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Abstract. The ability to sample solutions of a constrained combinatorial space
has important applications in areas such as probabilistic reasoning and hard-
ware/software verification. A highly desirable property of such samples is that
they should be drawn uniformly at random, or at least nearly so. For combina-
torial spaces expressed as SAT models, approaches based on universal hashing
provide probabilistic guarantees about sampling uniformity. In this short paper,
we apply that same approach to CP models, for which hashing functions take the
form of linear constraints in modular arithmetic. We design an algorithm to gen-
erate an appropriate combination of linear modular constraints given a desired
sample size. We evaluate empirically the sampling uniformity and runtime effi-
ciency of our approach, showing it to be near-uniform at a fraction of the time
needed to draw from the complete set of solutions.

1 Introduction

Many important yet difficult problems can be expressed on a constrained combinato-
rial space: finding a satisfying element (i.e. a solution) in that space and looking for an
optimal one according to some criterion are perhaps the most common tasks but count-
ing how many solutions there are and sampling solutions uniformly at random also
have important applications. Examples of the latter occurs in probabilistic planning [3],
Bayesian inference [10], code verification [4], as well as other applications [5].

Model counters which follow an approach based on universal hashing benefit from
probabilistic guarantees about the quality of the approximate count they provide. In the
context of SAT models expressed through Boolean variables, such universal hashing
takes the form of randomly generated parity (XOR) constraints [2]. In the wider context
of finite-domain variables and CP models the latter generalize to randomly generated
linear equality constraints in modular arithmetic, as recently investigated by Pesant et
al. [9]. Because hashing-based model counting operates by partitioning the solution
space into nearly-equal-size cells, it also offers an approach to solution sampling, which
has been exploited for SAT [7]. Even though in principle sampling the solutions of a
CP model could be achieved by first translating the model into SAT, it would be much
preferable to do it directly in CP.

Vavrille et al. [11] recently proposed a solution sampler for CP inspired by that idea
of splitting the search space into cells and focusing on one such cell — adding random
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TABLE constraints to a CP model — but unfortunately without any theoretical guaran-
tee about the quality of the sampling nor admittedly any generally-observed sampling
uniformity in practice. In this short paper, we add certain linear modular constraints —
sharing the same probabilistic guarantees as XOR constraints for SAT— in order to sam-
ple the solutions of a CP model. We show that in practice we achieve almost uniform
sampling. As in [11] our approach is independent of the actual CP model being sam-
pled and can be applied as long as the underlying CP solver supports such constraints.
Additionally it is very simple to use, without any parameters to tune.

The literature is scarce on the problem of sampling CP models. Gogate and Dechter
achieve uniform sampling on a CSP by first expressing it as a factored probability dis-
tribution over its solutions, which requires that each constraint be given as a set of
allowed tuples [6]. Perez and Régin sample solutions according to a given probability
distribution but require that the model be encoded as a single MDD constraint [8]. As
previously mentioned Vavrille et al. add randomly generated TABLE constraints to a
CP model thereby reducing the search space in a controlled manner prior to sampling
[11]. Parameters v and p respectively control the arity of a table and the probability of
a tuple being included. In practice v is chosen much smaller than the number of vari-
ables in order to keep in check the exponential growth of the tables, thus sacrificing
uniformity in sampling.

In the rest of the paper Section 2 describes how a system of linear modular con-
straints can be used to partition the search space and offer guarantees on the quality
of the sampling. We also give an algorithm to generate these constraints. Section 3
presents an empirical evaluation and a comparison to the state of the art in constraint
programming.

2 Solution Sampling

The core idea of our sampling algorithm, borrowed from an approach to approximate
model counting, is to employ pairwise-independent hash functions to partition the so-
lution space into roughly equal-size cells of solutions. By aiming for a cell size cor-
responding to the desired number of samples, we then focus on one such cell and ex-
haustively enumerate its solutions. Note that while we could in principle enumerate
solutions up to the desired number from a much larger cell, this would either introduce
a bias in the sampling process from the branching heuristic used or require that we use a
totally random branching heuristic to the detriment of better-performing ones and with
poor uniformity as observed in [11]. Enumerating from an appropriately-sized cell also
means a smaller search space, which could bring computational savings. Finally, be-
cause our samples come from the enumeration of a single smaller solution space, we
are guaranteed there will be no duplicates.

Such near-uniform partitioning of the solutions can be achieved by adding a system
of m linear modular equalities in n integer finite-domain variables

Ax = b (mod p)

where x is a vector of n integer finite-domain variables, A an m × n matrix whose
elements belong to [p] ≜ {0, 1, . . . , p−1}, b a vector of m elements from [p], and p the
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modulus. Linear modular equalities are closely related to universal hash functions — we
recall two important properties [1]. Let modulus p be a prime number, x1, x2 ∈ [p]n,
and A, b be filled uniformly at random:

uniform partitioning of solutions: Pr[Ax1 = b (mod p)] = 1
pm

pairwise independence: Pr[Ax1 = b (mod p) | Ax2 = b (mod p)] = 1
pm

Another advantage of choosing p to be prime is that we can apply Gauss-Jordan
Elimination on the system of linear equalities Ax = b (mod p) in order to rewrite it
in parametric form and then achieve domain consistency by encoding its set of solu-
tions — obtained by iterating through the domains of the parametric variables — as a
TABLE constraint on all of x [9]. In practice we only perform this last step whenever
the corresponding set of tuples becomes small enough or sparse enough during search.

So ultimately for filtering we use TABLE constraints but, in contrast to Vavrille et
al.[11]: (i) we express them over the whole set of variables instead of some randomly-
chosen small subset; (ii) our tuples originate from hash functions with theoretical guar-
antees instead of being randomly selected according to some probabilistic threshold;
(iii) we generate TABLE constraints dynamically during search.

While linear modular constraints provide us with a way to distribute solutions fairly
evenly and independently among the partition of the search space into cells, we still
need to control the size of a cell so that it likely contains the desired number of solu-
tions. Simply adding an integral number m of linear modular equalities only provides
limited control on cell size especially when p is large: each cell amounts to 1/pm of
the search space. To correct this, linear modular inequalities can be added as well since
they provide a finer control on cell size.

2.1 Systems of Linear Modular Inequalities

As we just saw, we need to handle systems of linear modular inequalities Ax + b ≤ c
(mod p) 3 in order to produce a cell containing about as many solutions as the desired
number of samples. While the probabilistic guarantees of such systems were given in
Lemma 1 of Pesant et al. [9], namely

Pr[Ax+ b ≤ c] = Pr[Ax+ b ≤ c | Ay + b ≤ c] =

∏m
i=1(c[i] + 1)

pm
,

no filtering algorithm was provided for them. We now outline one that essentially recasts
this in terms of equalities. For notational convenience, we first drop b by considering
that it has been appended to A and a variable fixed to 1 appended to x. Transform
system Ax ≤ c into the equivalent disjunction of systems of equalities∨

0≤c′[i]≤c[i], 1≤i≤m

Ax = c′.

3 i.e. each congruent to one of {0, 1, . . . , c[i]}. We need to add b in the inequalities because
otherwise the probability that e.g. the null solution x = 0 satisfies the inequality would be
equal to 1.
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Algorithm 1: Sampling algorithm
Input: sample fraction λ, model variables x
Output: set of sampled solutions

1 ℓ← largest domain value among x
2 p← smallest prime ≥ max(ℓ, 5)
3 m,F ← partition(λ, p)
4 m≤ ← |F |
5 m= ← m−m≤
6 if m= > 0 then
7 for i← 1 to m= do
8 b[i]← U[p]

9 for j ← 1 to |x| do A[i][j]← U[p]

10 post Ax = b (mod p)
11 x′ ← parametric variables of Ax = b (mod p)

12 else x′ ← x
13 if m≤ > 0 then
14 for i← 1 to m≤ do
15 remove a factor f from F
16 c[i]← f − 1
17 b[i]← U[p]

18 for j ← 1 to |x′| do A[i][j]← U[p]

19 post Ax′ + b ≤ c (mod p)

20 return all solutions of the resulting CP model, branching on x′

There will be
∏
(c[i] + 1) disjuncts that we can represent compactly as Ax “=” C with

C being the m ×
∏
(c[i] + 1) matrix representing the right-hand side of each disjunct.

We then proceed as in the case of equalities, applying Gauss-Jordan Elimination on this
augmented system and eventually enumerating tuples to be fed to a TABLE constraint.

2.2 Sampling Algorithm

Algorithm 1 describes our sampling algorithm. Given the CP model variables (strictly
speaking, the branching variables are sufficient) and the desired size of the sample ex-
pressed as a fraction λ of the number of solutions, it selects an appropriate value for p
(e.g. from a precomputed table of prime numbers): p should be large enough both to
achieve (i) the previously-mentioned probabilistic guarantees and (ii) the desired cell
size by offering at least a few possibilities in the choice of right-hand side c for inequal-
ities (with p = 3 the only option is c = 1). It then adds to the CP model a suitable mix
of m linear modular equality and inequality constraints so that∏m′

i=1(c[i] + 1)

pm
≈ λ, m′ ≤ m,

as directed by Algorithm 2 described below. Finally it enumerates and returns all the
solutions in the resulting cell (i.e. the original CP model with the added linear modular
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Algorithm 2: partition(λ, p)
Input: sample fraction λ, modulus p
Output: number of constraints m and list of factors F

1 F ← ⟨⟩
2 repeat
3 m← 0
4 ν ← λ
5 while F = ⟨⟩ do
6 m← m+ 1
7 ν ← ν × p

8 if |ν−1|
ν
≤ ϵ then return m, ⟨⟩ // equalities are sufficient

9 if ν > νmax then break // numerator too large; try bigger ϵ

10 if ν−⌊ν⌋
ν
≤ ϵ then F ← factorize(⌊ν⌋, p− 1,m)

11 if F = ⟨⟩ ∧ ⌈ν⌉−ν
ν
≤ ϵ then F ← factorize(⌈ν⌉, p− 1,m)

12 ϵ← 2ϵ

13 until ν ≤ νmax

14 return m,F

constraints). Note that it is sufficient to branch on the parametric variables of the system
of equality constraints since assigning these fixes the non-parametric variables as well.

We chose to specify the sample size relative to the number of solutions because it
does not require some approximation of the latter. If such an approximation is avail-
able, generating some given absolute number of samples can easily be done as well by
deriving the corresponding fraction.

The success of our approach relies on two factors: an even partition of solutions
into cells, provided by the linear modular constraints we use, and a relative cell size
close to sample fraction λ. For the latter, we seek an expression whose denominator
is determined by m (given p) and whose numerator can be decomposed into at most
m factors all less than p (Algorithm 3), each giving rise to a corresponding inequality.
Algorithm 2 computes a suitably accurate combination of linear modular equalities and
inequalities to restrict the search space to a cell of the desired size. It repeatedly attempts
to reach the target accuracy (given by parameter ϵ, set to 0.01 in our experiments) while
keeping the numerator of our approximation to λ below threshold νmax (set to 100)
because it corresponds to the number of disjuncts in the translation of the system of
inequalities we will generate (Section 2.1), doubling parameter ϵ after each attempt until
we succeed. In practice it only requires a few attempts. In each attempt we consider, for
increasing values of m, a potential factorization of integral numerators ⌊ν⌋ and ⌈ν⌉,
where ν is the exact rational numerator such that ν/pm = λ, provided that the resulting
approximation of λ would be accurate enough. For example partition(λ = 0.02, p =
11) requires two attempts, settling on m = 3 and F = ⟨9, 3⟩ with a relative error below
0.015.

Algorithm 2 always terminates. Indeed, the inner loop increases ν on line 7 and
eventually exits the loop on line 9 if ν becomes too large. The outer loop increases ϵ on
line 12 and terminates on line 8 if it becomes too large.



6 Gilles Pesant, Claude-Guy Quimper, and Hélène Verhaeghe

Algorithm 3: factorize(a, f, d)
Input: integer a to factorize, largest possible factor f , maximum number of factors d
Output: list F of factors

1 F ← ⟨⟩
2 while a > 1 ∧ f > 1 do
3 while a mod f = 0 do
4 add f to F
5 a← a÷ f

6 f ← f − 1

7 if a = 1 ∧ |F | ≤ d then return F
8 else return ⟨⟩

Algorithm 3 decomposes integer a into the fewest factors (and no more than d),
none of them larger than f . Failing this, it returns an empty list. It is an adaptation of
the simple Trial division algorithm 4 in which we instead try factors in decreasing order
to minimize the number of factors and thus maximize the number of equality constraints
we will use, which contributes to reduce the number of branching variables. Because
a ≤ νmax and f < p using a more efficient algorithm is not worthwhile.

3 Experiments

In this section we evaluate the sampling uniformity and computational efficiency of our
approach using benchmark instances from the literature. The java.util.Random
random number generator is used in all our experiments. The random table approach [11]
is evaluated using the authors’ own code. The code for our approach is available as
well.5

3.1 Benchmark Problems

For all our experiments, we based ourselves on four problems. The N-Queens problem
(used in [11]), the Feature Models problem (software configuration problem, used in
[11]), a Synthetic n d problem (n variables of domain size d, composed of two sub-
problems, the total number of solutions is computable analytically, used and defined
in [9]), and the Myciel problem (graph coloring, used in [9]). For the instances with a
low number of solutions (Feature Models, 9-Queens, Synthetic 10 5) we aim to gen-
erate as many samples as 30 times the number of solutions. For our approach we use
fraction λ ∈ {0.01, 0.05, 0.25} (it is hard to go below 1% with that few solutions).
For the other instances (Myciel 4, 15-Queens, Synthetic 10 10) we perform 100 runs
with λ = 10−5. For the random table approach we use the best combination of param-
eters reported for instances appearing in [11] and their generally-recommended values
(κ = 16, p = 1/32) otherwise.

4 https://en.wikipedia.org/wiki/Trial division
5 TBA
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(a) Feature (CSP) (b) Feature (obj ≥ 17738) (c) Myciel 4

(d) NQueens 9 (e) Synthetic 10 5 (f) Synthetic 10 10

Fig. 1: Evolution of the p-value for competing sampling approaches on six benchmark
instances.

3.2 Quality of Sampling

As in [11], we evaluate the statistical quality of the sampling by computing the p-value
of Pearson’s χ2 statistic. Figure 1 shows the evolution of this p-value as samples are
drawn. Given the number of solutions to the problem nSol, the number of samples
nSample, the number of occurrences nOcck of a solution k in the samples and P the
expected number of occurrences of a given solution assuming a uniform distribution
(P = nSample

nSol ), we compute

zexp =
∑nSol

k=1
(nOcck−P )2

P .

The p-value is computed based on this expression.6 The closer to 1 the p-value is, the
closer to a uniform distribution the sampling is.

We compare our approach (Lin Mod) to that of [11] (Rnd table) as well as to an
oracle (Oracle) that simulates random sampling from the pool of all solutions by gen-

6 The statistical library used is ”Apache Commons Mathematics Library” (https://commons.
apache.org/proper/commons-math/).
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instance #solutions #solns/|search space| runtime ratio
15-Queens 2.28e+6 5.2e-12 5.4
Myciel 4 1.42e+8 3.0e-07 12.6
Synthetic 10 5 1.53e+5 1.6e-02 105.1
Synthetic 10 10 9.92e+8 1.0e-01 1183.9

Table 1: Runtime ratio between enumerating solutions over the whole search space and
over approximately 10−5 of it (i.e. in a cell of our approach).

erating a sequence of random integers between 1 and nSol. As pointed out in [11], this
generator is not perfect. Our study of the evolution of the p-value confirms it.

For 9-Queens the random table approach had achieved very good uniformity for
some combinations of its parameters [11]. We achieve even nearer uniformity for all
three values of λ. On Synthetic, the random tables over 2 variables perform very well
(however, not as well over 4 variables) but our approach is practically perfect. Feature
Models is an instance for which it was reported that the random table approach did not
perform well. On the contrary we see that our approach yields very good uniformity,
even outperforming the oracle on the version with an unbounded objective. There is
also a marked difference in quality on Myciel, whose model features 21 variables.

So for all benchmarks our sampling approach leads to better uniformity than the
random table approach. Uniformity generally increases with λ, which is expected since
the number of samples drawn at a time increases as well and these are necessarily
distinct by design (we enumerate solutions in a more constrained space). A typical λ
would be closer to 0.01 than to 0.25.

3.3 Runtime Efficency of our Sampling Approach

In the previous section we gave empirical evidence that our approach newly contributes
near-uniform sampling. But it remains to show that it is less time-consuming than the
brute-force approach of enumerating all solutions and then sampling uniformly at ran-
dom from them (i.e. the oracle). When the number of solutions is small the latter may
indeed be sufficient but in a realistic setting we sample from a large pool of solutions.
Table 1 reports for the larger instances the runtime ratio between enumerating the so-
lutions in the whole search space and in a cell approximately 10−5 of its size (our
approach). In each case we observe computational savings, even by a few orders of
magnitude, without being close to an ideal 105 ratio from the corresponding reduction
in search space because there is an overhead in handling linear modular constraints and
recall that active domain filtering through TABLE constraints occurs lower in the search
tree once they are posted. Better ratios appear to have more to do with the higher density
of solutions than the actual number of solutions (see Table 1, second and third column).

4 Conclusion

We described a novel approach to sample the set of solutions of CP models and provided
empirical evidence that it reaches near uniformity.
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