
Pre-optimizing tools positions for
turrets-based CNC machines when facing

arbitrary sequences of production ?

Marc-André Ménard ∗ Claude-Guy Quimper ∗

Jonathan Gaudreault ∗

∗ CRISI Research Consortium for Industry 4.0 Systems Engineering,
Université Laval, Québec, Canada, marc-andre.menard.2@ulaval.ca,
claude-guy.quimper@ift.ulaval.ca, jonathan.gaudreault@ift.ulaval.ca

Abstract: Turret-based CNC machines can change from one tool to another by simply rotating
the turret. However, each tool must be positioned at the exact same place on the turret for
each batch of the same product. In industrial context, the production sequence of the different
products are not known in advance. Therefore, we introduce an integer programming model
that determines the best positions for each tool and for each product. It minimizes the expected
setup time. Experiments are carried out in partnership with APN, a company engaged in high
precision machining in the aerospace industry. We were able to solve the problem to optimality
for each dataset, reducing setup time by 191 hours. Copyright c© 2019 IFAC

Keywords: Operations research, Optimization, Integer programming, Linear programming,
CNC

1. INTRODUCTION

Computer Numerical Control machines (CNC) are used
for high-precision workpiece machining. The CNC takes
as input a CNC program that dictates the actions that
the machine must perform to obtain the desired product.

A very common type of CNC makes use of a rotating
turret that can contains up to 12 machining tools. A simple
rotation of the turret allows the machine to activate a tool.
Before starting a batch of a given product, one has to man-
ually install the needed tools at the right position of the
turret. The CNC program implicitly defines the right place
on the turret for each tool. This program was established
by a human programmer before the product entered into
production for the first time. This program/positioning
of the tools insures against unused tools from physically
interfering with the manufactured product or with other
tools during movements. Creating this program is a com-
plicated task (carried on by a human), thus the program
cannot be easily modified and the tools positions will be
the same anytime the company will hereafter manufacture
the product.

Although companies tries scheduling production in a way
that reduces setup time, it is not always possible as it is
very related to orders arrival sequence.

Thus, it would be beneficial to design the CNC programs
(thus, selecting tool positions) in a way that would reduce
the expected setup time of future production (altough we
do not know future product. As an example, if a given tool

? The authors would like to thank APN inc, CRIQ and the Natural
Sciences and Engineering Research Council of Canada (NSERC) who
provided funding for this research.

is always at the same position in any CNC program, setup
time is decreased by much.

1.1 Problem description

For each type of product T manufactured by the company,
and for each CNC machine M involved in its manufacture,
the company must define a CNC program defining the en-
tire movements made by the machine working on this part
(turret movements of the machine to alter the workpiece,
rotation of the turret to change the active tool, etc.). There
is therefore a CNC program for each pair 〈T,M〉.
Whenever a machine is configured to manufacture a prod-
uct, one has to manually install on its turrets the tools
it has to use. For each product, we have a list of tools
X needed to machine the product. For each tool x ∈ X,
we must determine, the position Y to which assign the
tool x to manufacture product T . It is desirable that the
same tool used to manufacture two products T1 and T2 be
assigned in both cases to the same position to reduce the
setup time.

To summarize, the problem is to assign the tools to the
various positions of the turrets to reduce the setup time
needed to move from the manufacture of a product to the
manufacture of another product.

However, we do not know the production sequence. Indeed,
there are several different products that can be manu-
factured on one machine. The best production sequence
changes from one week to the next one and if one changes
the position of the tools on the turret between two pro-
ductions of the same product, then one has to update the
CNC program.

The tools used by the CNC machines are composed of
several parts partitioned into ”levels”. All tool parts put
together form an assembly of tools. The first level is the
lower part of the tool assembly called the base which
is inserted in the turret. The second and third levels
are intermediate components. The last level is the actual
cutting tool that is in contact with the product.

It takes longer to change the first level of a tool than
to change only the top level, etc. Indeed, changing a
lower level involves changing the entire tool while it is
possible to leave in place the lower levels when changing
an upper level. It is therefore more important to minimize
the number of changes of the lower levels than to minimize
the changes in the upper levels.

Since we do not know the sequence of production, we
cannot minimize the number of changes in the sequence of
production. The objective of the problem is to minimize for
each pair of product, the number of ”avoidable” changes.
An avoidable change is a change that could be avoided by
placing the tool at the same position in two tool lists. In
Table 1, the shown solution has 2 changes related to tool
B. However, the change caused by the tool C (when going
from product 1 to product 2, or from product 1 to product
3) is unavoidable (product 2 and product 3 do not use the
tool C).

However, one can also decide to add tools that are not
required by the program. Indeed, adding non required
tools can contribute to minimizing tool changes. As shown
in Table 1, after machining Product 1 that uses tool A, one
would have to remove the tool A to machine the second
product and add it back to machine the third product. If
tool A was added to the tool list of Product 2, then no
tool change is required for A. To add a tool, we need to
add a whole tool assembly. It is not possible to add only
the base of the tool assembly without adding the upper
parts. Not all tools can be added to a product tool list. A
company might decide that it is not possible to add a tool
if it is too expensive to add or if there are not enough of
that tool in the inventory.

Table 1. Example of a change at position 1

Position 1 Position 2 Position 3

Product 1 A B C

Product 2 D B

Product 3 A D B

1.2 Related work

A wide range of related problems can be found in the
literature under the term tooling management problems
(Kayayama (1994)), or more precisely job sequencing and
tool switching problems (Crama et al. (1994, 2007); Zhou
et al. (2005); Amaya et al. (2008)). Calmels (2018) does
a literature review on job sequencing and tool switching
problem. They present several variants of the problem
such as taking into consideration the wear of the tools
(Hirvikorpi et al. (2007); Mauergauz (2017)) or having
several machines in parallel with different tools in each ma-
chine (Beezo et al. (2017); Sarmadi and Gholami (2011)).
However, this literature concerns a situation opposite to
ours, that is, to determine the optimal positions of the
tools after having determined the sequence of the products

to be manufactured (Adjiashvili et al. (2015)) or at the
same time (Laporte et al. (2004); Catanzaro et al. (2015)).
This approach makes sense only for certain types of CNC
machines handling one tool at a time, the other tools being
stored in an ”external store” that allows the machine to
change tools as needed during product manufacturing.

On the other hand, for the machines rather equipped with
turrets (the industrial case studied in this paper), the
activation of a tool during manufacturing a product is
done quickly by making a rotation of the turret. If one
change the position of the tools on the turret between two
productions of the same product, the CNC program need
to be updated. Indeed, it must be ensured that the other
tools do not physically interfere with the manufactured
product or a tool from another turret of the machine
during the machining operations. Changing a CNC pro-
grams cannot be done automatically since the machines
are equipped with several turrets, and the times required
to perform the operations of each turret are not known
in advance (it depends on several criteria not taken into
account by existing simulators), it is impossible to ensure
that there will be no snagging without doing a physical
run test on the machine. This CNC program update takes
time from an experienced technician and monopolizes the
machine for part of this work, which increases setup time
well beyond what repositioning can save.

In the industrial context studied (machining using CNC
machines equipped with several turrets), the classical
approach common in the literature (scheduling before
or during the assignment of the tools to the positions)
increases the setup time even more than it would save.

2. INTEGER PROGRAM

2.1 The model

We designed an integer program to solve this problem.
Since it is more important to minimize the number of
tool changes in the lower levels than the higher levels,
we solve the problem in stages. We begin by solving the
problem by considering only the lowest level of the tool
assemblies. Subsequently, we consider the first two levels
of tool assemblies, but by fixing the number of changes
allowed at the first level to the objective value found in
the previous resolution for the first level. By setting the
objective value for the first level, we make sure to keep
the optimality for the first level, but we allow the solver
to change the position of the tools of the first level. Since
there may be more than one optimal solution, it is not
necessarily the solution found previously for the first level
that will minimize the number of changes for the second
level. Then we solve the problem for the next level until
we get a solution considering all levels of tool assemblies.
When the solver solves the problem considering several
levels, the solver must consider the precedence of the tool
assemblies. For example, consider a tool assembly t whose
part of the tool at the first level is t1 and the part of the
second level is t2. If the solver sets the tool part t2 to a
position, it must put t1 at the same position to respect the
precedence of the tool assembly.

We present below the model designed to solve the problem
of tool positioning. We present the program parameters in
Table 2 and present the program variables in Table 3.

The first parameters of Table 2 are the set of positions
given by P ∈ {1, . . . , 12} and the set of levels N ∈
{1, . . . , 4}. T is the set of tools, T+ ⊆ T are the tools
that can be added to a tool list, and Tn ⊆ T are the tools
that take place on level n ∈ N . A tool in t2 ∈ Tn+1 must
be installed on a tool t1 ∈ Tn. The set Q contains the pairs
(t1, t2) of possible assemblies. A tool list is a multiset of T
required for a product. The set of tool list indices is L. For
each tool list l ∈ L, let fl be its frequency indicating how
many times, in a one-year period, the program is expected
to be executed. A tool t ∈ T occurs ztl times in the tool
list l ∈ L and occurs occt =

∑
l∈L fl · ztl times in all tool

list. The parameter mln indicates the maximum number
of tools it is possible to have for the tool list l and the level
n. Initially, mln is always |P | = 12, but an improvement
to the model that will be shown below changes this value.
Let S =

∑
l∈L fl be the total number of products produced

in a year. The parameter Lfixed ∈ L is the tool list that
requires the most distinct tools, ties are broken arbitrarily.
The parameter Lsame

n ⊆ 2L contains sets of tool lists that
require the same tools at level n. Indeed, it is possible,
especially considering only the first levels of the assemblies
of tools, to have two lists of identical tools for two different
products.

In the first stage, we solve the model for N = {1} and
store the objective value in O1. In the second stage, we
solve for N = {1, 2} and store the objective value in O2

and so on for N = {1, 2, 3} and N = {1, 2, 3, 4}.

Table 2. Parameters

Parameters Description

P Set of positions.
N Set of levels.
T Set of tools.
T+ Set of tools that can be added even if the tool

list does not need them (T+ ⊆ T).
Tn Set of tools of level n.
Q Set of tool parts precedences. (t1, t2) ∈ Q

indicates that tool t2 must be on the tool t1.
L Set of tool lists.
ztl The number of occurrences of the tool t needed

for the tool list l.
occt Number of times the tool t appears in a tool list,

i.e. occt =
∑

l∈L
fl · ztl.

mln Maximum number of tools in tool list l for the
level n.

fl Frequency of the tool list l for a period of one
year.

S Sum of all tool list frequencies over a period of
one year i.e. S =

∑
l∈L

fl.

Lfixed The tool list with the most distinct tools.
Lsame
n Sets of tool lists that require the same tools at

level n.
On Optimal objective value for the the level n.

There are two types of binary variables in the model. The
variable atlp indicates whether the tool t is at position p
for the tools list l. The variable btpk equals 1 if the tool t
appears k times at the position p.

Table 3. Variables

Variables Domain Description

atlp {0, 1} atlp = 1 if tool t in tool list l is
assigned to position p and atlp = 0
otherwise.

btpk {0, 1} btpk = 1 if and only if tool t ∈
T occurs k ∈ {0, ..., S} times at
position p ∈ P .

minimize
1

2

∑
t∈Tmax(N)\T+

∑
p∈P

S∑
k=0

k · (occt − k) · btpk (1)

+
∑

t∈T+
max(N)

∑
p∈P

S∑
k=0

k · (S − k) · btpk

Basic model∑
t∈Tn

atlp ≤ 1 ∀n ∈ N, l ∈ L, p ∈ P (2)

S∑
k=0

btpk = 1 ∀t ∈ T, p ∈ P (3)

∑
l∈L

fl · atlp =

S∑
k=0

k · btpk ∀t ∈ T, p ∈ P (4)∑
p∈P

atlp = ztl ∀l ∈ L, t ∈ T \ T+ (5)∑
p∈P

atlp ≥ ztl ∀l ∈ L, t ∈ T+ (6)

at1lp ≥ at2lp ∀l ∈ L, p ∈ P, (t1, t2) ∈ Q, (7)

such that t2 6∈ T+

at1lp ≤
∑

t2∈T |(t1,t2)∈Q

at2lp ∀t1 ∈ T, l ∈ L, p ∈ P (8)

On =
1

2

∑
t∈Tn\T+

∑
p∈P

S∑
k=0

k · (occt − k) · btpk (9)

+
∑
t∈T+

n

∑
p∈P

S∑
k=0

k · (S − k) · btpk ∀n < max(N)

Removing unique tools∑
t∈Tn

∑
p∈P

atlp ≤ mln ∀n ∈ N, l ∈ L (10)

Breaking symmetries

atLfixedp = 1 ∀t is the pth tool in Lfixed (11)

Cuts

atl1p = atl2p ∀t, l1, l2,∃a ∈ Lsame
n , {l1, l2} ⊆ a (12)∑

p∈P

S∑
k=0

k · btpk =
∑
l∈L

fl · ztl ∀t ∈ T \ T+ (13)

Forbiding changes

rt := occt − min
l∈L|ztl>0

fl ∀t ∈ T (14)

atl1p ≤ atl2p ∀l1 ∈ L, l2 ∈ L, (15)

∀p ∈ P, n < max(N), t ∈ Tn,

rt > On ∧ ztl1 ≤ ztl2

2.2 The objective function

The objective function (1) minimizes the total number of
avoidable tool changes between each pair of products. The
first part of the function counts the changes for the tools
T \ T+ that cannot be added to the tool lists. It sums
the number of pairs of tool lists for which the tool is not
placed at the same position. For instance, if a tool t occurs
k times at position p, then it occurs occt − k times at
another position than p. This leads to k ·(occt−k) pairs of
tool lists for which the tool appears in different positions
and could be avoided. Since we consider each position p,
the pairs are counted twice: one for the pair (l1, l2) and
once for the pair (l2, l1). This is why we divide the final
result by 2.

minimize
1

2

∑
t∈Tn\T+

∑
p∈P

S∑
k=0

k · (occt − k) · btpk (16)

Notice that some tool changes are counted when they
should not be counted. For example, if a tool occurs twice
in the tool lists l1 and l2 and that this tool takes the
positions p1 and p2 for both lists, the function still counts
2 tool changes. Indeed, the tool appears at position p1 in
list l1 and position p2 in list l2 which counts for one change
and the tool appears at position p2 in list l1 and position
p1 in list l2 which counts for another change. This even
occurs when l1 = l2. In order not to count these changes,
one needs to subtract the term in (17) from the objective
function. Since this term is a constant and has no impact
on the optimality of the solution, we omit it from the model
for sake of simplicity.

1

2

∑
t∈Tn\T+

∑
l1∈L

∑
l2∈L

ztl1=ztl2

fl2 · ztl2 · fl1 · (ztl1 − 1) (17)

A similar situation occurs when a tool occurs more often
in list l1 than in l2, i.e. ztl1 > ztl2 . The correction constant
is given in (18). Since this case is not symmetric, we do not
have to divide by two as it is done for (17). Once again,
since this term is a constant, we omit it from the model
for sake of simplicity.∑

t∈Tn\T+

∑
l1∈L

∑
l2∈L

ztl1>ztl2

fl2 · ztl2 · fl1 · (ztl1 − 1) (18)

Overall, the constant c should be subtracted from the
objective function in order to obtain the exact number
of avoidable changes.

c =
1

2

∑
t∈Tn\T+

∑
l1∈L

∑
l2∈L

ztl1=ztl2

fl2 · ztl2 · fl1 · (ztl1 − 1)

+
∑

t∈Tn\T+

∑
l1∈L

∑
l2∈L

ztl1>ztl2

fl2 · ztl2 · fl1 · (ztl1 − 1)
(19)

The second part of the objective function (20) counts the
avoidable changes for tools T+ that can be added. Since
such a tool can be added to any tool list, any change that
occurs is avoidable. We therefore consider that if a tool
occurs k times at position p, it could have occurred S
times at such a position.

minimize
∑
t∈T+

n

∑
p∈P

S∑
k=0

k · (S − k) · btpk (20)

2.3 The basic model

The basic model, formed with constraints (2) to (9), is
sufficient to find a feasible solution to the problem. Other
constraints are cuts that help the solver to find a solution
faster. Constraints (2) ensure there is at most one tool
part for a given level, a given position, and a given tool
list. Constraints (3) and (4) ensure btpk = 1 if and only
if the tool t is installed at position p exactly k times a
year. Constraints (5) ensure that all the necessary tools
for machining a product have a position. For tools which
can be added (∀t ∈ T+), constraints (6) ensure there are
no fewer tools than necessary for machining a product.
Constraints (7) and (8) ensure that the tool assembly
is respected. If the upper part of the tool assembly is
in one position, the lower part of that assembly is at
the same position. Moreover, if a lower part of the tool
assembly is in one position, then there is an upper part at
the same position. Constraints (9) ensure the number of
avoidable changes remains optimal for lower levels. Only
the objective value is fixed which makes it possible to
change the position of the tools of the lower levels while
maintaining the optimality.

2.4 Improvements

A possible improvement to reduce the size of an instance is
to remove from the problem the tools that occur in a single
tool list. Unique tools can only cause inevitable changes
with other tools. By removing these tools, we remove a
constant from the objective value. However, we need to
make sure to have an available position for the removed
tool after solving the problem. By decrementing mln each
time a unique tool t is removed from the tool list l, the
constraints (10) ensure that a position remains available
to install the tool t.

The problem has symmetries. Indeed, tools at position p1

can be swapped with tools at position p2 to obtain a new,
but symmetric, solution. To break these symmetries and
hence reduce the search space, constraint (11) selects the
tool list Lfixed with the most distinct tools and arbitrarily
affects a position to every tool in this tool list.

Constraints (12) add simple cuts that force two identical
tool lists, for a given level, to have the same tool placement.
This is particularly useful in lower levels where such tool
lists are common. Optimal solutions necessarily satisfy
these constraints.

Constraints (13) are redundant, but they nevertheless help
to solve the model by further constraining the variables b
without pruning valid solutions.

Constraints (14) define the constant rt that is the mini-
mum number of changes that occurs when the tool t ∈ Tn

is not always assigned to the same position. Since On is
the optimal value when solving the problem for the first
n levels, if rt > On, this means no avoidable changes can
occur for tool t. The first min(ztl1 , ztl2) occurrences of tool
t in list l1 and l2 must be assigned to exactly the same
positions. This is enforced by constraints (15).

2.5 Analysis

The complexity of the model depends on the number
of tool lists |L|, the number of tools |T |, the number
of positions |P |, and the number of levels |N |. The
model has O(|P ||T ||L| + S|P ||T |) binary variables and
O(|L|2|T ||P ||N |+ |L||P ||Q|) constraints.

3. EXPERIMENTS

APN inc. is a US and Canada based company machining
high precision metal parts mainly for the aerospace and
military industries. They contacted us to discuss the
problem and provided us with real datasets for their
production over a period of one year on 6 different CNC
machines. Each machine has 2 turrets with 12 tool slots.
With 6 machines and 2 magazines per machine, we have
12 different instances.

We do not know the production frequency of each products
for instances 3 to 12. So, for experiments using those
instances, we take a random number between 1 and 10
as the frequency of the product.

The company only allowed us to add a tools on the tool
list of a given product if the entire tool assembly appears
in more than half of the tool lists. We defined the set T+

as such.

The experiments were executed on an Intel Core i7 4.0GHz
with 16 GB of memory. We use CPLEX version 12.6.1 to
solve the linear program.

Table 4 compares the time taken by the solver to find the
optimal solution to the different instances of the problem
using the different improvements of the model. The header
of each column indicates which constraints were used to
solve the problem. A “−” as a result indicates that the
solver did not find a solution or proved the optimality of
the solution within one hour of computation.

Table 4 shows that the basic model, on its own, only
solves two instances. Therefore, it is necessary to use
improvements to the model to solve the other instances
of the problem.

Removing the unique tools makes it possible to find the
optimal solution for two more instances. This improvement
also reduced the time to find the optimal solution for the
instances that could be solved by the basic model. By
reducing the number of tools, we reduce the number of
variables and constraints which makes it easier for the
solver to find the solution.

Optimal solutions can be found for two additional in-
stances when we break symmetries. For the other instances
that were already possible to solve, removing the symme-
tries allowed to reduce the time by 82% on average.

Removing the identical lists allowed improving the time
spent by the solver finding the optimal solution of 4 more
instances. However, there is only instance 8 that takes
longer to solve with this improvement.

Adding the cut (13) solved 2 more instances. This improve-
ment also reduced the time to solve instances by 37% on
average.

Forbidding changes makes it possible to solve all the
instances of the problem to optimality. For all instances of
the problem except instances 1, 6, and 10, the solver finds
the optimal solution within one minute. For instances 1,
6, and 10, the solver takes less than 3 and a half minutes
which is short enough to be used by our industrial partner.

The results presented in Table 5 show the contribution of
having optimal solutions compared to what is currently
used by the company APN. The results are approximated.
Indeed, we do not know in advance the production se-
quence for next year. We therefore generate a random
production sequence and compare, for this sequence, the
difference between the number of changes with the solution
of the model and the positioning of the tools currently
used by the company. We do this experiment 5 times
and take the average. The number of times a product is
machined depends on its frequency. We do not allow to
have a product appearing twice in a row in the sequence.

The first four columns of Table 5 show the percentage
of the number of changes saved during the year at a
given level. For all instances and all levels, the optimized
solutions reduce the number of tool changes with respect
to what is currently used by the company. The percentage
of gain is higher for the first level. This is a desirable
behavior since tools on the first level take more time to
change than upper levels. By optimizing the first level and
fixing the number of changes for that level, we prioritize
the minimization of changes at level one.

The last column of Table 5 shows the setup time saved
using the solver solution instead of the solution currently
used by the company. This saved time is again an approx-
imation since the sequence of productions were randomly
generated. Moreover, there is an approximation of the time
taken to remove a tool and add a tool. For each level, the
company has determined an average time to add a tool and
to remove a tool. This time includes the time the machine
is stopped, the time to prepare the assembly of tools,
and to clean the tools assembly. It does not include the
calibration of the tools assembly. In the context of high-
precision machining, tool calibration can take most of the
setup time. If we do not need to change the tool, we save
more time by avoiding calibration of the tool assembly.
The average time used does not include extra times that
occurs when there are errors in a tool assembly. It takes
an average of 2 and a half minutes to add a tool and 3 and
a half minutes to remove the tool for a change of the first
level. A change at the second level takes 1 minute and a
half to add the tool and 2 minutes to remove the tool. A
change at the third level takes 1 minute to add the tool
and 1 minute and a quarter to remove the tool. A change
at the fourth level takes 30 seconds to add the tool and 30
seconds to remove the tool.

The last column of Table 5 shows that even without taking
all the time into consideration for the change of a tool
such as tool calibration, it is possible to save about 191
hours of setup time, which is more than significative. This
represents 21.5 % of setup times for the jobs we considered.

It would be possible to get better results if we allow the
solver to add more tools to the tool lists. Indeed, the
company only allows adding a tool assembly if it appears

Table 4. Time in seconds needed to solve the instances of the problem.

Basic
model

(2) to (9)

Removing unique
tools

(2) to (10)

Breaking
symmetries
(2) to (11)

Removing identical
lists

(2) to (12)

Cuts
on b

(2) to (13)

Forbiding
changes

(2) to (15)

Instance 1 - - - - 369 205

Instance 2 - - - - 230 7

Instance 3 - 3001 267 111 12 3

Instance 4 163 80 5 5 4 3

Instance 5 - - - - - 50

Instance 6 - - - - - 82

Instance 7 - - 1149 195 156 36

Instance 8 - - 24 50 50 53

Instance 9 3563 132 17 17 14 14

Instance 10 - - - - - 156

Instance 11 - 1288 557 209 49 5

Instance 12 - - - - - 34

Table 5. Percentage of changes saved per level
and total time (minutes) saved.

Instance Level 1 Level 2 Level 3 Level 4 Time saved
(minutes)

1 10 % 5 % 1 % 1 % 192

2 17 % 9 % 2 % 2 % 242

3 18 % 1 % 0 % 0 % 118

4 24 % 13 % 11 % 11 % 314

5 21 % 18 % 5 % 5 % 723

6 27 % 17 % 7 % 5 % 1093

7 59 % 52 % 47 % 46 % 3224

8 48 % 33 % 33 % 33 % 2178

9 27 % 23 % 12 % 12 % 1109

10 22 % 16 % 9 % 7 % 1164

11 24 % 11 % 7 % 6 % 410

12 28 % 17 % 10 % 9 % 699

in more than half of the tool lists. However, to add more
tools, the company would need a larger tool inventory.

4. CONCLUSION

We presented an integer program to solve the problem
of tool positioning for turrets-based CNC machines for
which we do not know the production sequence. This
corresponds to a huge part of the machining business right
now. The integer program presented allows to find the
optimal solution in a reasonable time for the 12 industrial
instances of the problem. Solving this problem optimally
allows the company to save approximately 191 hours of
set up during the year which increases its productivity.
The CNC machines being the bottleneck of the workshop,
this should have a major impact on productivity and prof-
itability. Moreover, by reducing the number of changes,
we standardize the tool lists and reduce the number of
manipulations that can cause errors.

ACKNOWLEDGEMENTS

The authors would like to thank Stéphane Agnard, Joël
Lessard, Mathieu Béliveau, and Yves Proteau from APN
inc. Funding was also provided by CRIQ and NSERC.

REFERENCES

Adjiashvili, D., Bosio, S., and Zemmer, K. (2015). Mini-
mizing the number of switch instances on a flexible ma-
chine in polynomial time. Operations Research Letters,
43(3), 317–322.

Amaya, J.E., Cotta, C., and Fernández, A.J. (2008). A
Memetic Algorithm for the Tool Switching Problem,
190–202. Springer Berlin Heidelberg, Berlin, Heidelberg.

Beezo, A.C., Cordeau, J.F., Laporte, G., and Yanasse,
H.H. (2017). Scheduling identical parallel machines with
tooling constraints. European Journal of Operational
Research, 257(3), 834 – 844.

Calmels, D. (2018). The job sequencing and tool switch-
ing problem: state-of-the-art literature review, classifi-
cation, and trends. International Journal of Production
Research, 1–21.

Catanzaro, D., Gouveia, L., and Labbé, M. (2015). Im-
proved integer linear programming formulations for the
job sequencing and tool switching problem. European
journal of operational research, 244(3), 766–777.

Crama, Y., Kolen, A.W.J., Oerlemans, A.G., and
Spieksma, F.C.R. (1994). Minimizing the number of tool
switches on a flexible machine. International Journal of
Flexible Manufacturing Systems, 6(1), 33–54.

Crama, Y., Moonen, L.S., Spieksma, F.C., and Talloen, E.
(2007). The tool switching problem revisited. European
Journal of Operational Research, 182(2), 952–957.

Hirvikorpi, M., Knuutila, T., Leipälä, T., and Nevalainen,
O.S. (2007). Job scheduling and management of wearing
tools with stochastic tool lifetimes. International Jour-
nal of Flexible Manufacturing Systems, 19(4), 443–462.

Kayayama, H. (1994). FMS tool change schemes and their
characteristics. Computers & Industrial Engineering,
27(1), 75–80.

Laporte, G., Salazar-Gonzalez, J.J., and Semet, F. (2004).
Exact algorithms for the job sequencing and tool switch-
ing problem. IIE Transactions, 36(1), 37–45.

Mauergauz, Y. (2017). Job and tool group scheduling for a
machining center. International Journal of Management
Science and Engineering Management, 12(4), 280–287.

Sarmadi, H. and Gholami, S. (2011). Modeling of tool
switching problem in a flexible manufacturing cell: with
two or more machines. In International Conference
on Mechanical and Electrical Technology, 3rd,(ICMET-
China 2011), Volumes 1–3. ASME Press.

Zhou, B.H., Xi, L.F., and Cao, Y.S. (2005). A beam-
search-based algorithm for the tool switching problem
on a flexible machine. The International Journal of
Advanced Manufacturing Technology, 25(9), 876–882.

