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Abstract— We are interested in the coverage path plan-
ning problem with imperfect sensors, within the context of
robotics for mine countermeasures. In the studied problem,
an autonomous underwater vehicle (AUV) equipped with sonar
surveys the bottom of the ocean searching for mines. We use a
cellular decomposition to represent the ocean floor by a grid of
uniform square cells. The robot scans a fixed number of cells
sideways with a varying probability of detection as a function
of distance and of seabed type. The goal is to plan a path
that achieves the minimal required coverage in each cell while
minimizing the total traveled distance and the total number
of turns. We propose an off-line hybrid algorithm based on
dynamic programming and on a traveling salesman problem
reduction. We present experimental results and show that our
algorithm’s performance is superior to published results in
terms of path quality and computational time, which makes
it possible to implement the algorithm in an AUV.

I. INTRODUCTION

We are interested in the coverage path planning (CPP )
problem in the context of deploying mobile autonomous un-
derwater vehicles (AUVs) for mine countermeasures (MCM).
Our specific application consists of planning the path of an
AUV from the REMUS family of vehicles [1], designed
to swim long distances at constant speed and altitude with
infrequent turns, and with no or very little capacity to sense
and avoid obstacles [2]. Our AUV is fitted with a navigation
system to adjust its position. It is also equipped with sidescan
sonar to search for mines on the bottom of the ocean [3].
Without loss of generality, we assume that there are no
blind spots, since the use of “gap filler” forward looking
sonars has become prevalent. We assume imperfect sensors
where the conditional probability of detecting a target of
interest given that it is within the sensor’s range is less than
100% [4], imperfect sensitivity and perfect specifity (no false
positives). This conditional probability of detection can be
interpreted as the degree of coverage resulting from sensor
or actuator imperfectness [5]. While traveling on a path
segment, the AUV surveys a fixed distance sideways with a
varying conditional probability of detection that depends on
the seabed type of the surveyed region (e.g., complex seabed,
sand ripples, flat seabed), and on the range of the sensor. A
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given minimal coverage (minimal conditional probability of
detection) must be achieved over the whole area of interest
for the path to be feasible.

CPP problems are often solved in order to plan an agent’s
(or multiple agents) path in such a way to guarantee complete
coverage [6], or in the case of imperfect sensors, a minimal
required coverage [7]. In complete CPP problems with
perfect sensors, a cell is fully covered after a single scan
and no further visits are needed. Complete CPP problems
(also known as area covering, or region filling) arise in many
practical applications, e.g., minesweeping [8], [9], seabed
surveys in harbors and waterways [2], robotic mowing,
harvesting and ploughing in agricultural applications [10],
marine habitat planning [11], and floor cleaning [12].

A CPP problem is different from classical path planning
problems where the robot moves from an initial point to a
known destination. It is also different from optimal detection
search problems for search and rescue or surveillance [13],
[14]. In detection search theory, the goal is often to plan a
path that maximizes the global probability of finding a search
object (e.g., survivor, crashed plane, lost vessel). In these
problems, the search stops after detection and the probability
distribution of the whereabouts of the search object is often
known a priori. In most CPP problems, the objective is
to attain a complete coverage of the whole environment.
Furthermore, in CPP , the whereabouts of objects locations
are often unknown, although some authors assume a priori
knowledge of targets locations [15], [16], [17].

Time to completion is an important issue. Longer paths
to cover an area take more time. Turning also takes more
time and may increase navigational errors [18]. Therefore,
the goal is to find a feasible path that minimizes the total
traveled distance and the total number of turns.

This paper is organized as follows. We discuss related
work in section II. Section III formalizes our problem in the
context of underwater minesweeping operations. Section IV
describes our novel hybrid algorithm based on dynamic
programming and on a traveling salesman problem (TSP )
reduction. Section V presents, compares and discusses our
experimental results. We conclude in section VI.

II. RELATED WORK

Most path planning algorithms use a discretized rep-
resentation of the continuous environment. In a cellular
decomposition, the continuous environment is divided in a
set of uniform or non-uniform cells [19]. Uniform cellular
decompositions involve grids where cells have the same size.
If the environment contains obstacles, we have an occupancy



grid [20]. Such a decomposition technique is considered to
be approximate since some cells may be partially obstructed
and some parts of the environment may not be fully covered.

In a non-uniform cellular decomposition the constraint on
the cell size is relaxed. These include trapezoidal decompo-
sition, boustrophedon decomposition (both exact), and recur-
sive cellular decomposition (approximate). In a CPP , when
the cellular decomposition results in cells that are larger
than the range of the sensor, a lawnmower pattern is often
assumed in the cells [18]. Depending on the discretization
scale and on the range of the sensor, whether limited to its
circumference, extended, or infinite, distant cells may or may
not be surveyed. When the environment is known a priori,
the problem may be formulated as an off-line CPP problem.
Otherwise, we have an on-line CPP problem where the agent
must discover its environment. For on-line CPP problems
a sensor-based approach [18] is used, i.e., the robot uses
its sensors to acquire knowledge on its environment. In our
case, since the seabed map is available as a grid of uniform
square cells, we have an off-line CPP problem where the
discretization scale is such that the side of a cell is not larger
than the sonar’s range.

There exists a large body of literature on path planning in
robotics, mostly for ground robotics in four general areas:
navigation, coverage, localization and mapping. CPP meth-
ods and path planning for navigation are reviewed in [18]
and [21] respectively.

The problem presented in this paper differs from clas-
sical CPP problems in three ways: First, the sensors are
imperfect; and second, the range of detection is not limited
to the location of the AUV and varies with the distance
separating it from the scanned area, and with the seabed
type. Third, we do not require perfect coverage, we rather
must ensure a minimum coverage level everywhere in the
area of interest. We call this formulation, the CPP with
imperfect extended detection (CPPIED). To our knowledge,
the only published work on this formulation is that of [7].
He presented the advantages and disadvantages of existing
approaches and concluded that none of them was suitable for
the CPPIED . He proposed the heterogeneous coverage path
planning (HCPP) algorithm for planning an AUV’s path, a
highly instance dependent heuristic that must be fine-tuned
in a trial and error fashion.

As the CPPIED problem deals with a required coverage
in all cells, we also need to distinguish it from the multirobot-
controlled frequency coverage (MRCFC ) problem [22]. The
two problems are similar in that many visits will be needed
in each location (cell). However, the goal of the former is to
achieve the required coverage in each cell whereas the goal
of the latter is to be as close as possible to the prescribed
relative frequency of visits.

III. THE CPPIED PROBLEM

Let T be the set of seabed types, for example, flat or
ripple sand. The ocean is represented by a m× n matrix O
such that Oij ∈ T is the seabed type in the cell (i, j). The
cell (1, 1) is located in the upper left corner of the grid. The
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(d) A left turn
from cell (1, 1)
to (1, 1)

Fig. 1. Feasible moves on a uniform grid
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cell (3, 6) with r = 3
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(b) A path from cell (3, 1) to
cell (6, 3) with r = 3

Fig. 2. Scans on a uniform seabed; light gray shaded cells are scanned
once, and dark gray shaded cells are scanned twice.

position of the robot is defined by ((i, j), dir) where (i, j)
is a grid cell and dir ∈ {north, south, east,west} is the
direction in which the robot is pointing. The robot moves on
the grid lines between the cells. A robot pointing north or
south in cell (i, j) is located in the middle of the vertical line
between cells (i, j) and (i, j + 1). A robot pointing east or
west in cell (i, j) is located in the middle of the horizontal
line between cells (i, j) and (i + 1, j). The robot moves
forward one cell at a time (Fig. 1a and 1b). It cannot stop,
backup, nor turn around on the spot. However, 90◦ turns
while moving forward are allowed (Fig. 1c and 1d). The
robot scans 2r cells: r on its left, r on its right. No diagonal
scanning occurs while the robot is turning. However, some
cells may be scanned a second time just after the turn. Two
possible paths and their set of scanned cells are shown on
Fig. 2 for range r = 3.

The conditional detection probability of a sensor scan in
a cell (i, j) (given that a mine is present) is a function
pscan : N+ × T → [0.0, 1.0] of the distance d(x, y, i, j),
in number of cells, between the current robot’s cell (x, y)
and the scanned cell (i, j), and of the seabed type Oij of
the scanned cell (i, j). For instance, with T = {flat (f),
ripples (r), complex (c)} and r = 3, the sensor’s conditional
detection probabilities are expressed as:

pscan =

[
pscan(1,c) pscan(2,c) pscan(3,c)

pscan(1,r) pscan(2,r) pscan(3,r)

pscan(1,f) pscan(2,f) pscan(3,f)

]
. (1)

The current coverage map of a grid environment is rep-
resented by a m × n matrix C where Cij is the achieved
conditional detection probability in the cell (i, j). The ini-
tial coverage map is the null matrix. After a first scan
of cell (i, j) from cell (x, y), the coverage in (i, j) is
Cij = pscan(d(x, y, i, j),Oij). The conditional probability
of non-detection (i.e., the miss probability, or the non-
coverage) is 1 − Cij = 1 − pscan(d(x, y, i, j),Oij). Given
independent detections and following a scan in cell (i, j)



from cell (x′, y′), the non-coverage in cell (i, j) is 1 −
C′ij = (1 − Cij)(1 − pscan(d(x′, y′, i, j)),Oij). Therefore,
the updated coverage of cell (i, j) is C′ij = 1−(1−Cij)(1−
pscan(d(x′, y′, i, j)),Oij) leading to the update equation (2).

C′ij := Cij + (1−Cij)p
scan(d(x′, y′, i, j),Oij). (2)

The required coverage is represented by a m × n matrix
D such that Dij represents the required minimum coverage
that must be attained in cell (i, j). The required coverage is
achieved when D ≤ C.

A CPPIED problem instance is defined as a tuple(
T ,O,D, pscan, (iinit, jinit)

)
where (iinit, jinit) is the initial

location cell of the robot.

IV. A HYBRID ALGORITHM BASED ON DYNAMIC
PROGRAMMING AND THE TRAVELING SALESMAN

The goal of the proposed algorithm is to define, in lexico-
graphic order, a feasible shortest path (the first objective),
consisting of segments, that also minimizes the number
of turns (the second objective). A segment is a set of
horizontally or vertically adjacent cells that does not contain
any turns. The algorithm is composed of two main phases. In
the first phase, we construct a set S of disconnected segments
such that a robot traveling along all these segments will
achieve the required coverage D. In the second phase, we use
a TSP reduction to optimally connect the segments obtained
in phase 1 and form the desired path P . This is similar to the
TSP formulation used in [2] to connect paths in sub-areas
of a harbor environment. Our algorithm proceeds as follow:

1) Initialize the robot’s path P to an empty path, the set
of segments S used to construct path P to the empty
set, and the current coverage matrix C to the null
matrix. At each iteration, construct and choose a set of
horizontal or a set of vertical segments that maximizes
coverage gains (rewards) (H∗ or V∗) and add it to S
(Section IV-A). Iterate until the required coverage is
attained by the segments of S, i.e., D ≤ C.

2) Link the segments of S in an optimal fashion to obtain
a feasible path P of minimal length (and minimal
number of turns) (Section IV-B).

The aim in phase 1 is to construct a segment set S allowing
the robot to achieve the required coverage with the shortest
possible path. Therefore, we need short segments. Intuitively,
a set S with a small cardinality is desirable as well since it
will lead to a lower number of turns in phase 2.

A. Greedily Choosing a Set of Segments S
Some difficulties in constructing a segment set S arise due

to the extended sensor’s range since multiple detections in a
given cell may arise from two different segments or more. To
overcome this difficulty, we impose, at each iteration, a 2r
spacing constraint within the set H∗ of horizontal segments
and the set V∗ of vertical segments. Therefore, the rewards
of the parallel segments are independent, which allows us
to use polynomial time dynamic programming algorithms to
compute both the reward of a robot traveling on a segment,
and the optimal sets of segments H∗ and V∗.

In order to compute the horizontal gain in cell (i, j), Hij ,
let pC(i, j, k) be the updated probability of detection when
a cell (i, j) is scanned from a distance of k cells:

pC(i, j, k) = Cij + (1−Cij)p
scan(k,Oij). (3)

The gain obtained by scanning cell (i, j) from distance k
can be defined as:

g(i, j, k) =


min {Dij ,

pC(i, j, k)
}
−Cij Cij < Dij ;

−λ Cij ≥ Dij .

(4)

If cell (i, j) is not already covered, i.e., Cij < Dij ,
the gain equals the increment in probability of detection
in (i, j) up to the required probability of detection value,
i.e., min

{
Dij , p

C(i, j, k)
}
− Cij . Otherwise, cell (i, j) is

covered, i.e., Cij ≥ Dij , and we impose a small penalty
λ for overcoverage. Let G(i, j) be the sum of the gains, in
probability of detection, in the cells within the range of the
robot:

G(i, j) =

r∑
k=1

g(i− k + 1, j, k) +

r∑
k=1

g(i+ k, j, k). (5)

Since we wish to find the shortest possible segment with
the highest coverage, the segment ends before the first cell
which gain G(i, j) is less than or equal to zero. Therefore,
the horizontal gain of a cell (i, j), Hij , is defined as follows:

Hij =

{
G(i, j) G(i, j) > 0;

−∞ G(i, j) ≤ 0.
(6)

The endpoints a and b that define the segment hi such that
the sum of its gains is maximal are identified for each row
i as follows:

K(hi) = max
a,b

b∑
j=a

Hij . (7)

This problem, called the Maximum subarray problem, is
solvable in linear time using Kadane’s algorithm [23], a
simple example of dynamic programming.

The optimal horizontal set H∗ is the subset of segments
that maximizes the sum of the horizontal gains over the rows
subject to a 2r spacing constraint:

max
I⊂{1..m}|i,i′∈I⇒|i−i′|≥2r

∑
i∈I

K(hi). (8)

We compute H∗ using the following recurrence relation:

h∗i =


K(hi) 1 ≤ i ≤ 2r;

max {h∗i−1,
K(hi) + h∗i−2r} 2r < i ≤ m,

(9)

where h∗i is the maximum gain achieved by a robot when
it travels along segment hi. With this technique, choosing
an optimal set of segments under a 2r spacing constraint is
done in polynomial time. The set V∗ is computed in the same
fashion following a map rotation of 90◦. The set among H∗
or V∗ providing the highest coverage is added to S. Ties are
broken using the set with the smallest cardinality. Note that
there is no spacing constraint in S.
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(a) Initialization: S is empty;
labels show the seabed type
and the number of scans left.
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(b) Iteration 1: a horizontal
segment set H∗ (labeled (1)),
is added to S.
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(c) Iteration 2: a vertical seg-
ment set V∗ (labeled (2)) is
added to S.
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(d) Iteration 3: a vertical seg-
ment set V∗ (labeled (3)) is
added to S.

Fig. 3. The construction of the segment set S on a map with T = {flat
(f), ripples (r), complex (c)}, and r = 1; dark gray shaded cells were
scanned three times, medium gray shaded cells were scanned twice, light
gray shaded cells were scanned once.

1) Example: Fig. 3 presents an example for choosing an
optimal segment set on a 6× 6 grid with r = 1. In each cell
of the grid, we indicate the number of robot scans needed
to achieve the required coverage D. This number is an
upper bound that depends on the seabed type, on the current
coverage matrix C, and on the probability of detection pscan.
The set S is initialized to the empty set (Fig. 3a), and C = 0.
At iteration 1 (Fig. 3b), the procedure generates a first set H∗
of horizontal segments and a first set V∗ of vertical segments.
H∗ is then added to S (V∗ is equivalent in terms of gain,
in this case). At iteration 2 (Fig. 3c), the updated current
coverage matrix C is used to compute two new sets H∗ and
V∗. The algorithm adds V∗ to S since it achieves a higher
gain. At iteration 3 (Fig. 3d), the algorithm chooses V∗ (a
single segment) and adds it to S.

B. Reducing to a TSP and Reconstructing the Path P

In this phase, a connected path P including all the
segments in S is constructed using a TSP reduction. Let
V (G) be the set of nodes of graph G, E (G) be its set of
edges, and c(e) be a cost function on E (G). The goal is to
find a cycle of minimal cost that visits each node once.

For each segment si in S with endpoints ui and wi, we
create three nodes in V (G): ui, wi, and vi and two edges
(ui, vi) and (vi, wi). The node vi is a dummy node used to
force the algorithm to travel over the segment between ui
and wi. The cost of these two edges is null. For every pair
of segments si and sj in S , we create four edges: (ui, uj),
(ui, wj), (wi, uj), and (wi, wj). The cost of these edges
corresponds to the shortest distance in the number of robot’s
moves needed to connect the endpoints. Finally, let us be

u v w
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u′ v′ w′• • •
•
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(a) Step 1: generate the
graph’s nodes.

u v w
• • •

u′ v′ w′• • •

(b) Step 2: generate the
graph’s edges (dotted lines).
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(c) Step 3: find an optimal
cycle (dotted lines).
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(d) Step 4: reconstruct the
path.

Fig. 4. The TSP reduction and the path reconstruction on the segments
set S of Fig. 3.

the starting position of the robot. We create a source node
us connected to all endpoints of the segments with distances
given by the shortest distance in number of moves. We create
a sink node ws connected to all segments’ endpoints with a
null distance. We create a dummy node vs that is connected
to us and ws by two edges of null cost.

Solving the TSP consists of finding a cycle of minimum
cost that passes through each node exactly once. Note that
such a cycle would have to visit each node vi once. Since
this node is only connected to the two endpoints ui, wi, it
forces the cycle to enter by one endpoint of the segment and
to leave by the other endpoint. The same principle applies for
the node vs that is only connected to the source node us and
the sink node ws. Therefore, a cycle starts at node ws, visits
all the segments, and returns to ws through vs. Removing the
node ws and vs from the cycle yields the solution path P we
are looking for. To find the lowest cost cycle, and therefore
the solution path, we chose the Concorde solver [24].

1) Example: Fig. 4 shows a TSP reduction and a path
reconstruction example on the segments set S of Fig. 3. First,
the reduction process generates the graph nodes represented
by dots on Fig. 4a. The robot starts in cell (1, 1). Therefore,
the source node us is positioned in (1, 1), the sink node ws

and the dummy node vs are positioned at the same place.
Second, it links the segments endpoints by creating edges.
Fig. 4b shows the edges added to the graph G for segments
s = (u, v, w) and s′ = (u′, v′, w′). Third, on Fig. 4c, the
Concorde solver finds an optimal cycle that starts from the
source and goes through all the nodes before returning to the
source node us by the sink node ws then the dummy node
vs. Finally, on Fig. 4d, the robot’s path is reconstructed. As
shown, there are no links between the last robot’s position
(4, 3) and its initial position in (1, 1): We simply ignore the
sink and the dummy nodes during path reconstruction.



TABLE I
PROBLEM INSTANCES PUBLISHED IN [7]

Ocean bed Required coverage Detection prob.
No O Dij (∀i, j) pscan

1 [7, Fig. 5.1] 0.9

[
0.6 0.65 0.62

0.7 0.85 0.8

0.99 0.99 0.99

]

2 [7, Fig. 5.4] 0.9

[
0.7 0.8 0.75

0.99 0.99 0.99

0.91 0.95 0.92

]

3 [7, Fig. 5.8] 0.9

[
0.8 0.8 0.8

0.8 0.8 0.8

0.91 0.91 0.91

]

4 [7, Fig. 5.11] 0.75

[
0.51 0.51 0.51

0.8 0.8 0.8

0.91 0.91 0.91

]

5 [7, Fig. 5.14] 0.75

[
0.51 0.51 0.51

0.8 0.8 0.8

0.99 0.99 0.99

]

6 [7, Fig. 5.16] 0.9

[
0.6 0.6 0.6

0.8 0.8 0.8

0.91 0.91 0.91

]

7 [7, Fig. 5.18] 0.85

[
0.6 0.6 0.6

0.8 0.8 0.8

0.91 0.91 0.91

]

V. EXPERIMENTATION

We present the results of our DpSweeper algorithm, imple-
mented in C++, obtained on an Intel(R) Core(TM) i7-Q740
CPU with 8 GB of RAM. A comparison with the results
of the HCPP algorithm on seven instances published in [7]
is included. Table I summarizes the instances in increasing
order of complexity. The robot starts in the top left corner
of the grid. The required coverage matrix D is uniform, i.e.,
all cells have the same required coverage probability. We use
a range r = 3. The seabed maps O, containing more than
21000 cells, can consist of three different seabed types: flat
(f), ripples (r), and complex (c) seabed. The first instance [7,
Fig. 5.1] has a flat seabed: a lawnmower pattern is sufficient
to cover it. The second [7, Fig. 5.4] is made of a flat seabed
with a rectangular complex seabed patch in the middle. The
third [7, Fig. 5.8] has three complex seabed patches. The
fourth [7, Fig. 5.11] has a circle of complex seabed in the
middle. The fifth [7, Fig. 5.14] has a fragmented circle
of complex seabed in the middle. The sixth [7, Fig. 5.16]
is a real map containing three different seabed types. The
seventh [7, Fig. 5.18] is a realistic randomly generated map
containing three different seabed types.

Table II presents the results of both the HCPP and the
DpSweeper algorithms. As in [7], we use the following
lexicographic order of criteria: First minimize path length,
then the number of turns. The required coverage is attained in
all cases. We see that the DpSweeper algorithm outperforms
the HCPP algorithm on the first criterion in all instances
except for instances 2 and 5. Following a close inspection of
the figures published in [7], we noticed that on the spot 180◦

turns were allowed. Our more restrictive assumptions (not
allowing on the spot 180◦ turns), although not a DpSweeper
limitation, are closer to the physical constraints of AUVs and
actually favor HCPP. This may explain the slightly longer

TABLE II
COMPARISON OF DPSWEEPER TO HCPP [7]

HCPP† DpSweeper
Solution‡ Solution‡ TSP Time (s)

No Length Turns Length Turns nodes TSP Total
1 3777 40 3755 41 66 < 1 < 1
2 4599 60 4628 61 99 < 1 1
3 5556 82 5321 95 144 < 1 1
4 5494 77 5363 75 117 < 1 1
5 5119 114 5151 107 162 1 2
6 6689 136 5681 270 402 45 52
7 7141 137 5731 174 273 12 15

† The solving times of the HCPP method are not published.
‡ Shorter is better, ties are broken on the number of turns.

(a) Solution to problem 3 (b) Solution to problem 5

(c) Solution to problem 6 (d) Solution to problem 7

Fig. 5. Solutions found by DpSweeper; complex, ripples, and flat seabed
cells are respectively filled with dark gray, gray, and white.

path we found on instances 2 and 5. For the instances 6
and 7, our solution has significantly more turns than HCPP.
On these instances, generating more turns was necessary
to diminish the path length of respectively more than 15%
and 20% when compared to [7], which is coherent with the
lexicographic order of the minimization objectives.

The DpSweeper algorithm solved instances 1 to 4 in one
second or less and instance 5 in two seconds. The solving
times of the most realistic instances (6 and 7) are within
a minute. These times include both the segment generation
process and the Concorde solver calls. We chose to use
Concorde instead of a TSP heuristic since it is the state
of the art: It solves most TSPLIB [25] instances (sometimes
with more than 2000 nodes) within a few minutes. Although
Concorde may consume more time than a heuristic, it finds
the optimal tour to all our instances within a few seconds.

Fig. 5 shows some of the solutions provided by our
algorithm. On the problem 3 (Fig. 5a), we see the tendency
of the algorithm to generate a simple lawnmower pattern
that minimizes both the path length and the number of
turns. It starts with a horizontal lawnmower pattern. Then,
on the third row, it follows a vertical lawnmower to cover
the complex seabed patches. Finally, it comes back to its



horizontal lawnmower pattern to cover all the grid. We notice
a similar behavior on problem 5 (Fig. 5b). The seabed
of this grid forces the algorithm to adapt the length of
each segment to follow the fragmented circle edges. For
problem 6 (Fig. 5c), the algorithm first plans a complete
lawnmower pattern. Then, it goes up towards and over the
closest ripples seabed and the complex patches. Finally, it
passes over complex seabed patches again to achieve the
required coverage, and then aims for the furthest ripples
patches. It ends its course on the left hand side of the map.
A similar behavior occurs in Fig. 5d.

In addition to its superior results, the main advantage
DpSweeper over HCPP is that it is general, and contrary
to HCPP, does not require lengthy, instance specific, fine-
tuning. Furthermore, its very short computational time makes
it possible to obtain a high quality path rapidly, an important
characteristic for algorithms in practical contexts.

VI. CONCLUSION

We have presented a novel algorithm (DpSweeper) for
coverage path planning using imperfect sensors with an
extended detection range (CPPIED). In order to obtain
shortest feasible paths with small numbers of turns, the algo-
rithm consists of two main phases: (1) greedily constructing
a partial path made of segments to guarantee that the required
coverage is achieved (dynamic programming); (2) optimally
linking segments to create a path that is within the robot’s
physical constraints (TSP reduction). The algorithm yields
favorable results in a very short time compared to the
literature. It is flexible and can be applied to general complex
seabed environments. In contrast with the only other algo-
rithm that tackles the CPPIED problem, it does not require
customized fine-tuning for individual environments. Even
though the TSP problem is NP-hard [26], the instances
resulting from our real and practical CPPIED problem
instances are within the reach of the Concorde TSP solver
that we used. TSP reductions are found in the literature to
solve part of decomposed coverage problems (e.g., [2]) or
other similar problems (e.g., [27]). However, most of them
use the TSP to find a sequence of large regions where
they assume a fixed coverage pattern. We use the TSP
directly to order a sequence of path components (segments)
on the whole environment. Our algorithm is not limited to an
underwater context and may be used in other obstacle-free
environments.

ACKNOWLEDGMENT

We wish to thank P. Giguère for his insightful suggestions,
and the Ocean Systems Lab for providing us with the
problem instances found in [7].

REFERENCES

[1] J. Nicholson and A. Healey, “The present state of autonomous
underwater vehicle (AUV) applications and technologies,” Marine
Technology Society Journal, vol. 42, no. 1, pp. 44–51, 2008.

[2] C. Fang and S. Anstee, “Coverage path planning for harbour seabed
surveys using an autonomous underwater vehicle,” in Proc. of
OCEANS 2010 IEEE-Sydney, Sydney, Australia, May 2010, pp. 1–
8.

[3] S. Reed, Y. Petillot, and J. Bell, “An automatic approach to the
detection and extraction of mine features in sidescan sonar,” IEEE
J. Oceanic Eng., vol. 28, no. 1, pp. 90–105, 2003.

[4] D. W. Gage, “Randomized search strategies with imperfect sensors,”
in Proc. of SPIE Mobile Robots VIII, San Diego, CA, Sept. 1993, pp.
270–279.

[5] ——, “Many-robot MCM search systems,” in Proc. of Autonomous
Vehicles in Mine Countermeasures Symposium, A. Bottoms, J. Eagle,
and H. Bayless, Eds., Monterey, CA, Apr. 1995.

[6] R. Mannadiar and I. Rekleitis, “Optimal coverage of a known arbitrary
environment,” in Proc. of IEEE International Conference on Robotics
and Automation (ICRA’10), Anchorage, AK, May 2010, pp. 5525–
5530.

[7] M. Drabovich, “Automated mission trajectory planning for mine
countermeasures operations,” Master’s thesis, Heriot Watt University,
Edinburgh, Scotland, UK, 2008.

[8] D. P. Williams, “On optimal AUV track-spacing for underwater mine
detection,” in Proc. of IEEE International Conference on Robotics and
Automation (ICRA’10), Anchorage, AK, May 2010, pp. 4755–4762.

[9] J. R. Stack and C. M. Smith, “Combining random and data-driven cov-
erage planning for underwater mine detection,” in Proc. of OCEANS
2003 MTS/IEEE, vol. 5, San Diego, CA, Sept. 2003, pp. 2463–2468.

[10] T. Oksanen and A. Visala, “Coverage path planning algorithms for
agricultural field machines,” Journal of Field Robotics, vol. 26, no. 8,
pp. 651–668, 2009.

[11] E. Galceran and M. Carreras, “Coverage path planning for marine
habitat mapping,” in Proc. of OCEANS 2012 MTS/IEEE, Hampton
Roads, VA, USA, Oct. 2012, pp. 1–8.

[12] R. N. De Carvalho, H. Vidal, P. Vieira, and M. Ribeiro, “Complete
coverage path planning and guidance for cleaning robots,” in Proc.
of IEEE International Symposium on Industrial Electronics (ISIE’97),
vol. 2, Guimarães, Portugal, July 1997, pp. 677–682.

[13] M. Morin, L. Lamontagne, I. Abi-Zeid, P. Lang, and P. Maupin, “The
optimal searcher path problem with a visibility criterion in discrete
time and space,” in Proc. of the 12th International Conference on
Information Fusion (FUSION’09). Seattle, WA: ISIF IEEE, July
2009, pp. 2217–2224.

[14] I. Abi-Zeid and J. R. Frost, “Sarplan: A decision support system
for canadian search and rescue operations,” European Journal of
Operational Research, vol. 162, no. 3, pp. 630–653, 2005.

[15] B. Nguyen and D. Hopkin, “Modeling autonomous underwater vehicle
(AUV) operations in mine hunting,” in OCEANS 2005 IEEE-Europe,
vol. 1, Brest, France, June 2005, pp. 533–538.

[16] E. Acar, Y. Zhang, H. Choset, M. Schervish, A. G. Costa, R. Melamud,
D. Lean, and A. Graveline, “Path planning for robotic demining and
development of a test platform,” in Proc. of the 8th International
Conference on Field and Service Robotics (FSR 2012), Matsushima,
Japan, July 2001, pp. 161–168.

[17] Y. Zhang, M. Schervish, E. U. Acar, and H. Choset, “Probabilistic
methods for robotic landmine search,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’01),
vol. 3, Maui, Hawaii, Oct./Nov. 2001, pp. 1525–1532.

[18] H. Choset, “Coverage for robotics,” Annals of Mathematics and
Artificial Intelligence, vol. 31, no. 1-4, pp. 113–126, 2001.

[19] S. Russel and P. Norvig, Intelligence artificielle, 2nd ed. Paris, France:
Pearson Education France, 2006.

[20] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” IEEE Computer, vol. 22, no. 6, pp. 46–57, 1989.

[21] L. Paull, S. Saeedi, and H. Li, “Path planning for autonomous
underwater vehicles,” in Robot Autonomy. Springer, 2013, pp. 177–
223.

[22] G. Cannata and A. Sgorbissa, “A minimalist algorithm for multirobot
continuous coverage,” IEEE Transactions on Robotics, vol. 27, no. 2,
pp. 297–312, 2011.

[23] J. Bentley, “Programming pearls: algorithm design techniques,” Com-
munications of the ACM, vol. 27, no. 9, pp. 865–873, 1984.

[24] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde TSP
solver. [Online]. Available: http://www.tsp.gatech.edu/concorde

[25] G. Reinelt, “TSPLIB-A traveling salesman problem library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

[26] M. R. Garey and D. S. Johnson, Computers and intractability. San
Francisco, CA: Freeman, 1979, vol. 174.

[27] S. Ntafos, “Watchman routes under limited visibility,” Computational
Geometry, vol. 1, no. 3, pp. 149–170, 1992.


