

Global Grammar Constraints CLAUDE-GUY QUIMPER^{*a*} AND TOBY WALSH^{*b*}

^aUniversity of Waterloo, Canada, cquimper@uwaterloo.ca ^bNICTA and UNSW, Sydney, Australia, toby.walsh@nicta.com.au

ABSTRACT

We consider global constraints over a sequence of variables which restrict the values assigned to be a string within a given language defined by a grammar or automaton. Such constraints are useful in a wide range of scheduling, rostering and sequencing problems. For regular languages, we gave a simple encoding into ternary constraints that can be used to enforce GAC in time linear in the number of variables. We study a number of extensions including regular languages specified by non-deterministic automata, and soft and cyclic versions of the global constraint. For context-free languages, we give two propagators which enforce GAC based on the CYK and Earley parsers.

1 Introduction

Consider a language $\boldsymbol{\mathcal{L}}$, we want to maintain GAC on the constraint.

$$X_1 X_2 \dots X_n \in \mathcal{L}$$

We propose some propagators specialized for two different classes of languages.

1. Regular languages

2. Context-free languages

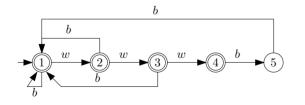
2 Regular Languages

2.1 Regular Languages

Regular languages are those accepted by an automaton. An automaton is fully defined by an alphabet Σ , a set of states Q, an initial state $q_0 \in Q$, a set of final states $F \subseteq Q$, and a transition table $\delta \subseteq Q \times \Sigma \times Q$.

$$\mathcal{A} = \langle \Sigma, Q, q_0, F, \delta \rangle$$

The following automaton ensures that an employee works for a maximum of three consecutive shifts. A sequence of three consecutive shifts must be followed by two periods of break.



2.3 Running Time Analysis

One can propagate the TABLE constraint in $O(|\delta|)$ steps resulting in an overall time complexity of $O(n|\delta|)$.

2.4 Advantages of the Decomposition

- 1. The REGULAR constraint can be implemented with *n* simple and well studied TABLE constraints.
- 2. The propagation is incremental.
- 3. The time complexity is the same as the propagator based on dynamic programming [Pesant 04].
- 4. We have access to the state variables. This can be useful, to specify objective functions (e.g. number of triple shifts).

2.5 NFA vs DFA

A theoretical observation suggests that DFAs have smaller transition tables.

	Maximum number of transitions
DFA	$Q\Sigma$
NFA	$Q^2\Sigma$

However, any DFA specifying the following regular expression has at least 2^k states while a NFA only requires O(k) states.

 $a^{*}(b|c)^{*}c(b|c)^{k-1}a^{*}$

Conclusion: DFAs are not necessarily faster to propagate. The only factor that affects the running time complexity is the size of the transition table δ .

3 Context-Free Grammars

3.1 Definition

A context-free grammar is a set of productions whose left-hand side is a single non-terminal symbol. For instance, the following productions generate the language of arithmetic expressions such as $(12 - 6) \times 7$.

$S \to (S)$	$S \to SOS$	$S \to N$
$N \to NN$	$N \rightarrow 0 1 \dots 9 $	$O \rightarrow + - \times /$

3.2 CYK-Style Propagator

This bottom-up GAC propagator is based on the CYK parser. First, we convert the grammar in its Chomsky form.

3.3 Earley-Style Parser

This top-down GAC propagator iterates through the variables from left to right. The tuple $\langle S \rightarrow AbC \bullet D, p, i, S \rangle$ indicates that the production $S \rightarrow AbC$ generates the sequence X_p, \ldots, X_{i-1} using the supports in S.

1. If
$$v \in \text{dom}(X_i)$$
, tuples of the form
 $\langle w \to \dots \bullet v \dots, p, i, S \rangle$ produce
 $\langle w \to \dots v \bullet \dots, p, i+1, S \cup \{X_i = v\} \rangle$.

- 2. Tuples of the form $\langle u \to \dots \bullet v \dots, p, i, S \rangle$ produce $\langle v \to \bullet w, i, i, \emptyset \rangle$ for every rule $v \to w \in G$.
- 3. In presence of $\langle u \to v \bullet, p, i, S \rangle$, tuples of the form $\langle w \to \dots \bullet u \dots, q, p, T \rangle$ produce $\langle w \to \dots u \bullet \dots, q, i, S \cup T \rangle$.

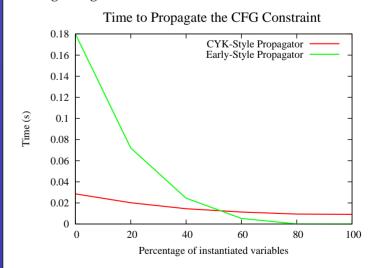
After processing all variables, the tuple $\langle s \rightarrow u \bullet, 0, n+1, S \rangle$ contains the set *S* of supports.

Time and space complexity: $O(|G|n^3)$ where |G| is the size of the grammar and *n* the number of variables.

4 Experiments

n	$ \Sigma $	Q	Pesant's	Ternary encoding
			Regular	of Regular
25	5	20	0.003	0.003
		40	0.005	0.005
		80	0.008	0.004
25	10	20	0.010	0.006
		40	0.017	0.009
		80	0.028	0.014
25	20	20	0.020	0.008
		40	0.040	0.014
		80	0.081	0.023
50	5	20	0.005	0.004
		40	0.010	0.009
		80	0.017	0.009
50	10	20	0.021	0.013
		40	0.036	0.016
		80	0.063	0.030
50	20	20	0.040	0.018
		40	0.081	0.029
		80	0.166	0.046

Table 1. Time in seconds to find a sequence satisfying a randomly generated automaton either using Pesant's propagator for the REGULAR constraint or a ternary encoding using the TABLE constraint



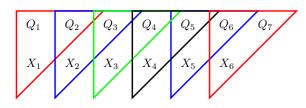
$$\delta = \left\{ \begin{array}{ll} (1,b,1), & (1,w,2), & (2,b,1), & (2,w,3), \\ (3,b,1), & (3,w,4), & (4,b,5), & (5,b,1) \end{array} \right\}$$

2.2 Decomposition

One can decompose the REGULAR constraint into ternary constraints. Similarly to Beldiceanu et al. for DFAs with counters, we declare the variables Q_1, \ldots, Q_{n+1} subject to the following constraints.

 $Q_1 = q_0 \qquad Q_i \in Q \qquad Q_{n+1} \in F$ $(Q_i, X_i, Q_{i+1}) \in \delta$

The constraint graph is Berge-acyclic. Enforcing GAC on the individual ternary constraints achieves GAC on the original REGULAR constraint.

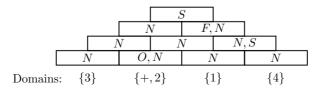


$S \to AB$	$S \to SF$	$S \to NF$
$F \rightarrow OS$	$F \rightarrow ON$	$B \to SC$
$B \rightarrow NC$	$N \rightarrow NN$	$S \rightarrow NN$
$A \to ($	$C \rightarrow$)	$N \rightarrow 0 1 \dots 9 $
$O \to + - \times $	$S \rightarrow 0 1 \dots 9 $	

We then fill in a pyramid where each block contains the non-terminals producing the sequence at its basis.

				B, N, S				
	_		N_{i}	,S	B, F,	N, S		
		N_{\cdot}	S	F, I	V,S	B, l	\mathbb{V},S	
	N,	S	O, A,	N, S	N_{i}	,S	C, I	V, S
Domains:	{3	\$}	{+,	(, 2)	{]	1}	$\{4,$)}

We filter out the non-terminals that do not contribute to the production of the non-terminal *S* at the summit.



Time and space complexity: $\Theta(|G|n^3)$ where |G| is the size of the grammar and *n* the number of variables.

Figure 1. Time in seconds to enforce GAC on a Context-Free Grammar constraint of 30 variables in which the first p percents of the variables are ground. When p = 100%, the problem degenerates to parsing a sequence.

8 Conclusion

- We now have an easy and efficient way to implement the REGULAR constraint with both DFAs and NFAs.
- We have two GAC propagators for the Context-Free Grammar Constraint.