
A Pseudo-Boolean Set Covering Machine

Pascal Germain, Sébastien Giguère, Jean-Francis Roy, Brice Zirakiza, François
Laviolette, and Claude-Guy Quimper

Département d’informatique et de génie logiciel, Université Laval, Québec, Canada
{sebastien.giguere.8, jean-francis.roy.1, brice.zirakiza.1}@ulaval.ca,
{pascal.germain, francois.laviolette, claude-guy.quimper}@ift.ulaval.ca

Abstract. The Set Covering Machine (SCM) is a machine learning algo-
rithm that constructs a conjunction of Boolean functions. This algorithm
is motivated by the minimization of a theoretical bound. However, find-
ing the optimal conjunction according to this bound is a combinatorial
problem. The SCM approximates the solution using a greedy approach.
Even though SCM seems very efficient in practice, it is unknown how it
compares to the optimal solution. To answer this question, we present
a novel pseudo-Boolean optimization model that encodes the minimiza-
tion problem. It is the first time a Constraint Programming approach
addresses the combinatorial problem related to this machine learning al-
gorithm. Using that model and recent pseudo-Boolean solvers, we empir-
ically show that the greedy approach is surprisingly close to the optimal.

1 Introduction

Machine learning [2] studies algorithms that “learn” to perform a task by observ-
ing examples. In the classification framework, a learning algorithm is executed
on a training set which contains examples. Each example is characterized by a
description and a label. A learning algorithm’s goal is to generalize the infor-
mation contained in the training set to build a classifier, i.e. a function that
takes as input an example description, and outputs a label prediction. A good
learning algorithm produces classifiers of low risk, meaning a low probability of
misclassifying a new example that was not used in the learning process.

Among all machine learning theories, Sample Compression [4] studies classi-
fiers that can be expressed by a subset of the training set. This theory allows to
compute bounds on a classifier’s risk based on two main quantities: the size of the
compression set (the number of training examples needed to describe the classi-
fier) and the empirical risk (the proportion of misclassified training examples).
This suggests that a classifier should realize a tradeoff between its complexity,
quantified here by the compression set size, and its accuracy on the training set.

Based on this approach, the Set Covering Machine (SCM) is a learning al-
gorithm motivated by a sample compression risk bound [8]. However, instead of
finding the optimal value of the bound, the SCM algorithm is a greedy approach
that aims to quickly find a good solution near the optimal bound’s value.

In this paper, we address the following question: “How far to the optimal
is the solution returned by the SCM algorithm?”. To answer this question, one

needs to design a learning algorithm that directly minimizes the sample com-
pression bound that inspired the SCM. This task is not a trivial one : unlike
many popular machine learning algorithms that rely on the minimization of
a convex function (as the famous Support Vector Machine [3]), this optimiza-
tion problem is based on a combinatorial function. Although Hussain et al. [5]
suggested a (convex) linear program version of the SCM, it remains a heuris-
tic inspired by the bound. The present paper describes how to use Constraint
Programming techniques to directly minimize the sample compression bound.
More precisely, we design a pseudo-Boolean program that encodes the proper
optimization problem, and finally show that the SCM is surprisingly accurate.

2 Problem Description

The Binary Classification problem in Machine Learning. An example is
a pair (x, y), where x is a description and y is a label. In this paper, we consider
binary classification, where the description is a vector of n real-valued attributes
(i.e. x ∈ Rn) and the label is a Boolean value (i.e. y ∈ {0, 1}). We say that a
0-labeled example is a negative example and a 1-labeled is a positive example.

A dataset contains several examples coming from the observation of the same
phenomenon. We denote S the training set of m examples used to “learn” this
phenomenon. As the examples are considered to be independently and identically
distributed (iid) following a probability distribution D on Rn × {0, 1}, we have:

S
def
= {(x1, y1), (x2, y2), . . . , (xm, ym)} ∼ Dm .

A classifier receives as input the description of an example and predicts a
label. Thus, a classifier is a function h : Rn → {0, 1} . The risk R(h) of a classifier
is the probability of misclassifying an example generated by the distribution D,
and the empirical risk RS(h) of a classifier is the ratio of errors on its training set.

R(h)
def
= E

(x,y)∼D
I(h(x) 6= y) and RS(h)

def
=

1

m

∑
(x,y)∈S

I(h(x) 6= y) ,

where I is the indicator function: I(a) = 1 if a is true and I(a) = 0 otherwise.
A learning algorithm receives as input a training set and outputs a classifier.

The challenge of a these algorithms is to generalize the information of the training
set to produce a classifier of low risk. Since the data generating distribution D is
unknown, a common practice to estimate the risk is to calculate the error ratio
on a testing set containing examples that were not used in the training process.

Overview of the Sample Compression Theory. The sample compression
theory, first expressed by Floyd et al. [4], focuses on classifiers that can be
expressed by a subset of the training set.

Consider a classifier obtained by executing a learning algorithm on the train-
ing set S containing m examples. The compression set Si refers to examples of

the training set that are needed to characterize the classifier.

Si
def
= {(xi1 , yi1), (xi2 , yi2), . . . , (xin , yin)} ⊆ S with 1≤ i1< i2< . . .< in≤ m.

We sometimes use a message string µ that contains additional information1.
The term compressed classifier refers to the classifier obtained solely with the
compression set Si and message string µ. Sample compression provides theoret-
ical guarantees on a compressed classifier by upper-bounding its risk. Typically,
those bounds suggest that a learning algorithm should favour classifiers of low
empirical risk (accuracy) and that are expressed by a few training examples
(sparsity). One can advocate for sparse classifiers because they are easy to un-
derstand by a human being.

The Set Covering Machine. Suggested by Marchand and Shawe-Taylor [8],
the Set Covering Machine (SCM) is a learning algorithm directly motivated by
the sample compression theory. It builds a conjunction or a disjunction of binary
functions that rely on training set data. We focus here on the most studied case
where each binary function is a ball gi,j characterized by two training examples,
a center (xi, yi) ∈ S and a border (xj , yj) ∈ S.

gi,j(x)
def
=

{
yi if ‖xi − x‖ < ‖xi − xj‖
¬yi otherwise,

(1)

where ‖ · ‖ is the Euclidean norm. For simplicity, we omit the case ‖xi − x‖ =
‖xi − xj‖ and consider that a ball correctly classifies its center (gi,j(xi) = yi)
and its border (gi,j(xj) = yj).

We denoteHS the set of all possible balls on a particular dataset S, and B the
set of balls selected by the SCM algorithm among HS . Thus, the classification
function related to a conjunction of balls is expressed by:

hB(x)
def
=

∧
g∈B

g(x) . (2)

As the disjunction case is very similar to the conjunction case, we simplify the
following discussion by dealing only with the latter2. Figure 1 illustrates an
example of a classifier obtained by a conjunction of two balls.

The goal of the SCM algorithm is to choose balls among HS to form the
conjunction hB. By specializing the sample-compressed classifier’s risk bound
to the conjunction of balls, Marchand and Sokolova [9] proposed to minimize
the risk bound given by Theorem 1 below. Note that the compression set Si

contains the examples needed to construct the balls of hB. Also, the message
string µ identifies which examples of Si are centers, and points out the border
example associated with each center. In Theorem 1, the variables np and nb
encode the length of the message string µ.

1 See [8] for further details about the message concept in sample compression theory.
2 The disjunction case equations can be recovered by applying De Morgan’s law.

Fig. 1: On a 2-dimensional dataset of 16 examples, from left to right: a positive
ball, a negative ball, and the conjunction of both balls. Examples in the light blue
region and the red region will be respectively classified positive and negative.

Theorem 1 (Marchand and Sokolova [9]) For any data-generating distribu-
tion D for which we observe a dataset S of m examples, and for each δ ∈ (0, 1]:

Pr
S∼Dm

(
∀B ⊆ HS : R(hB) ≤ ε

(
B
))
≥ 1− δ ,

where:

ε(B)
def
= 1−exp

(
−1

m−(|Si|+k)
ln

[(
m

|Si|+k

)
·

(
|Si|+k
k

)
·

(
np

nb

)
· 1

ζ(nb)ζ(|Si|)ζ(k)δ

])
, (3)

and where k is the number of errors that hB does on training set S, np is the
number of positive examples in compression set Si, nb is the number of different

examples used as a border, and ζ(a)
def
= 6

π2 (a+ 1)−2.

This theorem suggests to minimize the expression of ε(B) in order to find a
good balls conjunction. For fixed values of m and δ, this expression tends to
decrease with decreasing values of |Si| and k, whereas nb ≤ np ≤ |Si|. Moreover,
even if the expression of ε(B) contains many terms, we notice that the quantity[(
np

nb

)
· 1
ζ(nb)ζ(|Si|)ζ(k)δ

]
is very small. If we neglect this term, it is easy to see that

minimizing ε(B) boils down to find the minimum of Equation (4), which is the
sum of the compression set size and the number of empirical errors.

F(B)
def
= |Si|+ k. (4)

This consideration leads us to the SCM algorithm. We say that a ball be-
longing to a conjunction covers an example whenever it classifies it negatively.
Note that a balls conjunction hB negatively classifies an example x if and only if
at least one ball of B covers x. This implies that if one wants to add a new ball
to an existing balls conjunction, he can only change the classification outcome
on uncovered examples. A good strategy for choosing a ball to add to a conjunc-
tion is then to cover as few positive examples as possible to avoid misclassifying
them. This observation underlies the heuristic of the SCM algorithm.

Algorithm 1 Scm (dataset S, penalties {p1, . . . , pn}, selection function f)

1: Consider all possible balls: HS ← {gi,j | (xi, ·) ∈ S, (xj , 1) ∈ S, xi 6= xj} .

2: Initialize: B∗ ← ∅ .
3: for p ∈ {p1, p2, . . . , pn} do
4: Initialize: N ← {x | (x, 0) ∈ S}, P ← {x | (x, 1) ∈ S} and B ← ∅ .
5: while N 6= ∅ do
6: Choose the best ball according to the following heuristic:

g ← argmax
g∈HS

{ ∣∣ {x ∈ N | g(x) = 0}
∣∣ − p ·

∣∣ {x ∈ P | g(x) = 0}
∣∣ } .

7: Add this ball to current conjunction: B ← B ∪ {g} .
8: Clean covered examples: N ←{x∈N | g(x) = 1} , P ←{x∈P | g(x) = 1} .
9: Retain the best conjunction : if f(B) < f(B∗) then B∗ ← B .

10: end while
11: end for
12: return B∗

Given a training set S, the SCM algorithm (see Algorithm 1) is a greedy
procedure for selecting a small subset B of all possible balls3 so that a high
number of negative examples of S are covered by at least one ball belonging
to B. At each step of the algorithm, the tradeoff between the number of covered
negative examples and the number of covered positive examples is due to a
heuristic (Line 6 of Algorithm 1) that depends on a penalty parameter p ∈ [0,∞).
We initialize the algorithm with a selection of penalty values, allowing it to
create a variety of balls conjunctions. The algorithm returns the best conjunction
according to a model selection function of our choice.

Several model selection functions can be used along with the SCM algorithm.
The function ε given by Equation (3) leads to excellent empirical results. In other
words, by running the algorithm with a variety of penalty parameters, selecting
from all generated balls conjunctions the one with the lowest bound value allows
to obtain a low risk classifier. This method as been shown by Marchand and
Shawe-Taylor [8] to be as good as cross-validation4. It is exceptional for a risk
bound to have such property.

As we explain, the bound relies mainly on the sum |Si|+k, and our extensive
experiments with the SCM confirms that the simple model selection function F
given by Equation (4) gives equally good results. We are then interested to know
if the SCM algorithm provides a good approximation of this function.

To answer this question, next section presents a pseudo-Boolean optimization
model that directly finds the set B that minimizes the function F .

3 More precisely, the heuristic function (Line 6 of Algorithm 1) makes it possible to
consider only balls whose borders are defined by positive examples (see [8]).

4 Cross-validation is a widely used method for estimating reliability of a model, but
substantially increases computational needs (see section 1.3 of [2]).

3 A pseudo-Boolean optimization model

A pseudo-Boolean problem consists of linear inequality constraints with integer
coefficients over binary variables. One can also have a linear objective function.

To solve our machine learning problem with a pseudo-Boolean solver, the
principal challenge is to translate the original problem into this particular form.
The main strategy to achieve this relies on the following observation:

Observation. As the classification function hB is a conjunction (see Equa-
tion (2)), we observe that hB misclassifies a positive example iff a negative ball
covers it. Similarly, hB misclassifies a negative example iff no ball covers it.

Equivalence rules. Let’s first state two general rules that will be useful to
express the problem with pseudo-Boolean constraints. For any positive integer
n ∈ N∗ and Boolean values α1, . . . , αn, β ∈ {0, 1}, the conjunction and disjunc-
tion of the Boolean values αi can be encoded with these linear inequalities:

α1 ∧ . . . ∧ αn = β ⇔ n− 1 ≥ α1 + . . .+ αn − n · β ≥ 0 , (5)

α1 ∨ . . . ∨ αn = β ⇔ 0 ≥ α1 + . . .+ αn − n · β ≥ 1− n . (6)

Program variables. Let P
def
= {i | (xi, 1) ∈ S} and N

def
= {i | (xi, 0) ∈ S} be

two disjoint sets, containing indices of positive and negative examples respec-
tively. We define m sets Bi, each containing the indices of the borders that can
be associated to center xi, and m sets Cj , each containing the indices of the
centers that can be associated to border xj . As Marchand and Shawe-Taylor [8],
we only consider balls with positive borders. Thus, for i, j ∈ {1, . . . ,m}, we have:

Bi
def
= {j | j ∈ P, j 6= i} and Cj

def
= {i | i ∈ P ∪N, j ∈ Bi} .

In other words, Bk is the set of example indices that can be the border of a ball
centered on xk. Similarly, Ck is the set of example indices that can be the center
of a ball whose border is xk. Necessarily, we have j ∈ Bk ⇐⇒ k ∈ Cj .

Given the above definitions of Bi and Cj , the solver have to determine the
value of Boolean variables si, ri and bi,j described below:

For every i ∈ {1, . . . ,m}:
– si is equal to 1 iff the example xi belongs to the compression set.
– ri is equal to 1 iff the hB misclassifies the example xi.
– For every j ∈ Bi, bi,j is equal to 1 iff the example xi is the center of a ball

and xj if the border of that same ball.

Objective function. The function to optimize (see Equation (4)) becomes:

min

m∑
i=1

(ri + si) . (7)

Program constraints. If an example xi is the center of a ball, we want exactly
one example xj to be its border. Also, if xi is not the center of any ball, we don’t

want any example xj to be its border. Those two conditions are encoded by:∑
j∈Bi

bi,j ≤ 1 for i ∈ {1, . . . ,m} . (8)

An example belongs to the compression set iff it is a center or a border. We
then have sk =

[∨
i∈Ck

bi,k
]
∨
[∨

j∈Bk
bk,j
]
. Equivalence rule (6) gives:

1−|Bk∪Ck| ≤ −|Bk∪Ck|·sk+
∑
i∈Ck

bi,k+
∑
j∈Bk

bk,j ≤ 0 for k ∈ {1, . . . ,m} . (9)

We denote by Di,j the distance between examples xi and xj . Therefore, D
is a square matrix of size m×m. For each example index k ∈ {1, . . . ,m}, let Ek
be the set of all balls that cover (i.e. negatively classify) the example xk:

Ek
def
= {bi,j | i ∈ P, j ∈ Bi, Di,j < Di,k} ∪ {bi,j | i ∈ N, j ∈ Bi, Di,j > Di,k} .

First, suppose that xk is a positive example (thus, k ∈ P). Then, recall that the
conjunction misclassifies the example xk iff a ball covers it (see “observation”
above). Therefore, rk =

∨
bi,j∈Ek

bi,j . Using Equivalence Rule (6), we obtain:

1− |Ek| ≤ −|Ek|·rk +
∑

bi,j∈Ek

bi,j ≤ 0 for k ∈ P . (10)

Now, suppose that xk is a negative example (thus, k ∈ N). Then, recall that
the conjunction misclassifies xk iff no ball covers it (see “observation” above). We
have rk =

∧
bi,j∈Ek

¬ bi,j . By using Equivalence Rule (5) and α = ¬β ⇔ α = 1− β
(where α, β ∈ {0, 1}), we obtain the following constraints:

0 ≤ −|Ek|·rk +
∑

bi,j∈Ek

(1− bi,j) ≤ |Ek| − 1

⇔ 1 ≤ |Ek|·rk +
∑

bi,j∈Ek

bi,j ≤ |Ek| for k ∈ N . (11)

4 Empirical Results on Natural Data

The optimization problem of minimizing Equation (7) under Constraints (8,
9, 10, 11) gives a new learning algorithm that we call PB-SCM. To evaluate
this new algorithm, we solve several learning problems using three well-known
pseudo-Boolean solvers, PWBO [6], SCIP [1] and BSOLO [7], and compare the
obtained results to the SCM (the greedy approach described by Algorithm 1).

We use the same seven datasets than [8] and [9], which are common bench-
mark datasets in the machine learning community. For each dataset, we repeat
the following experimental procedure four times with training set sizes m = |S|
of 25, 50, 75 and 100 examples. First, we randomly split the dataset examples
in a training set S of m examples and a testing set T containing all remaining

Table 1: Empirical results comparing the objective value F obtained by SCM and
PB-SCM algorithms, the test risk of obtained classifiers and required running
time (“t/o” means that the pseudo-Boolean solver reaches the time limit).

Dataset SCM PB-SCM (pwbo) PB-SCM (scip) PB-SCM (bsolo)
name size F risk time F risk time F risk time F risk time

breastw

25 2 0.046 0.04 2 0.081 0.03 2 0.064 0.71 2 0.046 0.05
50 2 0.047 0.07 2 0.046 0.06 2 0.049 3.7 2 0.047 0.64
75 2 0.044 0.12 2 0.041 0.16 2 0.044 7.4 2 0.044 3.7
100 2 0.046 0.16 2 0.046 0.43 2 0.05 38 2 0.046 20

bupa

25 8 0.403 0.31 7 0.45 0.31 7 0.45 4.1 7 0.419 0.64
50 14 0.431 1.32 12 0.495 589 12 0.495 47 12 0.464 989
75 21 0.404 4.1 21 0.463 t/o 19 0.467 1763 24 0.419 t/o
100 27 0.355 11 32 0.494 t/o 30 0.396 t/o 34 0.367 t/o

credit

25 4 0.202 0.11 4 0.202 0.08 4 0.202 2 4 0.202 0.22
50 6 0.239 0.25 5 0.257 9.3 5 0.209 21 5 0.257 30.1
75 9 0.216 0.61 8 0.266 1920 8 0.263 138 8 0.268 1862
100 12 0.233 1.3 11 0.237 t/o 10 0.242 798 18 0.302 t/o

glass

25 5 0.333 0.11 5 0.261 0.03 5 0.297 12 5 0.261 0.2
50 9 0.265 0.49 8 0.265 10.3 8 0.265 35 8 0.265 28
75 16 0.307 1.5 15 0.273 t/o 15 0.227 736 15 0.227 t/o
100 18 0.222 2.9 17 0.222 t/o 17 0.206 t/o 22 0.19 t/o

haberman

25 5 0.305 0.17 5 0.305 0.03 5 0.305 3.6 5 0.312 0.18
50 10 0.246 0.94 10 0.332 34 10 0.332 30 10 0.246 65
75 15 0.237 2.5 14 0.324 t/o 14 0.324 436 16 0.279 t/o
100 21 0.278 4.5 20 0.289 t/o 20 0.33 t/o 23 0.289 t/o

pima

25 8 0.408 0.33 8 0.381 0.36 8 0.385 4 8 0.381 0.94
50 15 0.312 0.9 13 0.306 2204 13 0.311 37 13 0.306 1985
75 20 0.375 3.8 20 0.342 t/o 19 0.339 2641 24 0.336 t/o
100 25 0.326 7.4 26 0.316 t/o 23 0.338 t/o 30 0.379 t/o

USvotes

25 3 0.112 0.07 3 0.11 0.011 3 0.107 0.21 3 0.12 0.08
50 5 0.14 0.17 4 0.114 0.141 4 0.127 2.4 4 0.127 1.1
75 5 0.119 0.28 3 0.131 0.183 3 0.131 54 3 0.131 33
100 6 0.084 0.35 4 0.146 1.21 4 0.107 100 4 0.137 80

examples5. Then, we execute the four learning algorithms (SCM algorithm and
PB-SCM with three different solvers) on the same training set S, and compute
the risk on the testing set T .

To obtain SCM results, the algorithm is executed with a set of 41 penalty
values {10a/20 | a = 0, 1, . . . , 40} and the model selection function F given by
Equation (4). The PB-SCM problem is solved with the three different solvers.
For each solver, we fix the time limit to 3600 seconds and keep the solver’s default
values for other parameters. When a solver fails to converge in 3600 seconds, we
consider the best solution so far. Using the solution of the SCM to provide an
initial upper bound to the pseudo-Boolean solvers provided no speed-up.

Table 1 shows the obtained results. Of course, except for t/o situations,
the minimal value of the heuristic F is always obtained by solving the PB-
SCM problem. However, it is surprising that the SCM often reaches the same
minimum value. Moreover, the SCM sometimes (quickly) finds a best value of F

5 Training sets are smalls because of the extensive computational power needed by
pseudo-Boolean solvers.

when the pseudo-Boolean programs time out, and there is no clear amelioration
of the testing risk when PB-SCM finds a slightly better solution than SCM. We
conclude that the greedy strategy of SCM is particularly effective.

5 Conclusion

We have presented a pseudo-Boolean model that encodes the core idea behind
the combinatorial problem related to the Set Covering Machine. Extensive ex-
periments have been done using three different pseudo-Boolean solvers. For the
first time, empirical results show the effectiveness of the greedy approach of
Marchand and Shawe-Taylor [8] at building SCM of both small compression set
and empirical risk. This is a very surprising result given the simplicity and the
low complexity of the greedy algorithm.

References

1. Achterberg, T.: SCIP-a framework to integrate constraint and mixed integer pro-
gramming. Konrad-Zuse-Zentrum für Informationstechnik (2004)

2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

3. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

4. Floyd, S., Warmuth, M.: Sample compression, learnability, and the vapnik-
chervonenkis dimension. Machine Learning 21, 269–304 (1995)

5. Hussain, Z., Szedmak, S., Shawe-Taylor, J.: The linear programming set covering
machine (2004)

6. Lynce, R.: Parallel search for boolean optimization (2011)
7. Manquinho, V., Marques-Silva, J.: On using cutting planes in pseudo-boolean opti-

mization. Journal on Satisfiability, Boolean Modeling and Computation 2, 209–219
(2006)

8. Marchand, M., Shawe-Taylor, J.: The set covering machine. Journal of Machine
Learning Research 3, 723–746 (2002)

9. Marchand, M., Sokolova, M.: Learning with decision lists of data-dependent features.
J. Mach. Learn. Res. 6, 427–451 (December 2005)

	A Pseudo-Boolean Set Covering Machine

