We say that the first choice of the heuristic
has zero discrepancy, the second choice has one discrepancy, the third choice
has two discrepancies and so on. The discrepancy of a node is the sum of the
discrepancies associated to each choice on the path from the root of the tree
to the node. Figure 1 shows a search tree where the number of discrepancies is
shown for each node.

Harvey and Ginsberg demonstrated that, with a good value ordering heuris-
tic, the expected quality of a leaf decreases as the number of discrepancies in-
creases. For that reason, they proposed to visit the leaves with the fewest dis-
crepancies first and to keep the leaves with the most discrepancies for the end.
Algorithm 2 visits all the leaves that have exactly k discrepancies. Algorithm 1
launches the search to visit all leaves in increasing number of discrepancies.
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Fig. 1. Search tree. The discrepancy of each node is written inside the node.

4 PDS

We want to run an LDS search over multiple processors. Parallelization can be
achieved in multiple ways but we set four goals that will influence our choices.

1. Search strategy preservation We want the leaves of the search tree to
be visited in the same order as they are on a single processor. Suppose that
we mark each leaf of the tree with the time as it appears on a wall clock at
the moment the leaf is visited. We assume that the clock is precise enough
to break any ties. The ordering of the leaves by their visiting time should be
the same regardless of the number of processors used.

2. Workload balancing We want the amount of work assigned to each proces-
sor to be evenly spread. This goal is particularly difficult to reach when the
constraints filter the variable domains and make the search tree unbalanced.

3. Robustness We aim at running the search on a large cluster of computers.
It is frequent on those computers that a processor fails for different reasons
and that the program must be restarted on another processor. It must be
possible to identify which part of the search tree must be reassigned to
another processor.

4. Minimizing the communication We aim at minimizing the communica-
tion between the processors. We actually want to avoid any communication.
We make no assumptions about the geographical location of the processors
and their ability to communicate. Communication should be limited to the
broadcast of a solution.

We define a variation of LDS that we call PDS. We label ρ processors with an
integer between 0 and ρ− 1 called the processor id. There is exactly one process

Algorithm 1: LDS([dom(X1), . . . ,dom(Xn)])

for k = 0..n do
s← LDS-Probe([dom(X1), . . . , dom(Xn)], k)
if s 6= ∅ then return s

return ∅



Algorithm 2: LDS-Probe([dom(X1), . . . ,dom(Xn)], k)

Candidates← {Xi | |dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . , dom(Xn) satisfies all the constraints then
return dom(X1), . . . , dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v|dom(Xi)|−1

be the values in dom(Xi) sorted by the heuristic.

d← max(0, k −
∑
Xa∈Candidates\{Xi}(|dom(Xa)| − 1))

d← min(|dom(Xi)| − 1, k)
for d = d..d do

s← LDS-Probe([dom(X1), . . . , dom(Xi−1), {vd},
dom(Xi+1), . . . , dom(Xn)], k − d)

if s 6= ∅ then return s

return ∅

running on each processor. The number of processors ρ and the processor id are
given as input to each process. These two parameters are sufficient to identify
which nodes of the search tree will be explored by each process.

We label each leaf s of the search tree by its visit time t(s) in a centralized
LDS. The first leaf to be visited has a visit time of t(s0) = 0, the second leaf
has a visit time of 1 and so on. We assign each leaf to a processor in a round-
robin way by assigning a leaf s to processor t(s) mod ρ. A processor j is only
allowed to visit a leaf s that satisfies t(s) mod ρ = j or an ancestor of such a
leaf. Consequently, before branching on a child node, a processor j has to check
whether this child leads to a leaf it can visit. We show how to perform this test.

Let C(X1, . . . , Xn, k) be the number of leaves with exactly k discrepancies in
a search tree formed by the variables X1, . . . , Xn. The function C(X1, . . . , Xn, k)
is recursively defined as follows.

C(X1, . . . , Xn, k) =


0 if k < 0
1 if k = 0∑|dom(Xn)|−1
i=0 C(X1, . . . , Xn−1, k − i) otherwise

(1)

When all domains have cardinality two, the recursion becomes C(X1, . . . , Xn, k) =
C(X1, . . . , Xn−1, k) + C(X1, . . . , Xn−1, k − 1). This recursion is the same that
appears in Pascal’s triangle to compute the binomial coefficients. We therefore
have C(X1, . . . , Xn, k) =

(
n
k

)
when |dom(Xi)| = 2. Intuitively, since each variable

generates at most one discrepancy, the number of solutions with k discrepancies
is the number of ways one can choose k variables among the n variables. When
the domains have cardinalities greater than two, the recursion can be understood
as follows: the variable Xn can generate a number of discrepancies i between 0
and |dom(Xn)|−1. For each possible value of i, we count the number of solutions
in the subtree of height n− 1 that have exactly k − i discrepancies.



In equation (1), it seems that we consider a fixed ordering of the variables
X1, . . . , Xn. However, the variable ordering imposed by the heuristic does not
need to be static, but is required to be deterministic.

Consider a node a where a value is going to be assigned to Xn and none of
the variables X1, . . . , Xn are assigned. The node a has for children the nodes
c0, . . . , c|dom(Xn)|−1. Let l(a, k) be the processor assigned to the left-most leaf

with k discrepancies in the subtree rooted at a. From this construction, we
have l(a, k) = l(c0, k) since branching from a to c0 adds no discrepancies to
the partial assignment and that both expressions refer to the same leaf. There
are C(X1, . . . , Xn−1, k) leaves with k discrepancies in the subtree rooted at c0.
Since each of these leaves are assigned to the processors in a round-robin way,
the processor assigned to the first leaf in the subtree rooted at c1 is therefore
(l(c0, k) + C(X1, . . . , Xn−1, k)) mod ρ. The same reasoning applies for the other
children leading to the following recursion.

l(ci, k − i) =

{
l(a, k) if i = 0
(l(ci−1, k − i+ 1) + C(X1, . . . , Xn−1, k − i+ 1)) mod ρ otherwise

We now have all the tools to present how the search strategy PDS proceeds.
Each call to Algorithm 4 corresponds to the visit of a node in the search tree.
The parameter k corresponds to the number of discrepancies that must lie on
the path between this node and the leaves. Each processor visits only the nodes
that lead to one of its assigned leaves. For each node a with children c0, c1, . . .,
Algorithm 4 computes which processor will treat the left-most leaf of the subtree
rooted at ci. This allows computing a range of processors that will visit each
child. If the current processor is among that range, then it branches to the child.

5 Analysis

This Section provides an analysis of PDS in order to illustrate different properties
of the algorithm. Section 4 showed how parallel cores can globally visit the leaves
in the same order as the centralized algorithm would do. We now demonstrate the
quality of the intrinsic workload balance that is achieved. First, when exploring

Algorithm 3: PDS([dom(X1), . . . ,dom(Xn)])

l← 0
for k = 0..n do

Candidates← {Xi | |dom(Xi)| > 1}
z ← C(Candidates \ {Xi}, k)
if (currentProcessor − l) mod ρ < z then

s← PDS-Probe([dom(X1), . . . , dom(Xn)], k, l)
l← l + C({X1, . . . , Xn}, k) mod ρ
if s 6= ∅ then return s

return ∅



Algorithm 4: PDS-Probe([dom(X1), . . . ,dom(Xn)], k, l)

Candidates← {Xi | |dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . , dom(Xn) satisfies all the constraints then
return dom(X1), . . . , dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v|dom(Xi)|−1

be the values in dom(Xi) sorted by the heuristic.

d← max(0, k −
∑
Xj∈Candidates\{Xi}(|dom(Xj)| − 1))

d← min(|dom(Xi)| − 1, k)
for d = d..d do

z ← C(Candidates \ {Xi}, k − d)
if (currentProcessor − l) mod ρ < z then

s← PDS-Probe([dom(X1), . . . , dom(Xi−1), {vd},
dom(Xi+1), . . . , dom(Xn)], k − d, l)

if s 6= ∅ then return s

l← l + zmod ρ

return ∅

the whole tree, the round-robin assignation of the processors ensures that the
difference between the number of leaves visited by two processors is at most one.
Workload balancing is easy to achieve when considering a complete search tree.
However, it becomes harder to evenly divide the work among the processors
when the tree is unbalanced. Search trees are often unbalanced when domain
filtering and consistency technique are applied. We prove that when a value is
filtered out of a variable domain and that a branch is cut from the tree, the
workload is evenly reduced among all processors.

Theorem 1. Let n be the number of variables in the problem. If a branch is cut
from the search tree, the number of leaves removed from the workload of each
processor differs by at most n+ 1.

Proof. The round-robin affection of the leaves with k discrepancies in a subtree
guarantees that the number of leaves for each processor differs by at most one.
Since we explore a subtree n+1 times for solutions with 0, 1, ..., n discrepancies,
the difference of workload between the processors is at most n+ 1 leaves. ut

5.1 Overhead

We do an overhead comparison of PDS, LDS, and DFS by counting the number of
times a node is visited in a complete search tree associated to n binary variables.

A DFS in a tree with n variables visits the root and performs a DFS on two
subtrees of n− 1 variables. Let DFS(n) be the number of visited nodes.

DFS(n) =

{
1 if n = 0
2DFS(n) + 1 if n > 0

(2)



This non-homogeneous linear recurrence of first order solves to DFS(n) =
2n+1 − 1, i.e. the number of nodes in a complete binary tree of height n.

We consider a PDS with ρ processors. Let PDSprobeρ(n, k, j) be the number
of nodes visited by processors j ∈ {0, 1, . . . , ρ − 1} on a tree with n binary
variables for which we seek leaves of k discrepancies. We assume that the left-
most leaf must be visited by processor 0. If the left-most leaf has to be visited
by processor a, one can retrieve the number of visited nodes by relabeling the
processors and computing PDSprobeρ(n, k, j − a mod ρ). When k ∈ {0, n}, the
tree has a unique leaf with k discrepancies and only the processor j = 0 visits
the n + 1 nodes between the root and the leaf. If the number of leaves with k
discrepancies,

(
n
k

)
, is smaller than or equal to j, then the processor j does not

have to visit the tree. In all other cases, the number of visited nodes depends on
the number of visited nodes in the left and right subtrees. We have the following
recurrence.

PDSprobeρ(n, k, j) =


n+ 1 if j = 0 ∧ k ∈ {0, n}
0 if

(
n
k

)
≤ j

PDSprobeρ(n− 1, k, j) otherwise
+PDSprobeρ(n− 1, k − 1,

j −
(
n−1
k

)
mod ρ) + 1

Let PDSρ(n) be the total number of nodes visited by the ρ processors.

PDSρ(n) =

n∑
k=0

ρ−1∑
j=0

PDSprobeρ(n, k, j) =

n−1∑
k=1

ρ−1∑
j=0

PDSprobeρ(n, k, j) + 2(n+ 1)

=

n−1∑
k=1

ρ−1∑
j=0

PDSprobeρ(n− 1, k, j)

+

n−1∑
k=1

ρ−1∑
j=0

PDSprobeρ(n− 1, k − 1, j −
(
n− 1

k

)
mod ρ)

+

n−1∑
k=1

min(ρ,(n
k))−1∑

j=0

1 + 2(n+ 1)

One can replace j −
(
n−1
k

)
mod ρ by j since we sum over j = 0..ρ − 1. We also

perform a change of indices for k in the same summation.

PDSρ(n) =

n−1∑
k=1

ρ−1∑
j=0

PDSprobeρ(n− 1, k, j) +

n−2∑
k=0

ρ−1∑
j=0

PDSprobeρ(n− 1, k, j)

+

n−1∑
k=1

min(ρ,

(
n

k

)
) + 2n+ 2

=2PDSρ(n− 1) +

n−1∑
k=1

min(ρ,

(
n

k

)
) + 2



Using backward substitutions solves the recurrence.

PDSρ(n) =2n + 2n
n∑
i=1

i∑
k=0

1

2i
min(ρ,

(
i

k

)
)

When solved for ρ = 1, we retrieve the number of visited nodes with LDS.
We also simplify for ρ ∈ {2, 3} assuming n ≥ 3.

LDS(n) = 2n+2 − n− 3 PDS2(n) = 5 · 2n − 2n− 4 PDS3(n) =
23

4
2n − 3n− 5

We observe that, as the number of variables grows, a LDS visits twice the
number of nodes than a DFS. Therefore, when DFS finishes to visit the entire
tree, LDS visited half of the leaves. However, these leaves have fewer than n

2
discrepancies. So if the heuristic makes no mistakes at least half of the time,
LDS finds a solution by the time DFS visits the entire tree. The overhead of
LDS compared to DFS is therefore compensated by the search of more promising
parts of the search tree.

As n grows, the ratios PDS2(n)

LDS(n)
and PDS3(n)

LDS(n)
tend to 1.25 and 1.43. These

overheads of 25% and 43% grow slower than the number of processors and implies
that 2 and 3 processors will visit the search tree in 62% and 48% of the time
taken by one processor. Should the search visit the entire search tree, Figure 2
shows the speedup of PDS over LDS as the number of processors increases. We
see that the speedup grows linearly except in the degenerate case where the
number of leaves equal the number of processors.

To get a more accurate idea of the speedup, one needs to consider the quality
of the solution (in an optimization problem) or the probability of finding a
solution (in a satisfaction problem). This is done in the next section.

5.2 Statistical analysis

We provide statistical results showing that the performance of the algorithm
never declines, except in the degenerated case where there are more processors
than leaves. It is therefore a worst-case analysis where the entire tree is explored.

Harvey and Ginsberg [6] showed, by analyzing binary SCP search trees from
different problems, that the quality of a heuristic can be approximated/described
by the probability p of finding a solution in the left subtree if no mistakes were
made in the current partial assignment. Similarly, we say that the probability
of finding a solution in the right subtree is q. If the solution is unique, we have
p+ q = 1. If there is more than one solution, we have p+ q ≥ 1 since there is a
probability of having a solution both in the left subtree and the right subtree.

The better a heuristic is, the greater the ratio p
q is. The extreme situation

where p
q = 1 corresponds to a heuristic that does no better than random vari-

able/value selection (all leaves share the same probability of being a solution,
and using an LDS would not be a logical choice). The probability that a leaf
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Fig. 2. Speedup for some number of processors

with k discrepancies is a solution is pn−kqk since it involves branching k times
on the right and n− k times on the left.

Figure 3 shows the probability that a solution is found according to the
number of visited nodes per processor. The probability that a leaf si with k
deviations is a solution is P (si) = pn−kqk. The probability of finding a solution
after visiting the leaves s1, . . . , sm is 1−

∏m
i=1(1−P (si)). For a given computa-

tion time, increasing the number of processors increases the probability that a
solution has been found.

This clearly illustrates that increasing the number of processors increases the
performance until ρ reaches the number of leaves in the search tree. From that
point there is no more gain.

As the expected quality of a leaf decreases exponentially with its number of
discrepancies (recall Section 3), adding more processors makes us visit additional
leaves in the same computation time, but those leaves have smaller probability
of success than the previous ones. This is a natural (and desired) consequence
of using a good variable/value selection heuristics and a backtracking strategy
visiting leaves in order of expected quality.

Figure 4 presents the speedup obtained for some probability that a solution
is found. A lot of variation is present for low probability values. This is due to
the use of the heuristic that points toward good solutions quickly. The speedup
then converges toward a single value as the probability that a solution is found
increases.

The next experiment studies the performance of the algorithm according
to the quality of the variable/value selection heuristics used. We recall from
Section 3 that the higher the p

q ratio is, the more likely the solutions will be con-
centrated in leaves having few discrepancies. In contrast, the extreme situation
where p = q simulates the use of a heuristic that does no better than random
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where p+ q = 1 with 15 variables.

variable/value selection (all leaves share the same probability of being a solution,
and using an LDS would not be a logical choice).

On Figure 6, the curve for 1 processor shows that computation time decreases
exponentially when p

q increases. Other curves show that when we provide addi-
tional processors, the computation time still decreases exponentially, but much
more quickly.

6 Experimentation with industrial data

In a lumber finishing facility, lumbers are planed and sorted according to their
grade (i.e. quality). It may be trimmed in order to produce a shorter lumber
of a higher grade and value. The operation that improves a piece of lumber
only depends on the piece of lumber itself with no consideration for the actual
customer demand. This causes the production of multiple finished products at
the same time (co-production) from a single raw product (divergence). This



makes the production very difficult to plan according to the customer demand.
There is a finite set of processes that can be used to transform one raw product
into many finished products. The plant can only process lumber of a single
category in a given production shift. Mills prefer long campaigns of a single
category as it reduces costs: once the mill is configured for a given setup, they
want to stay in this configuration for as many shifts as possible. The plant
maintains an inventory of raw and finished products. For each customer order,
a given quantity of a finished product has to be delivered at a specific time.

To sum up, the decisions that must be taken in order to plan the finishing
operations are the following: (1) select a lumber category to process during a
campaign, (2) decide when the campaign starts and for how long it lasts, and (3)
for each campaign, decide the quantities of each compatible products to process.
It is a single machine planning and scheduling problem. Each planning period
corresponds to one ”production shift” (approximatively 4 hours). The objec-
tive is to minimize orders lateness (modelled as a penalty cost) and production
costs. The problem is fully described in [4] which provides a good heuristic for
this problem. In [5], the heuristic is used to guide the search using constraint
programming (applying LDS) and it outperforms the DFS and the mathematical
programming approach.

Industrial instances are huge and there is a need for good solutions in shorter
computation time. The instances have 65,142 variables and 50,238 constraints.
Among them, there are 42 discrete decision variables whose domains have car-
dinality 6 and 4200 continuous decision variables. As we have a really good
branching heuristic for which LDS works really well, this problem is an ideal
candidate for PDS. This search heuristic first branches on variable/values for
the integer variables (decisions 1 and 2 in the previous paragraph). Once the
values for these variables are known, the remaining continuous variables (3) de-
fine a linear program that can be easily solved to optimality using the simplex
method. Therefore, each time we have a valid assignment of the integer variables,
we consider we have reached a leaf and we solve a linear program to evaluate the
value of this solution. This implies that the leaves have a heavier computation
time than the inner nodes. This situation differs from Section 5.1 where all nodes
have the same computation time.

We implemented PDS and ran it on Colosse, a supercomputer with more than
8000 cores (dual, quad-core Intel Nehalem CPUs, 2.8 GHz with 24 GB RAM).
Two Canadian lumber companies involved in the project provided the industrial
instances. The four datasets have from 30 to 42 production shifts, from 20 to
133 processes, from 60 to 308 customer orders, from 20 to 68 raw products, and
from 60 to 222 finished products.

6.1 Results and discussion

Figures 7 to 10 show the objective value according to the computation time
(maximum of one hour) for different numbers of processors. We also computed
the best solution for LDS on these instances and the curve is indistinguishable
from the PDS(1) curve. In Figure 10, we can see that a solution of quality of



0 500 1000 1500 2000 2500 3000 3500
time (s)

2500000

3000000

3500000

4000000

4500000

o
b
je

ct
iv

e
 v

a
lu

e

PDS 1
PDS 512
PDS 1024
PDS 2048

Fig. 7. Best solution found for K1
dataset

0 500 1000 1500 2000 2500 3000 3500
time (s)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

o
b
je

ct
iv

e
 v

a
lu

e

1e7

PDS 1
PDS 512
PDS 1024
PDS 2048

Fig. 8. Best solution found for M3
dataset

0 500 1000 1500 2000 2500 3000 3500
time (s)

6000000

6500000

7000000

7500000

8000000

o
b
je

ct
iv

e
 v

a
lu

e

PDS 1
PDS 512
PDS 1024
PDS 2048

Fig. 9. Best solution found for M2
dataset

0 500 1000 1500 2000 2500 3000 3500
time (s)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

o
b
je

ct
iv

e
 v

a
lu

e

1e7

PDS 1
PDS 512
PDS 1024
PDS 2048
PDS 4096

Fig. 10. Best solution found for M1
dataset

1.1 × 107 is not found with 1 processor even after an hour but can be found in
10 minutes with 4096 processors. Furthermore, 1 processor obtained a solution
of 1.5× 107 in one hour while the same solution is found in a few seconds with
512 processors. This is a major improvement from an industrial point of view
where computation time is the real constraint.

The harder instances are those where the heuristic has more difficulties and
a good solution is obtained later in the search (Figure 7 is the easiest instance,
Figure 10 is the hardest one). The absolute time saving is greater on harder
instances when using PDS.

For each Figure from 7 to 10, the curves for 512, 1024, and 2048 processors
have the same shape but get more compressed over time as the number of pro-
cessors increases. This shows that the heuristic and the search strategies remains
the same even in its parallelized version.

Table 1 lists statistics we computed during these experiments. The speedup is
the ratio of the number of leaves visited by multiple processors over the number
of leaves visited by one processor. PDS scales well: even with 4096 processors,
the speedup is still increasing almost linearly.

One hour was insufficient to visit the entire search tree. With 4096 processors,
we reached solutions with 6 discrepancies but did not visit all of them. Therefore,



dataSet ρ speedup χ max(χ)−min(χ) χ
min(χ)

(%)

K1 512 338.9 4668.6 550 8.6
K1 1024 585.9 4036.0 441 7.97
K1 2048 941.9 3244.4 363 7.79

M3 512 446.4 725.4 24 1.89
M3 1024 863.1 701.3 57 6.09
M3 2048 1601.1 650.4 25 2.92

M2 512 432.7 920.3 53 3.98
M2 1024 823.2 875.5 40 3.49
M2 2048 1604.7 853.3 23 1.94

M1 512 447.7 729.3 42 4.03
M1 1024 869.1 707.9 42 4.25
M1 2048 1656.1 674.4 79 11.1
M1 4096 3152.3 641.9 57 6.44

Table 1. Industrial datasets experiments statistics. The column χ is the average num-
ber of leaves visited by each processor. The column max(χ)−min(χ) is the maximum
difference of leaves treated between processors. The column χ

min(χ)
is the average per-

centage of leaves differences between each processor and the minimal number of leaves
treated by one processor.

there is no idle time. However, we want to measure how the workload, in terms
of visited leaves, differs between processors. Let χj be the number of leaves
processed by processor j. Let min(χ) be the minimum value of χj for every
j ∈ 0, 1, . . . , ρ−1. Let χ be the average number of leaves visited by each processor.
The relative difference between min(χ) and χ is χ

min(χ) . This measure shows

processors have visited roughly the same number of leaves.
We had hardware failures during the experiments and we have been able to

restart a single processor while leaving the other ones running.

7 Conclusion

The contributions of this paper are twofold. First, we proposed a new paral-
lelization scheme based on the LDS backtracking strategy. This parallelization
does not alter the strategy since the visit order of the nodes remains unchanged.
Moreover, PDS provides an intrinsic workload balancing, it scales on multiple
processors, and it is robust to hardware failures. We provided a theoretical anal-
ysis that evaluated the performance of PDS based on the quality of the heuristic.
This showed that adding more processors always provides a speedup.

Secondly, we experimented with a difficult industrial problem from the forest
products industry for which an excellent problem-specific variable/value selec-
tion heuristics is known. This has been done by using as many as 4096 processors
on a supercomputer. It shows the great potential of constraint programming in
a massively parallel environment for which good search strategies are known.
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