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Abstract— Predicting the time needed to charge an electric
vehicle from X% to Y% is a difficult task due to the non-
linearity of the charging process and other external factors
such as temperature and battery degradation. Using 28,000
real-life level 3 fast charging sessions from 15 different types
of electric vehicles, we train models for this task. We compare
learning models such as random forest, linear and second-
degree regressions, support vector regressions, and neural
networks. The models take into consideration the external
temperature, battery capacity, nominal capacity of the elec-
tric vehicle, number of charges made during the same day,
maximum charging time allowed by the electric vehicle, target
voltage, maximum voltage and maximum current asked by the
electric vehicle. The models also take into consideration the
vehicle type and the charging station type. We use a data
augmentation technique (SMOTE) and hyperparameters opti-
mization to enhance our model performances. The structure of
the neural networks is optimized using Bayesian Optimization.
All models are trained and statistically compared in order to
find the overall best model for all vehicle types. The overall
best model is a neural network with a sub neural network
pre-trained to predict the electric vehicle type.

I. Introduction

With the rise of electric vehicles comes the rise of
anxieties around them. The principal sources of anxiety
are the purchase price, the autonomy and the battery
charging time [1]. In this paper, we focus on charging
time. We use machine learning and real data in order
to train models to predict the time needed to charge an
electric vehicle from X% to Y%. A precise model will
help to significantly reduce the charging time anxiety
(do I have time for a coffee or a complete meal?) and
facilitates the adoption of electric vehicles. Moreover, it is
crucial for algorithm that uses charging time to compute
solutions (such as vehicle routing problems [2]) to have
a precise algorithm to predict charging time. Errors in
charging time prediction can indeed lead to non-optimal
solutions and unnecessary costs.

We compare learning models (including neural net-
works) to predict the charging time using real-life fast
charging sessions that takes into consideration external
temperature, number of charges made during the same
day, battery capacity, etc. The remaining of this paper
is organized as follows. Section II presents a literature
review. In Section III we present the dataset used for
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our experiments. Section IV presents the learning model
variants tested. Section V presents the methodology used
to train and test the different variants. Finally, Section
VI presents the results of our experiments.

II. Literature review

Initial work related to electric vehicle supposed linear
charging time [3] [4]. Montoya et al. [5] and Froger et
al. [6] show that it is important to consider the non-
linearity of the charging time. They use typical charging
functions in order to predict the charging time. More
recently we used a predetermined charging function to
find the optimal charging decisions for a fixed route in
electric vehicle (FRVCP-NLEM) [7]. It was found using
a very limited number of historical data. Moreover, the
charging function varies with respect to multiple external
unknown factors such as the internal temperature of
the battery. Nait et al. [8] used a predictive function to
predict the charging rate of an electric vehicle. They then
used this charging rate to predict the time needed to
charge. Their approach needs to know the time needed
to charge the electric vehicle to the maximum authorized
value and the minimum authorized value.

Frendo et al. [9] used simulation (with sampled his-
torical data) to train regression models predicting the
departure time of an electric vehicle given an arrival and
departure state of charge. They limited their analysis
to an arrival state of charge of 20 % with a departure
charge of at least 50 %. They used a single type of
electric vehicle with always the same battery capacity. All
charging stations (CS) are identical. They showed that
irregularities in duration even for the same driver makes
it difficult to predict. They showed that accurate charg-
ing duration predictions allow for a fair distribution when
multiple electric vehicles need to simultaneously charge.
The mean absolute error (MAE) of their best model is
82 minutes. Chung et al. [10] used an ensemble technique
to predict charging duration. Their best model has a
symmetric mean absolute percentage error (SMAPE) of
10.4 % using an ensemble predictive algorithm that uses
support vector regression, random forests, and diffusion-
based kernel density estimator.

In the context of a fleet of electric vehicles, Dong
et al. [11] developed an algorithm to control the wait-
ing time of an electric taxi at charging stations. They
limited the charging time of an electric vehicle to a
given maximum that allows them to dispatch vehicles



in a way that avoids long waiting time and unbalanced
utilization of charging stations. The maximum charging
time is obtained from historical data. Tian et al. [12]
employed a similar strategy to predict waiting time.
Shahriar et al. [13] propose a complete literature review
about predicting charging duration.

III. Dataset

Our raw dataset consists of 30 263 real fast charging
sessions. We have access to data from 3 different types
of level 3 charging stations for a period of one year. In
Table I, we present the features used by our learning
models. It also shows the source for each feature. In
order to take into consideration the fact that temperature
affects the charging process (as an approximation of the
temperature of the battery), we use Environment Canada
historical database [14] to get the external temperature
for each charging session. The external temperature has
a range of values from -40°C to 36°C. It roughly follows a
normal distribution centered at 0°C. This allows models
to have a good indication of the impact of temperature
on the time needed to charge an electric vehicle. We also
included a feature that represents the number of charges
made the same day by the same user. It allows to have
an indicator of the temperature of the battery.

A. Filters applied

Since the data is obtained from real charging sessions,
it contains anomalies that need to be filtered. We first
applied some basic filtering on the features from which we
know the expected range. The Start SOC and End SOC
must be between 0% and 100% and the Start SOC must
be smaller than the End SOC. Charging sessions with a
duration of less than 200 seconds are also excluded since
they do not represent a normal fast charging behavior.
We also exclude vehicle types from which we do not have
more than an arbitrary value of 100 charging sessions
because it is not enough to show the charging behavior
of the vehicle.

We also applied some more advanced filters. First, we
observe an abnormal behavior for the Mitsubishi Out-
lander when charging to 80% or 81%. We thus removed
all charging sessions from the Mitsubishi Outlander that
charged to these values. Second, we developed two indi-
cators that allow to filter two types of abnormal charging
session: (1) charging a long time to gain very little state
of charge and (2) charging a short time to gain a very
high state of charge. Equation (1) has a high value when
the battery gained during the charging session has been
obtained quickly. Equation (2) has a high value when the
duration is high for a small gain in battery. We remove
all data that is above the 97.5 percentile of each of these
equations from our dataset. After applying the proposed
filters, the dataset now has 28 034 charging sessions. In
total, the dataset has 15 different vehicle types.

End SoC − Start SoC

Duration (min)2
(1)

TABLE I

Available features for models

Feature Description Source

Start SoC (%) Start state of charge of
the electric vehicle

Operator Logs

End SoC (%) End state of charge of
the electric vehicle

Operator Logs

Temperature (°C)
External temperature
during the charging
session

Environment
Canada
Database

EVSE max power
(kW)

Maximum power that
the charging station
can provide

Protocol Infor-
mation

Max charging time
(min)

Maximum charging du-
ration authorized by
the electric vehicle

Protocol Infor-
mation

Battery capacity
(kWh)

Battery capacity of the
electric vehicle

Protocol Infor-
mation

Nominal battery
capacity (kWh)

Nominal battery ca-
pacity of the electric
vehicle

Operator Logs

Target voltage (V)

The voltage that the
electric vehicle would
like to receive during
the charging session

Protocol Infor-
mation

Max voltage (V)

The maximum voltage
that the electric vehicle
can receive at any mo-
ment during the charg-
ing session

Protocol Infor-
mation

Max current (A)

The maximum current
that the electric vehicle
can receive at any mo-
ment during the charg-
ing session

Protocol Infor-
mation

CS type
The type of the charg-
ing station

Operator Logs

Vehicle type The type of the electric
vehicle

Operator Logs

Number of charges
the same day

Number of charges
made on the same day
by the same client with
the same vehicle.

Operator Logs

Duration (min)2

(End SoC − Start SoC)2
(2)

IV. Models

We tested multiple learning models: linear and second-
degree regressions (LR and PR), Random Forests (RF)
of degree one and two, Support Vector Regression (SVR)
and Neural Networks (NN).

A. Neural Networks

The structure of the neural networks is inspired by
resnet [15]. Since our features do not contain spatial
relationship, we use feedfoward neural networks. For all
neural networks it consists of multiple repeated Basic
Blocks. Each Basic Block consists of a configurable num-
ber of fully connected layers each with a configurable
number of neurons. Each block has a batch normalization
at its output and a skip connection going from the input
to the output to help stabilize learning [16] [17]. The
activation function used is always the rectified linear unit
since it performs well in practice [18].



For all neural networks, we use a Stochastic Gradient
Descent with a learning rate of 1 ·10−5. We use Nesterov
with a momentum of 0.9 and a weight decay of 0.0001.
We used a validation set of 10% of the size of the training
set. We reduce the learning rate by a factor of 0.5 if
the validation loss has not reduced for 10 iterations.
We use early stopping to stop the learning process if
the validation loss has not reduced for 20 iterations and
restore the model to the iteration that had the best
validation loss when stopping the learning process.

B. Model variants

The vehicle type is provided by the EVSE network
operator. Its value is uncertain since it is determined
by the operator based on unverified criteria. Therefore,
it likely contains errors such as vehicle types that are
wrongly separated in two different vehicle types or too
general segmentation. For example, the Nissan LEAF
technology has evolved since the first generation and
not all Nissan LEAF have the same charging behavior.
For this reason, we propose to train variants for random
forests and neural networks that do not include the
vehicle type (since in theory the vehicle types can be
identified using the features of our dataset).

Another option (only possible for neural networks) is
to first train a sub neural network predicting the vehicle
type (the value provided by the operator) using the
Maximum Voltage, Maximum Current and the Battery
Capacity. These three features allow to identify most of
the vehicle types perfectly. This sub neural network can
then be injected into the bigger network used to predict
the time needed to charge the electric vehicle. Since none
of the weights of the neural networks are frozen, the
bigger network can correct errors made by the sub neural
networks if needed.

Thus, the training of the sub neural network is a
prior that we inject into the bigger neural network. As
a result, this method could offer multiple advantages:
it provides the neural network knowledge on the input
data, it allows the neural network to correct errors made
by the operator vehicle type and since the output of the
sub neural network is a probability distribution it allows
to encode more granular segmentation of electric vehicle
types as a combination of existing vehicle type if needed.

Table II presents the different variants for each of the
learning models. It also presents an alias that we use
to refer to a specific variant. Each variant can use or
not the vehicle type given by the operator. It can use
second-degree interactions and for the neural networks
they can use a sub neural network and for the sub neural
network there is the possibility to copy the entries of the
sub neural network to the bigger neural network or not.

V. Experiments

A. Methodology

Figure 1 presents an overview of the methodology used
to train and test each of the variants from Table II. We

TABLE II

Particularities of each variants and the alias used to

identify a given variant.

Learning
Model

Variant
Use
vehicle
type?

Use
second
degree?

Sub
Net-
work?

Copy
sub
entries?

Random
Forest

RF X - -
RF-NV - -

RF2 X X - -
RF2-NV X - -

Regression
LR X - -
PR2 X X - -

SVR SVR X - -

Neural
Network

NNS X
NNS-A X X

NN X -
NN-NV -

do an 80-20 split of our dataset that ensures that there
is the same percentage of each vehicle type and CS type.
We then use the 20% to optimize the hyperparameters of
the models and the remaining 80% is used to train and
test our models. Each variant is then trained using four
learning methods: using all data, per vehicle type, per CS
type or per vehicle type per CS type. We then perform 10
repetitions of stratified K-Fold cross validation [19] with
K=5. For each iteration of K-Fold, if data augmentation
is used (see section V-C), we apply data augmentation
to the training set and then train the variant on the
augmented training set. We then compute the Mean
Absolute Percentage Error (MAPE) of the variant on
the test set. Once all variants are trained and tested,
we perform a statistical comparison in order to deter-
mine which model has on average the best MAPE. All
variants are tested on the same data for each repetition.
This allows to compute a difference test to compare the
different variants [20]. For most variants, we have no prior
on the best way to train the variant and thus we need to
train them in all the possible learning methods. However,
for neural networks we do not train one variant for each
vehicle type for each CS type since it generally performs
better with more data [21] and for computational time
limitations.

B. Hyperparameters optimization

Linear and second-degree regression do not require
hyperparameters optimization. Therefore, we only opti-
mized the hyperparameters of the random forests, SVR
and the neural networks. We optimized their hyperpa-
rameters using Bayesian Optimization on 20% of the data
of our dataset which usually allows to efficiently find good
hyperparameters values for neural networks [22] [23].
Bayesian optimization of the random forests give the
same results as the default one used by Scikit-learn [24].
It returns C=10, epsilon=2.97 with a linear kernel for
the SVR.

1) Neural networks: We optimize the structure of
the neural networks using Bayesian Optimization. For
computational time limitations, we only optimize the



Fig. 1. Methodology used to optimize, train and test the different
variants .

structure of the NNS-A (see Table II) when trained
on all the data without data augmentation. We choose
the NNS-A because preliminary experimentations show
that it performs the best between the different neural
networks variants. All other neural networks will share
the same structure. Training-specific hyperparameters
are manually chosen because of computational time lim-
itations.

The optimization process consists of deciding the num-
ber of Basic Blocks (from 1 to 10), the number of layers

in each Basic Block (from 1 to 10) and the number of
neurons in each fully connected layer (from 8 to 512).
The number of configurations is 50 500 that ranges from
a simple 1-layer neural network to a deep 100-layer neural
network. After 128 iterations of Bayesian Optimization,
the best configuration found is 3 Basic Blocks with 7
fully connected layers of 340 neurons each.

C. Data augmentation

Our dataset is highly unbalanced from one vehicle type
to another. In reality, we want the variants to be equally
accurate for each vehicle types.

In order to balance our dataset, we train every
model with Synthetic Minority Over-sampling TEch-
nique (SMOTE) [25]. Since SMOTE can also worsen
the model results, all models are also trained without
SMOTE and a comparative analysis is performed. With-
out SMOTE the size of our training set is approximately
20 000 data. With SMOTE, the training set is now ap-
proximately 115 000 data, which is a significant increase.

VI. Results

Table III presents the average Mean Absolute Per-
centage Error (MAPE) over all vehicle types for each
variant for each of the learning models. Since our dataset,
is unbalanced the confidence interval is computed using
post-stratification [26]. It also presents the number of
vehicle types for which it dominates the other variants
(a variant dominates when its MAPE is on average
statistically lower to other variants when performing the
difference test [20] with a confidence of 95 %). If for two
variants for the same vehicle type we cannot conclude
on average a statistical difference, we also consider that
both models dominate.

The best variant is the neural network trained on all
data using SMOTE that uses a sub neural network and
copies the entries of the sub neural network to the bigger
neural network (NNS-A). It dominates for 14 of the 15
vehicles types. For the Kia Soul (2018), the dominant
variant is the NN trained per vehicle. The MAPE of the
NNS-A is 7.13 ± 0.0575 while the NN has a MAPE of
6.47 ± 0.095.

The best sixth variants are neural networks. Figure
2 presents the difference per vehicle type between the
best variant (NNS-A) and the second-best variant (NN-
NV). On average the difference of the MAPE between
the best variant and the second-best variant is 0.24 with
a maximum of 1.17 and a minimum of -0.2. The NNS-
A dominates for all electric vehicle types. The two best
variants do not use the operator vehicle type. Injecting
a prior using a sub neural network allows for a slight
improvement. The prior allows for a smaller confidence
interval. For the neural network variants, it is better to
train the neural networks on all data using SMOTE.

Figure 3 presents the difference of MAPE between
the best variant (NNS-A) and the second-best variant
that is not a neural network (RF2 trained on all data



TABLE III

Average Mean Absolute Percentage Error (MAPE) over

all vehicle types and number of vehicle types for which it

dominates of each variant for each of the learning

methods. The total number of vehicle types is 15.

Variant Learning method MAPE (%)

Number of ve-
hicle types for
which it domi-
nates

NNS-A All-SMOTE 12.19 ± 0.0106 14
NN-NV All-SMOTE 12.43 ± 0.0151 9
NN All-SMOTE 12.55 ± 0.013 6
NN CS-SMOTE 13.02 ± 0.014 2
NN CS 13.48 ± 0.025 1
NN Vehicle 13.92 ± 0.1805 6
RF2 All-SMOTE 14.21 ± 0.0189 0
RF All-SMOTE 14.41 ± 0.0196 0
NN-NV All 14.46 ± 0.0323 1
RF2 CS-SMOTE 14.48 ± 0.0141 0
RF-NV All-SMOTE 14.58 ± 0.0207 0
RF2-NV All-SMOTE 14.59 ± 0.0196 0
RF CS-SMOTE 14.6 ± 0.0192 0
NNS All 14.66 ± 0.0235 0
NN All 14.67 ± 0.0225 1
NNS-A All 14.68 ± 0.0229 0
RF2 All 15.64 ± 0.0138 0
RF All 15.69 ± 0.0086 0
RF2 CS 15.75 ± 0.0108 1
RF-NV All 15.8 ± 0.011 0
RF CS 15.86 ± 0.0107 0
RF Vehicle 15.89 ± 0.0184 0
RF2 Vehicle 16.21 ± 0.0163 0
RF Vehicle per CS 16.25 ± 0.0188 0
RF2-NV All 16.54 ± 0.013 0
RF2 Vehicle per CS 16.58 ± 0.0165 0
PR2 Vehicle 20.29 ± 0.1977 0
PR2 Vehicle per CS 21.01 ± 0.1977 0
LR Vehicle 23.65 ± 0.017 0
LR Vehicle per CS 24.01 ± 0.0171 0
SVR Vehicle 28.45 ± 0.0152 0
SVR Vehicle per CS 29.25 ± 0.0153 0
SVR CS-SMOTE 29.73 ± 0.0053 0
SVR All-SMOTE 32.16 ± 0.0045 0
SVR All 32.53 ± 0.0059 0
SVR CS 32.55 ± 0.0064 0
LR CS 38.61 ± 0.0038 0
LR All 38.92 ± 0.0037 0
PR2 CS 39.04 ± 0.0043 0
PR2 All 39.17 ± 0.0039 0
LR CS-SMOTE 83.21 ± 0.014 0
PR2 CS-SMOTE 83.93 ± 0.0142 0
LR All-SMOTE 85.51 ± 0.0131 0
PR2 All-SMOTE 86.14 ± 0.0126 0

using SMOTE). On average the difference is 2.02 with a
maximum of 3.72 and a minimum of 0.18. It dominates
for all vehicle types and this difference is statistically
significant for 14 of the 15 vehicle types. This difference
increases for the other learning model such as SVR where
they perform poorly on our dataset.

Figure 4 presents the MAPE of the best variant (NNS-
A) for all vehicle types. Its MAPE over all vehicles is
12.19% with a maximum of 18.44 % and a minimum of
6.31 %. The mean absolute error (MAE) over all vehicles
of the NNS-A is 3.10 minutes with a maximum of 5.60
minutes and a minimum of 1.51 minutes.

Fig. 2. Difference of the value of the Mean Absolute Percentage
Error (MAPE) between the most dominant variant (NNS-A) and
the second-best variant (NN-NV) for each vehicle type. Negative
value means that the NN-NV has a smaller MAPE than the NNS-
A for the vehicle type.

Fig. 3. Difference of the Mean Absolute Percentage Error (MAPE)
between the best variant (NNS-A) and the second-best variant that
is not a neural network (RF2) for each vehicle type.

Fig. 4. Mean Absolute Percentage Error (MAPE (%)) of the NNS-
A for each vehicle type

A. SMOTE analysis

The four best variants use SMOTE: NNS-A, NN-NV,
NN trained on all data and NN trained per CS. For
the NNS-A, the difference between using SMOTE or not
is 2.34. All improvements are on average statistically
significant except for the Kia Soul. The best MAPE
improvement is 16.62. We also note that for all vehicle
types, the use of SMOTE always improve the MAPE.
For the NN-NV, the average difference is 2.03. For the



NN trained on all data the average difference is 2.12
and finally for the NN trained per CS it is 0.46. For
all of these variants, using SMOTE allow to obtain a
smaller confidence interval. We also observe that all the
best variants for the random forests use SMOTE with
an average difference of 1.43 for the RF2 trained on all
data. Finally, the use of SMOTE for the regressions and
support vector regressions generally worsen the results
with the worst learning models being linear and second-
degree regressions.

VII. Conclusion

We presented a comparison of multiple learning model
variants predicting the time needed to charge an electric
vehicle from X% to Y% on a fast-charging station. We
used 30,000 real fast charging sessions over 15 vehicle
types. The best variant is a neural network with a sub
neural network (NNS-A). Its MAPE over all vehicle types
is on average 12.19% ± 0.0106 with a MAE of 3.10
minutes. In comparison with the second-best variant that
is not a neural network, the NNS-A has on average a
smaller MAPE (2.02). We showed that using SMOTE
to balance our dataset allows the NNS-A to obtain on
average a MAPE that is 2.34 smaller with a maximum
improvement of 16.62 for the Jaguar I-PACE. As for
future work, this paper did not present integration meth-
ods to a real-world application. We want to personalize
the neural networks to adjust to user vehicle specific
behaviors to consider the vehicle state of health.
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[7] A. Deschênes, J. Gaudreault, L.-P. Vignault, F. Bernard,
and C.-G. Quimper, “The fixed route electric vehicle charg-
ing problem with nonlinear energy management and variable
vehicle speed,” in 2020 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE, 2020, pp.
1451–1458.

[8] A. Nait-Sidi-Moh, A. Ruzmetov, M. Bakhouya, Y. Naitmalek,
and J. Gaber, “A prediction model of electric vehicle charging
requests,” Procedia Computer Science, vol. 141, pp. 127–134,
2018.

[9] O. Frendo, N. Gaertner, and H. Stuckenschmidt, “Improving
smart charging prioritization by predicting electric vehicle
departure time,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 22, no. 10, pp. 6646–6653, 2020.

[10] Y.-W. Chung, B. Khaki, T. Li, C. Chu, and R. Gadh, “En-
semble machine learning-based algorithm for electric vehicle
user behavior prediction,” Applied Energy, vol. 254, p. 113732,
2019.

[11] Z. Dong, C. Liu, Y. Li, J. Bao, Y. Gu, and T. He, “Rec:
Predictable charging scheduling for electric taxi fleets,” in 2017
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2017,
pp. 287–296.

[12] Z. Tian, T. Jung, Y. Wang, F. Zhang, L. Tu, C. Xu, C. Tian,
and X.-Y. Li, “Real-time charging station recommendation
system for electric-vehicle taxis,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 17, no. 11, pp. 3098–3109,
2016.

[13] S. Shahriar, A. Al-Ali, A. H. Osman, S. Dhou, and M. Nijim,
“Machine learning approaches for ev charging behavior: A
review,” IEEE Access, vol. 8, pp. 168 980–168 993, 2020.

[14] E. Canada. (2021) Historical data. [Online]. Avail-
able: https://climate.weather.gc.ca/historical data/search
historic data e.html

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–778.

[16] A. E. Orhan and X. Pitkow, “Skip connections eliminate
singularities,” arXiv preprint arXiv:1701.09175, 2017.

[17] S. Santurkar, D. Tsipras, A. Ilyas, and A. M ↪adry, “How does
batch normalization help optimization?” in Proceedings of the
32nd international conference on neural information process-
ing systems, 2018, pp. 2488–2498.

[18] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions
in neural networks,” towards data science, vol. 6, no. 12, pp.
310–316, 2017.

[19] D. Anguita, L. Ghelardoni, A. Ghio, L. Oneto, and S. Ridella,
“The ‘k’in k-fold cross validation,” in 20th European Sympo-
sium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning (ESANN). i6doc. com publ,
2012, pp. 441–446.

[20] M. F. Triola, Elementary statistics. Addison Wesley Publish-
ing Company, 1992.

[21] G. Foody, M. McCulloch, and W. Yates,“The effect of training
set size and composition on artificial neural network classifica-
tion,” International Journal of Remote Sensing, vol. 16, no. 9,
pp. 1707–1723, 1995.

[22] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” Advances in
neural information processing systems, vol. 25, 2012.

[23] H. Cho, Y. Kim, E. Lee, D. Choi, Y. Lee, and W. Rhee, “Basic
enhancement strategies when using bayesian optimization for
hyperparameter tuning of deep neural networks,” IEEE Ac-
cess, vol. 8, pp. 52 588–52 608, 2020.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825–2830, 2011.

[25] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling tech-
nique,” Journal of artificial intelligence research, vol. 16, pp.
321–357, 2002.

[26] J. T. Kulas, D. H. Robinson, J. A. Smith, and D. Z. Kellar,
“Post-stratification weighting in organizational surveys: A
cross-disciplinary tutorial,” vol. 57, no. 2, pp. 419–436.
[Online]. Available: http://doi.wiley.com/10.1002/hrm.21796

https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
http://doi.wiley.com/10.1002/hrm.21796

	Introduction
	Literature review
	Dataset
	Filters applied

	Models
	Neural Networks
	Model variants

	Experiments
	Methodology
	Hyperparameters optimization
	Neural networks

	Data augmentation

	Results
	SMOTE analysis

	Conclusion
	References

