
Variants of Multi-Resource Scheduling Problems with Equal
Processing Times

Hamed Fahimi, Claude-Guy Quimper

Université Laval, Canada
hamed.fahimi.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

Abstract. We tackle the problem of non-preemptive scheduling of a set of tasks of duration
p over m machines with given release and deadline times. We present a polynomial time
algorithm as a generalization to this problem, when the number of machines fluctuates over
time. Further, we consider different objective functions for this problem. We show that if an
arbitrary function cost ci(t) is associated to task i for each time t, minimizing

∑n
i=1 ci(si) is

NP-Hard. Further, we specialize this objective function to the case that it is merely contingent
on the time and show that although this case is pseudo-polynomial in time, one can derive
polynomial algorithms for the problem, provided the cost function is monotonic or periodic.
Finally, as an observation, we mention how polynomial time algorithms can be adapted with
the objective of minimizing maximum lateness.

1 Introduction

We explore several variants of the problem of scheduling, without preemption, tasks with equal
processing times on multiple machines while respecting release times and deadlines. More formally,
we consider n tasks and m identical machines. Task i has a release time ri and deadline d̄i. All
tasks have a processing time p. Without loss of generality, all parameters ri, d̄i and p are positive
integers. Moreover, we consider the time point ui = d̄i−p+1, by starting at which a task i oversteps
its deadline. We denote rmin = mini ri the earliest release time and umax = maxi ui the latest value
ui. A solution to the problem is an assignment of the starting times si which satisfies the following
constraints

ri ≤ si < ui ∀ i ∈ {1, . . . , n} (1)

|{i : t ≤ si < t+ p}| ≤ m ∀ t ∈ [rmin, umax) (2)

The completion time of a task Ci is equal to si + p. From (1), we obtain Ci ≤ d̄i.
Following the notations of [9], this problem is denoted Pm | rj ; pj = p; d̄j | γ where γ is an

objective function. The problem is sometimes reformulated by dividing all time points by p, resulting
in tasks with unit processing times [13, 14]. However, this formulation does not make the problem
easier to solve, as release times and deadlines lose their integrality. Without this integrality, greedy
algorithms, commonly used to solve the problem when p = 1, become incorrect. Indeed, when the
greedy scheduling algorithms choose to start a task i, they assume that no other tasks arrive until
i is completed. This assumption does not hold if release times can take any rational value.

We explore several variations of this scheduling problem. Firstly, we solve the problem when the
number of machines fluctuates over time. This models situations where there are fewer operating
machines during night shifts or when fewer employees can execute tasks during vacation time or

holidays. Then, we consider the problem with different objective functions. For an arbitrary function
ci(t) associated to task i that maps a time point to a cost, we prove that minimizing

∑n
i=1 ci(si)

is NP-Hard. This function is actually very general and can encode multiple well known objective
functions. We study the case where all tasks share the same function c(t). This models the situation
where the cost of using the resource fluctuates with time. This is the case, for instance, with the
price of electricity. Executing any task during peak hours is more expensive than executing the
same task during a period when the demand is low. We show that minimizing

∑n
i=1 c(t) can be

done in pseudo-polynomial time and propose improvements when c(t) is monotonic or periodic.
The periodicity of the cost function is a realistic assumption as high and low demand periods for
electricity have a predictable periodic behavior. Finally, we point out how the problem is solved in
polynomial time with the objective of minimizing maximum lateness.

The paper is divided as follows. Section 2 presents a brief survey on existing algorithms related
to the scheduling problem, the basic terminology and notations used in this paper, and the objective
functions of interest. Section 3 solves the case where the number of machines fluctuates at specific
times and shows how to adapt an existing algorithm for this case, while preserving polynomiality.
Section 4 shows that minimizing

∑n
i=1 ci(si) is NP-Hard. Sections 5 and 6 consider a unique cost

function c(t) that is either monotonic or periodic and present polynomial time algorithms for these
cases. Finally, as an additional remark, we show how to adapt a polynomial time algorithms for
minimizing maximum lateness.

2 Literature Review, Framework and Notations

2.1 Related Work

Simons [13] presented an algorithm with time complexity O(n3 log log(n)) that solves the scheduling
problem. It is reported [9] that it minimizes both the sum of the completion times

∑
j Cj , and the

latest completion time Cmax (also called the makespan). Simons and Warmth [14] further improved
the algorithm complexity to O(mn2). Dürr and Hurand [4] reduced the problem to a shortest path in
a digraph and designed an algorithm in O(n4). This led López-Ortiz and Quimper [11] to introduce
the idea of the scheduling graph. By computing the shortest path in this graph, one obtains a
schedule that minimizes both

∑
j Cj and Cmax. Their algorithm runs in O(n2 min(1, p/m)).

There exist more efficient algorithms for special cases. For instance, when there is only one
machine (m = 1) and unit processing times (p = 1), the problem is equivalent to finding a matching
in a convex bipartite graph. Lipski and Preparata [10] present an algorithm running in O(nα(n))
where α is the inverse of Ackermann’s function. Gabow and Tarjan [5] reduce this complexity to
O(n) by using a restricted version of the union-find data structure.

Baptiste proves that in general, if the objective function can be expressed as the sum of n
functions fi of the completion time Ci of each task i, where fi’s are non-decreasing and for any
pair of jobs (i, j) the function fi − fj is monotonous, the problem can be solved in polynomial
time. Note that the assumption holds for several objectives, such as the weight sum of completion
times

∑
wiCi. A variant of the problem exists when the tasks are allowed to miss their deadlines

at the cost of a penalty. Let Lj = Cj − dj be the lateness of a task j. The problem of minimizing
the maximum lateness Lmax = maxj Lj (denoted P | ri, pi = p | Lmax) is polynomial [15] and the
special case for one machine and unit processing times (denoted 1 | rj , pj = p | Lmax) is solvable in
O(n log n) [8].

Möhring et al. [12] study the case where no release times or deadlines are provided and the
processing times are not all equal. For the case that their problem is not resource-constrained, they

consider the objective of minimizing costs per task and per time, as it is considered in this paper.
They establish a connection between a minimum-cut in an appropriately defined directed graph
and propose a mathematical programming approach to compute both lower bounds and feasible
solutions. The minimum-cut problem is the dual of the maximum flow problem that will be used
in this paper.

Bansal and Pruhs [3] consider the problem with preemptive tasks, a single machine, no deadlines,
and distinct processing times. Tasks incur a cost depending on their completion time. They introduce
an approximation for the general case as well as an improved approximation algorithm for the case
that all release times are identical.

2.2 Objective Functions

Numerous objective functions can be optimized in a scheduling problem. We first consider minimiz-
ing costs per task and per time, in which case executing a task i at time t costs c(i, t) and we aim to
minimize the sum of costs, i.e.

∑
i,t c(i, si). Such an objective function depends on the release time

of the task. In the industry, that can be used to model a cost that increases as the execution of a
task is delayed. For instance, c(i, t) = t − ri. Then, we consider minimizing task costs per time, in
which case executing any task at time t costs c(t) and we want to minimize

∑
i c(si). An alternative

common objective function is to minimize the sum of the completion times. In the context where
the tasks have equal processing times, a solution that minimizes the sum of the completion times
necessarily minimizes the sum of the starting time. We consider these two objectives equivalent.
Finally, we consider minimizing the maximum lateness Lmax = maxi Li.

2.3 Network Flows

Consider a digraph
−→
N = (V,E) where each arc (i, j) ∈ E has a flow capacity uij and a flow cost cij .

There is one node s ∈ V called the source and one node t ∈ V called the sink. A flow is a vector
that maps each edge (i, j) ∈ E to a value xij such that the following constraints are satisfied.

0 ≤ xij ≤ uij (3)∑
j∈V

xji −
∑
j∈V

xij = 0 ∀i ∈ V \ {s, t} (4)

The min-cost flow satisfies the constraints while minimizing
∑

(i,j)∈E cijxij .

A matrix with entries in {−1, 0, 1} which has precisely one 1 and one -1 per column is called a
network matrix. If A is a network matrix, the following linear program identifies a flow.

Maximize cTx, subject to

{
Ax = b
x ≥ 0

(5)

There is one node for each row of the matrix in addition to a source node s and a sink node t. Each
column in the matrix corresponds to an edge (i, j) ∈ E where i is the node whose row is set to 1
and j is the node whose column is set to -1. If bi > 0 we add the edge (i, t) of capacity bi and if
bi < 0 we add the edge (s, i) of capacity −bi [16].

The residual network with respect to a given flow x is formed with the same nodes V as the
original network. However, for each edge (i, j) such that xij < uij , there is an edge (i, j) in the

residual network of cost cij and residual capacity uij − xij . For each edge (i, j) such that xij > 0,
there is an edge (j, i) in the residual network of cost −cij and residual capacity xij .

To our knowledge, the successive shortest path algorithm is the state of the art, for this particular
structure of the network, to solve the min-cost flow problem. This algorithm successively augments
the flow values yij of the edges along the shortest path connecting the source to the sink in the
residual graph. Let N = max(i,j)∈E |cij | be the greatest absolute cost and U = maxi∈V bi be the
largest value in the vector b. To compute the shortest path, one can use Goldberg’s algorithm [6]
with a time complexity of O(|E|

√
|V | logN). Since at most |V |U shortest path computations are

required, this leads to a time complexity of O(|V |1.5|E| log(N)U).

2.4 Scheduling Graph

López-Ortiz and Quimper [11] introduced the scheduling graph which holds important properties.
For instance, it allows to decide whether an instance is feasible, i.e. whether there exists at least
one solution. The graph is based on the assumption that it is sufficient to determine how many
tasks start at a given time. If one knows that there are ht tasks starting at time t, it is possible
to determine which tasks start at time t by computing a matching in a bipartite convex graph
(see [11]).

The scheduling problem can be written as a satisfaction problem where the constraints are
uniquely posted on the variables ht. As a first constraint, we force the number of tasks starting at
time t to be non-negative.

∀ rmin ≤ t ≤ umax − 1 ht ≥ 0 (6)

At most m tasks (n tasks) can start within any window of size p (size umax − rmin).

∀ rmin ≤ t ≤ umax − p
t+p−1∑
j=t

hj ≤ m,
umax−1∑
j=rmin

hj ≤ n (7)

Given two arbitrary (possibly identical) tasks i and j, the set Kij = {k : ri ≤ rk ∧uk ≤ uj} denotes
the jobs that must start in the interval [ri, uj). Hence,

∀ i, j ∈ {1, . . . , n}
uj−1∑
t=ri

ht ≥ |Kij | (8)

Some objective functions, such as minimizing the sum of the starting times, can also be written
with the variables ht.

min

umax−1∑
t=rmin

t · ht (9)

To simplify the inequalities (6) to (8), we proceed to a change of variables. Let xt =
∑t−1

i=rmin
hi,

for rmin ≤ t ≤ umax, be the number of tasks starting to execute before time t. Therefore, the

problem can be rewritten as follows.

∀ rmin ≤ t ≤ umax − p xt+p − xt ≤ m, xumax
− xrmin

≤ n (10)

∀ rmin ≤ t ≤ umax − 1 xt − xt+1 ≤ 0 (11)

∀ ri + 1 ≤ uj xri − xuj
≤ − |Kij | (12)

These inequalities form a system of difference constraints which can be solved by computing
shortest paths in what is call the scheduling graph [11]. In this graph, there is a node for each time
point t, rmin ≤ t ≤ umax and an edge of weight kpq, connecting the node q to the node p for each
inequality of the form xp − xq ≤ kpq.

The scheduling graph has for vertices the nodes V = {rmin, . . . , umax} and for edges E =
Ef ∪Eb∪En where Ef = {(t, t+p) : rmin ≤ t ≤ umax−p}∪{(rmin, umax)} is the set of forward edges
(from inequalities (10)), Eb = {(uj , ri) : ri < uj} is the set of backward edges (from inequality (12)),
and En = {(t+ 1, t) : rmin ≤ t < umax} is the set of null edges (from inequality (11)). The following
weight function maps every edge (a, b) ∈ E to a weight:

w(a, b) =

 m if a+ p = b
n if a = rmin ∧ b = umax

− |{k : b ≤ rk ∧ uk ≤ a}| if a > b
(13)

Theorem 1 shows how to compute a feasible schedule.

Theorem 1 (López-Ortiz and Quimper [11]). Let δ(a, b) be the shortest distance between node
a and node b in the scheduling graph. The assignment xt = n + δ(umax, t) is a solution to the
inequalities (10) to (12) that minimizes the sum of the completion times.

The scheduling problem has a solution if and only if the scheduling graph has no negative
cycles. An adaptation [11] of the Bellman-Ford algorithm finds a schedule with time complexity
O(min(1, p

m)n2), which is sub-quadratic when p < m and quadratic otherwise.

In the next sections, we adapt the scheduling graph to solve variations of the problem.

3 Variety of machines

Consider the problem where the number of machines fluctuates over time. Let T = [(t0,m0), . . . , (t|T |−1,m|T |−1)]
be a sequence where ti’s are the time points at which the fluctuations occur and they are sorted
in chronological order and mi machines are available within the time interval [ti, ti+1). This time
interval is the union of a (possibly empty) interval and an open-interval: [ti, ti+1) = [ti, ti+1 −
p] ∪ (ti+1 − p, ti+1). A task starting in [ti, ti+1 − p] is guaranteed to have access to mi machines
throughout its execution, whereas a task starting in (ti+1 − p, ti+1) encounters the fluctuation of
the number of machines before completion. Therefore, no more than min(mi,mi+1) tasks can start
in the interval (ti+1− p, ti+1). In general, a task can encounter multiple fluctuations of the number
of machines throughout its execution. Let α(t) = max{tj ∈ T | tj ≤ t} be the last time the number
of machines fluctuates before time t. At most M(t) tasks can start at time t.

M(t) = min{mi | ti ∈ [α(t), t+ p)}. (14)

From (14), we conclude that no more than maxt′∈[t,t+p)M(t′) tasks can start in the interval
[t, t+ p). Accordingly, one can rewrite the first inequality of the constraints (10)

xt+p − xt ≤ max
t≤t′<t+p

M(t′) (15)

and update the weight function of the scheduling graph.

w(a, b) =

 maxa≤t′<a+pM(t′) if a+ p = b
n if a = rmin ∧ b = umax

− |{k : b ≤ rk ∧ uk ≤ a}| if a ≥ b
(16)

It remains to show how the algorithm presented in [11] can be adapted to take into account
the fluctuating number of machines. This algorithm maintains a vector d−1[0..n] such that d−1[i]
is the latest time point reachable at distance −i from the node umax. In other words, all nodes
whose label is a time point in the semi-open interval (d−1[i + 1], d−1[i]] are reachable at distance
−i from node umax. Let a be a node in (d−1[i+ 1], d−1[i]] and consider the edge (a, a+ p) of weight
w(a, a+p). Upon processing this edge, the algorithm updates the vector by setting d−1[i−w(a, b)]←
max(d−1[i−w(a, b)], b), i.e. the rightmost node accessible at distance −i+w(a, b) is either the one
already found, or the node a+ p that is reachable through the path to a of distance −i followed by
the edge (a, a+ p) of distance w(a, a+ p).

To efficiently proceed to this update, the algorithm evaluates the function w(a, a + p) in two
steps. The first step transforms T in a sequence T ′ = [(t′0,m

′
0), (t′1,m

′
1), . . .] such that M(t) =

m′i for every t ∈ [t′i, t
′
i+1). The second step transforms the sequence T ′ into a sequence T ′′ =

[(t′′0 ,m
′′
0), (t′′1 ,m

′′
1), . . .] such that w(t, t + p) = m′′i for all t ∈ [t′′i , t

′′
i+1). Interestingly, both steps

execute the same algorithm.
To build the sequence T ′, one needs to iterate over the sequence T and find out, for every

time window [t, t + p), the minimum number of available machines inside that time window. If a
sequence of consecutive windows such as [t, t + p), [t + 1, t + p + 1), [t + 2, t + p + 2), . . . have the
same minimum number of available machines, then only the result of the first window is reported.
This is a variation of the minimum on a sliding window problem [7] where an instance is given by
an array of numbers A[1..n] and a window length p. The output is a vector B[1..n − p + 1] such
that Bi = min{Ai, Ai+1, . . . , Ai+p−1}. The algorithm that solves the minimum on a sliding window
problem can be slightly adapted. Rather than taking as input the vector A that contains, in our
case, many repetitions of values, it can simply take as input a list of pairs like the vector T and
T ′ which indicate the value in the vector and until which index this value is repeated. The same
compression technique applies for the output vector. This adaptation can be done while preserving
the linear running time complexity of the algorithm.

Once computed, the sequence T ′ can be used as input to the maximum on a sliding window
problem to produce the final sequence T ′′. Finally, the algorithm 1 simultaneously iterates over
the sequence T ′′ and the vector d−1 to relax the edges in O(|T | + n) time. Since relaxing forward
edges occurs at most O(min(1, p

m)n) times [11], the overall complexity to schedule the tasks is
O(min(1, p

m)(|T |+ n)n).

4 General Objective Function

We prove that minimizing costs per task and per time, i.e.
∑

i,t ci(si) for arbitrary functions ci(t)
is NP-Hard. We proceed with a reduction from the InterDistance constraint [2]. The predicate

Algorithm 1: RelaxForwardEdges([(t′′1 ,m
′′
1), . . . , (t′′|T ′′|,m

′′
|T ′′|)], d

−1[0..n], p)

t← rmin, i← n, j ← 0
while i > 0 ∨ j < |T ′′| do

if i−m′′j > 0 then d−1[i−m′′j]← max(d−1[i−m′′j], t + p)
if j = |T ′′| ∨ i ≥ 0 ∧ d−1[i− 1] < m′′j+1 then

i← i + 1
t← d−1[i]

else
j ← j + 1
t← t′′j

InterDistance([X1, . . . , Xn], p) is true if and only if |Xi − Xj | ≥ p holds whenever i 6= j. Let
S1, . . . , Sn be n sets of integers. Deciding whether there exists an assignment for the variables
X1, . . . , Xn such that Xi ∈ Si and InterDistance([X1, . . . , Xn], p) hold is NP-Complete [2]. We
create one task per variable Xi with release time ri = min(Si), latest starting time ui = max(Si),
processing time p, and a cost function ci(t) equal to 0 if t ∈ Si and 1 otherwise. There exists
a schedule with objective value

∑
i,t ci(si) = 0 iff there exists an assignment with Xi ∈ Si that

satisfies the predicate InterDistance, hence minimizing
∑

i,t ci(si) is NP-Hard.
The NP-hardness of this problem motivates the idea of studying specializations of this objective

function in order to seek if polynomial time algorithms can be derived.

5 Monotonic Objective Function

Let c(t) : Z → Z be an increasing function, i.e. c(t) + 1 ≤ c(t + 1) for any t. We prove that a
schedule that minimizes

∑
i si also minimizes

∑
i c(si). Theorem 1 shows how to obtain a solution

that minimizes
∑

i si. Lemma 1 shows that this solution also minimizes other objective functions.
Recall that ht is the number of tasks starting at time t.

Lemma 1. The schedule obtained with Theorem 1 minimizes
∑umax−1

a=t ha for any time t.

Proof. Let (a1, a2), (a2, a3), . . . , (ak−1, ak), with a1 = umax and ak = t, be the edges on the shortest
path from umax to t in the scheduling graph. By substituting the inequalities (10) to (12), we obtain

δ(umax, t) =
∑k−1

i=1 w(ai, ai+1) ≥
∑k−1

i=1 (xai+1
− xai

) = xt − xumax
. This shows that the difference

xt−xumax
is at most δ(umax, t) for any schedule. It turns out that by setting xt = n+δ(umax, t), the

difference xt − xumax
= δ(umax, t)− δ(umax, umax) = δ(umax, t) reaches its maximum and therefore,

xumax − xt =
∑umax−1

a=t ha is maximized. ut

Theorem 2. The schedule of Theorem 1 minimizes
∑n

i=1 c(si) for any increasing function c(t).

Proof. Consider the following functions that differ by their parameter a.

ca(t) =

{
c(t) if t < a

c(a) + t− a otherwise
(17)

The function ca(t) is identical to c(t) up to point a and then increases with a slope of one. As a
base case of an induction, the schedule described in Theorem 1 minimizes

∑n
i=1 si and therefore

minimizes
∑n

i=1 crmin
(si). Suppose that the algorithm minimizes

∑n
i=1 ca(si), we prove that it also

minimizes
∑n

i=1 ca+1(si). Consider the function

∆a(t) =

{
0 if t ≤ a
c(a+ 1)− c(a)− 1 otherwise

(18)

and note that ca(t) +∆a(t) = ca+1(t). For all t, since c(t+ 1)− c(t) ≥ 1, we have ∆a(t) ≥ 0.
If c(a+ 1)− c(a) = 1 then ∆a(t) = 0 for all t and therefore ca(t) = ca+1(t). Since the algorithm

returns a solution that minimizes
∑n

i=1 ca(si), it also minimizes
∑n

i=1 ca+1(si).
If c(a+ 1)− c(a) > 1, a schedule minimizes the function

∑n
i=1∆a(si) if and only if it minimizes

the number of tasks starting after time a. From Lemma 1, the schedule described in Theorem 1
achieves this. Consequently, the algorithm minimizes

∑n
i=1 ca(si), it minimizes

∑n
i=1∆a(si), and

therefore, it minimizes
∑n

i=1 ca(si) +
∑n

i=1∆a(si) =
∑n

i=1 ca+1(si).
By induction, the algorithm minimizes

∑n
i=1 c∞(si) =

∑n
i=1 c(si). ut

If the cost c(t) function is decreasing, i.e. c(t)− 1 ≥ c(t+ 1), it is possible to minimize
∑n

i=1 c(t)
by solving a transformed instance. For each task i in the original problem, one creates a task i
with release time r′i = −ui and latest starting time u′i = −ri. The objective function is set to
c′(t) = −c(t) which is an increasing function. From a solution s′i that minimizes

∑n
i=1 c

′(s′i), one
retrieves the original solution by letting si = −s′i.

6 Periodic Objective Function

6.1 Scheduling problem as a network flow

Theorem 1 shows that computing the shortest paths in the scheduling graph can minimize the
sum of the completion times. We show that computing, in pseudo-polynomial time, a flow in the
scheduling graph can minimize

∑n
i=1 c(si) for an arbitrary function c(t).

The objective function (9) can be modified to take into account the function c. We therefore

minimize
∑umax−1

t=rmin
c(t)ht. After proceeding to the change of variables xt =

∑t−1
i=rmin

hi, we obtain∑umax−1
t=rmin

c(t)(xt+1 − xt) which is equivalent to

maximize c(rmin)xrmin
−

umax−1∑
t=rmin+1

(c(t)− c(t− 1)))xt − c(umax − 1)xumax

We use this new objective function with the original constraints of the problem given by equa-
tions (10) to (12). This results in a linear program of the form max{cTx | Ax ≤ b,x ≶ 0} which
has for dual min{bT y | ATy = c, y ≥ 0}. Note that every row of matrix A has exactly one occur-
rence of value 1, one occurrence of the value −1, and all other values are null. Consequently, AT is
a network matrix and the dual problem min{bT y | ATy = c, y ≥ 0} is a min-cost flow problem.

Following Section 2.3, we reconstruct the graph associated to this network flow which yields
the scheduling graph augmented with a source node and a sink node. An edge of capacity c(rmin)
connects the node rmin to the sink. An edge of capacity c(umax−1) connects the source node to the
node umax. For the nodes t such that rmin < t < umax, an edge of capacity c(t− 1)− c(t) connects

i ri ui

1 4 8
2 1 4
3 1 6
4 1 9
5 1 6

m = 2
p = 2
c(t) = t mod 3

Fig. 1. A network flow with 5 tasks. The cost on the forward, backward, and null edges are written in
black. These edges have unlimited capacities. The capacities of the nodes from the source and to the sinks
are written in blue. These edges have a null cost.

the source node to node t whenever c(t−1) > c(t) and an edge of capacity c(t)−c(t−1) connects the
node t to the sink node whenever c(t− 1) < c(t). All other edges in the graph (forward, backward,
and null edges) have an infinite capacity. Figure 1 illustrates an example of such a graph.

The computation of a min-cost flow gives rise to a solution for the dual problem. To convert the
solution of the dual to a solution for the primal (i.e. an assignment of the variables xt), one needs
to apply a well known principle in network flow theory [1]. Let δ(a, b) be the shortest distance from
node a to node b in the residual graph. The assignment xt = δ(umax, t) is an optimal solution of the
primal. The variable xt is often called node potential in network theory.

Consider a network flow of |V | nodes, |E| edges, a maximal capacity of U , and a maximum
absolute cost of N . The successive shortest path algorithm computes a min-cost flow with O(|V |U)
computations of a shortest path that each executes in O(|E|

√
|V | logN) time using Goldberg’s

algorithm [6]. Let ∆c = maxt |c(t) − c(t − 1)| be the maximum cost function fluctuation and
H = umax − rmin be the horizon. In the scheduling graph, we have |V | ∈ O(H), |E| ∈ O(H + n2),
N ∈ O(n), and U = ∆c. Therefore, the overall running time complexity to find a schedule is
O((H − p+ n2)(H)3/2∆c log n).

6.2 Periodic objective function formulated as a network flow

In many occasions, one encounters the problem of minimizing
∑n

i=1 c(si) where c(si) is a periodic
function, i.e. a function where c(t) = c(t + W) for a period W . Moreover, within a period, the
function is increasing. An example of such a function is the function c(t) = t mod 7. If all time
points correspond to a day, the objective function ensures that all tasks are executed at their
earliest time in a week. In other words, it is better to wait for Monday to start a task rather than
executing this task over the weekend. In such a situation, it is possible to obtain a more efficient
time complexity than the algorithm presented in the previous section.

Without loss of generality, we assume that the periods start on times kW for k ∈ N which
implies that the function c(t) is only decreasing between c(kW − 1) and c(kW) for some k ∈ N. In
the network flow from Section 6.1, only the time nodes kW have an incoming edge from the source.

Fig. 2. The compressed version of the graph on Figure 1.

We use the algorithm from [11] to compute the shortest distance from every node kW to all other
nodes. Thanks to the null edges, distances can only increase in time, i.e. δ(kW, t) ≤ δ(kW, t + 1),
and because of the edge (rmin, umax) of cost n and the nonexistence of negative cycles, all distances
lie between −n and n. Therefore, the algorithm outputs a list of (possibly empty) time intervals
[ak−n, b

k
−n), [ak−n+1, b

k
−n+1), . . . , [akn, b

k
n) where for any time t ∈ [akd, b

k
d), δ(kW, t) = d . The min-

cost flow necessarily pushes the flow along these shortest paths. We simply need to identify which
shortest paths the flow follows.

There are c(kW −1)− c(kW) units of flow that must circulate from node kW and c(t)− c(t−1)
units of flows that must arrive to node t, for any t that is not a multiple of W . In order to create
a smaller graph with fewer nodes, we aggregate time intervals where time points share common
properties. We consider the sorted set S of time points aki and bki . Let t1 and t2 be two consecutive
time points in this set. All time points in the interval [t1, t2) are at equal distance from the node
kW , for any k ∈ N. The amount of units of flow that must reach the sink from the nodes in [t1, t2)
is given by

t2−1∑
j=t1

max(c(j)− c(j − 1), 0) =

c(t2 − 1)− c(t1 − 1) +

(⌊
t2 − 1

W

⌋
−
⌈
t1
W

⌉
+ 1

)
(c(W − 1)− c(0))

(19)

Consequently, we create a graph, called the compressed graph, with one source and one sink node.
There is one node for each time point kW for rmin

W ≤ k ≤ umax

W . There is an edge between the source
node and a node kW with capacity c(kW −1)−c(kW). For any two consecutive time points t1, t2 in
S there is a time interval node [t1, t2) . An edge whose capacity is given by equation (19) connects
the interval node [t1, t2) to the sink. Finally, a node kW is connected to an interval node [t1, t2)
with an edge of infinite capacity and a cost of δ(kW, t1). Figure 2 shows the compressed version of
the graph on figure 1.

Computing a min-cost flow in this network simulates the flow in the scheduling graph. Indeed,
a flow going through an edge (kW, [t1, t2)) in the compressed graph is equivalent, in the scheduling
graph, to a flow leaving the source node, going to the node kW , going along the shortest path from
node kW to a time node t ∈ [t1, t2), and reaching the sink.

Theorem 3. To every min-cost flow in the compressed graph corresponds a min-cost flow in the
scheduling graph.

Proof. Let G be the scheduling graph and G′ be the compressed graph. Let Y ′ denote a min-cost
flow in G′. We show how to obtain a min-cost flow Y in G whose cost is the same as the cost of Y ′.

Consider an edge ej = (kW, [t1, t2)) in G′ which conveys a positive amount of flow, say f . In the
scheduling graph G, it is possible to push f units of flow along the shortest paths from kW to the
nodes within the interval [t1, t2). It suffices to see how one can retrieve Y from Y ′, presuming it is
initially null. This is done by considering all incoming flows to [t1, t2) and manage to spread them
over the edges of G. We start with the node t1 and consider the shortest path P from kW to t1
in G. The amount of flow that can be incremented is the minimum between f and the amount of
flow that t1 can receive. Then, we increment the amount of flow on the extended path in G, which
connects the source to P and connects P to the sink.

If the capacity of t1 is reached, we decrement f by the amount of flow which was consumed and
we move to the next node in the interval. Now, there remains f units of flow for the nodes within
the interval [t1 + 1, t2). By repeating the same instruction for the rest of the nodes in [t1, t2) and
for every edge in G′ that carries a positive amount of flow, we obtain the flow Y . It is guaranteed
that all the flow can be pushed to the nodes in [t1, t2) as the sum of the capacities of the edges that
connect a node in [t1, t2) to the sink in G is equal to the capacity of the edges between [t1, t2) and
the sink in the G′.

Furthermore, the flow Y satisfies the capacities since the capacities on the edges adjacent to
the source in G are the same as those in G′. Moreover, the capacities were respected for the nodes
adjacent to the sink. The cost of Y is the same as Y ′ since the paths on which the flow is pushed
in Y have the same cost as the edges in the compressed graph.

We prove that Y is optimal, i.e. it is a min-cost flow. Each unit of flow in a min-cost flow in
G leaves from the source to a node kW and necessarily traverses along the shortest path going
to a node t and then reaches the sink. Note that the edges on the shortest path have unlimited
capacities. The question is therefore on which shortest path does each unit of flow travel? This is
exactly the question that the flow in the compressed graph answers. ut

In what follows, RG and RG′, stand for the residual graph of the scheduling graph G and the
residual compressed graph G′.

Lemma 2. Let t be a node in the residual scheduling graph RG and [ti, ti+1), such that ti ≤ t <
ti+1, be a node in the residual compressed scheduling graph. The distance between node kW and t
in RG is equal to the distance between kW and [ti, ti+1) in RG′.

Proof. We show that for any path P ′ in the residual compressed graph RG′, there is a path P in
the residual graph RG that has the same cost. From Lemma 3, we know that for a flow in the
compressed graph G′, there is an equivalent flow in the original graph G. Consider a path P ′ from
a node kW to an interval node [ti, ti+1). By construction of the compressed graph, for each edge of
this path corresponds a path of equal cost in the residual graph RG′. Consequently, there is a path
in G′ that goes from node kW to any node t ∈ [ti, ti+1) with the same cost as the path going from
kW to [ti, ti+1) in G.

Consider a path P in the residual graph RG going from a node k1W to a node t. Suppose that
this path contains exactly one edge in RG that is not in G. We denote this edge (a, b) and the path
P can be decomposed as follows: k1W ; a→ b; t. The edge (a, b) appears in the residual graph
RG because there is a positive amount of flow circulating on a shortest path S : k2W ; b→ a; u
to which the reversed edge (b, a) belongs. Let Q be the following path in the residual graph RG:
k1W ; u ; a→ b ; k2W ; t. Let l be the function that evaluates the cost of a path. We prove
that Q has a cost that is no more than P and that it has an equivalent in the residual compressed
graph RG′.

l(Q) = l(k1W ; u; a→ b; k2W ; t)

≤ l(k1W ; a; u; a→ b; k2W ; t)

In the residual graph, the paths a; u and u; a have opposite costs, hence l(a; u; a) = 0.

= l(k1W ; a→ b; k2W ; t)

≤ l(k1W ; a→ b; k2W ; b; t)

In the residual graph, the paths b; k2W and k2W ; b have opposite costs, hence l(b; k2W ; b).

= l(k1W ; a→ b; t)

= l(P)

The path Q has an equivalent in the residual compressed graph RG′. Indeed, the sub-paths
k1W ; u and k2W ; t are edges in RG′ whose cost is given by the shortest paths in G. The path
u; a→ b; k2W is the reverse of path S. Since S is an edge in G′ and there is a flow circulating
on S, the reverse of S also appears in RG′. Consequently, the path P can be transformed into path
Q that has an equivalent in the compressed residual graph. If P contains more than one edge that
belongs to RG but not G, then the transformation can be applied multiple times.

Since a path in RG has an equivalent path whose cost is not greater in RG′ and vice-versa, we
conclude that a node kW is at equal distance from all the other nodes in either graph. ut

Notice that the above lemma implies that after computing the min-cost flow in the compressed
graph, one sets the value for xt to the shortest distance between an arbitrary but fixed node kW
to the interval node that contains t.

Let H = umax − rmin be the horizon, we need Θ(H
W) calls to the algorithm in [11] to build

the compressed graph in O(H
W n2 min(1, p

m)) time. As in Section 6.1, the successive shortest paths
technique, with Goldberg’s algorithm [6], computes the maximum flow. The compressed graph
has |V | ∈ O(H

W + n2) nodes, |E| ∈ O(H
W n2) edges, a maximum absolute cost of N ∈ O(n), and a

maximum capacity of U = ∆c = C(W−1)−c(0). Computing the values for xt requires an additional
execution of Goldberg’s algorithm on the compressed graph. The final running time complexity is

O
(((

H
W

)2.5
+ n5

)
∆c log(n)

)
which is faster than the algorithm presented in the previous sections

when the number of periods is small, i.e. when H
W is bounded. In practice, there are fewer periods

than tasks: H
W < n.

7 Additional Remark

Consider the case where tasks have due dates di and deadlines d̄i. One wants to minimize the
maximum lateness Lmax = maxi max(Ci − di, 0) while ensuring that tasks complete before their
deadlines. To test whether there exists a schedule with maximum lateness L, one changes the
deadline of all task i for min(d̄i, di + L). If there exists a valid schedule with this modification,
then there exists a schedule with maximum lateness at most L in the original problem. Since the
maximum lateness is bounded by 0 ≤ L ≤

⌈
np
m

⌉
, a well known technique consists of using the

binary search that calls at most log(
⌈
np
m

⌉
) times the algorithm in [11] and achieves a running time

complexity of O(log(np
m)n2 min(1, p

m)).

8 Conclusion

We studied variants of the problem of non-preemptive scheduling of tasks with equal processing
times on multiple machines. We considered the problem with different objective functions and
presented polynomial time algorithms. We also generalized the problem to the case that the number
of machines fluctuate through the time.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and applications.
Prentice hall, 1993.

2. K. Artiouchine and P. Baptiste. Inter-distance constraint: An extension of the all-different constraint
for scheduling equal length jobs. In Proc. of the 11th Int. Conf. on Principles and Practice of Constraint
Programming, pages 62–76, 2005.

3. Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. SIAM Journal on Computing, 43(5):1684–
1698, 2014.

4. C. Dürr and M. Hurand. Finding total unimodularity in optimization problems solved by linear pro-
grams. Algorithmica, 2009. DOI 10.1007/s00453-009-9310-7.

5. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union. In
Proceedings of the 15th annual ACM symposium on Theory of computing, pages 246–251, 1983.

6. A. V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on Computing,
24(3):494–504, 1995.

7. R. Harter. The minimum on a sliding window algorithm. Usenet article, 2001.
http://richardhartersworld.com/cri/2001/slidingmin.html.

8. W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21(1):177–185,
1974.

9. J. Y-T. Leung. Handbook of scheduling: algorithms, models, and performance analysis. CRC Press,
2004.

10. W. Lipski Jr and F. P. Preparata. Efficient algorithms for finding maximum matchings in convex
bipartite graphs and related problems. Acta Informatica, 15(4):329–346, 1981.

11. A. López-Ortiz and C.-G. Quimper. A fast algorithm for multi-machine scheduling problems with jobs
of equal processing times. In Proc. of the 28th Int. Symposium on Theoretical Aspects of Computer
Science (STACS’11), pages 380–391, 2011.

12. Rolf H Möhring, Andreas S Schulz, Frederik Stork, and Marc Uetz. Solving project scheduling problems
by minimum cut computations. Management Science, 49(3):330–350, 2003.

13. B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release times and deadlines.
SIAM Journal on Computing, 12(2):294–299, 1983.

14. B. B Simons and M. K. Warmuth. A fast algorithm for multiprocessor scheduling of unit-length jobs.
SIAM Journal on Computing, 18(4):690–710, 1989.

15. Barbara Simons. A fast algorithm for single processor scheduling. In 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, pages 246–252. IEEE, 1978.

16. L. A. Wolsey and G. L Nemhauser. Integer and combinatorial optimization. John Wiley & Sons, 2014.

