,, 1-19 ()
© Kluwer Academic Publishers, Boston. Manufactured in Théhkidands.

A Large Neighbourhood Search Approach to the
Multi-Activity Shift Scheduling Problem

CLAUDE-GUY QUIMPER cgquimper@optime.net
Omega Optimisation

4200 St-laurent #301

Montréal, Qc H2W 2R2, Canada

LOUIS-MARTIN ROUSSEAU louism@crt.umontreal.ca
Ecole Polytechnique de Montréal

Department of Computer Engineering

2500 chemin de Polytechnique

Abstract. The challenge in shift scheduling lies in the constructiéra set of work shifts, which are subject
to specific regulations, in order to cover fluctuating staffnéinds. This problem becomes harder when multi-
skill employees can perform many different activities dgrthe same shift. In this paper, we show how formal
languages (such as regular and context-free language$)ecamhanced and used to model the complex regula-
tions of the shift construction problem. From these langsage can derive specialized graph structures that can
be searched efficiently. The overall shift scheduling probkan then be solved using a Large Neighbourhood
Search. These approaches are able to return near optiraabeadn traditional single activity problems and they
scale well on large instances containing up to 10 activities

1. Introduction

Shift scheduling is described as the problem of constrgatirglobal work schedule so
that enough employees are performing tasks at a given tinsatisfy the demand. The
schedule of an employee is subject to many regulations sibleak and meal placement.
In some organization, such as contact center or grocergsstor instance, employees have
multiple skills and are asked to perform a different adgtgtwithin one shift. Sequencing
these activities in time is again subject to many complegsul

In this paper, we show how regular and context-free langsiage be used to model the
regulations dealing with the construction of a shift. Gahalgorithms addressing both
formal languages are derived and used ihazge Neighborhood Seard32] to derive
good solutions to typical shift scheduling problems. Théitglto completely schedule
one individual (through these large neighborhoods) is aigsye in rapidly producing
very good results to complex shift scheduling problems.

Formal langages have been introduce to solve combinatpiathization problem in the
context of Constraint Programming (we refer the reade®t@][for more information on
this paradigme). Pesant [25] introduced thed¥LAR constraint that forces a sequence
of characters to belong to a regular language and Demassay[12] extended this con-
straint to the © STREGULAR constraint in order to accept only sequences whose cost are
below a certain threshold. Both Sellmann [31] and Quimpet \Afalsh [26] introduced
the GRAMMAR constraint that forces a sequence of characters to beloagantext-free
language.

2 C.-G. QUIMPER AND L.-M. ROUSSEAU

The idea of using grammars to model an operator that modifsesjaence of variables
has been introduced by Bonaparte and Orlin in [6]. They shmwdrammars can be used
to model most of the previously known neighborhoods of theeling salesman problem
(TSP) and show how a general algorithm, based on these grneanraa be used to search
these neighborhoods. What is proposed here is somewhatatiffsince we use automata
and grammars to model the scheduling problem itself andtkehe associated graph to
generate the best solution to a complete sequence of wsiabhis would be impossible
with the TSP since one would need an automaton or a grammagpohential size to
capture the Hamiltonian nature of the problem.

The contribution of this approach lies in using the modefiogver of these languages,
which allow to describe in a formal way the many complex tesdiof multi-activities
shift scheduling problems. Furthermore, the structureded by the graph representation
of these models can be very efficiently searched with eita#r pr tree based algorithms.
These structures are thus used to defiaey Large Scale Neighborhoofly which are
search spaces exponential in size that can be traversetiyimopaial time through the use
of specialized algorithms. The motivation to use such ahtegrhood comes from the
intuition that larger neighborhoods tend to minimize thelyability of getting caughtin a
local minimum (see for instance [30, 23]).

The structure of the paper is as follows. We first introducgeuation 2 the shift schedul-
ing problem and propose a brief overview of the vast relatediture. Section 3 (resp. 4)
shows how one can model and solve the individual shift cantitn problem using au-
tomata (resp. context-free grammars). The difference d&etwegular and context-free
grammars is discussed in Section 5. Experimental resudtprasented in Section 6 for
both realistic instances and known benchmarks. We finalhckemle and suggest some
future works.

2. The Shift Scheduling Problem

This section first describes in detail the shift schedulingbfem and introduces the no-
tation that will be used throughout the rest of the paperhéntreviews some important
related work, addressing both the single and multiple a>shift scheduling problem.

2.1. Problem Description: the Multi-Activity Context

This shift scheduling model describes a multi-activity lwenvironment in which employ-
ees may perform several tasks within each shift and can lraved availability. In this
case, the shift scheduling problem is no longer limited togpecification of work periods
but must also handles the assignment of activities to eneplay

The multi-activity shift scheduling problem consists ofetenining when and on which
activities a set ofi employees should work at a given time. The time span to bedsibée
is usually divided intd” time slots of equal durations. For each time slot, an emgopa
either work on one of the: activities or rest. A schedule is a setrobequences of length
T denoted byS = {s1, ..., s, }. The schedule of an employeés given by the sequence
s. of T characters. Thé¢" character denoted by [i] represents the state of the employee
during thei'” time slot. For instances.[i] = (break) indicates that the employee is in

A LNS APPROACH TO SHIFT SCHEDULING ... 3

break whiles.[:] = (activity;) indicates that the employee is working on the activity
number one. The schedule of an employee is subject to scheduling ruleslefining
when an employee can work, be on break, switch activities, et

Letac(S,t) = {s;[t] | s; € S} be the multiset of activities executed at tim@otice that
an activity might occur more than once in a multiset). Thepdupf activity a in schedule
S at timet is given by oc¢a, act(S,t)), i.e. the number of occurrences of activityin
the multiset adtS, ¢). The functiond(a, t) returns the demand for an activityat timet.
There is arunder cosbf ¢(a, t) for not satisfying the demand (also called opportunity)xost
and anover costof ¢(a, t) for over-satisfying the demand (typically computed as sgce
salary minus additional incomes). Moreover, there is a foest ofc(a, t) for asking an
employee to work on an activity at timet. Assuming thatd = act(S, t) is the multiset
of activities assigned to the employees at titnhe cost associated with activityat time
t is given by the cost function.

cosla, A,t) = ocda, A)c(a,t) + f(ocda, A) — d(a,t),a,t)
f(@,a,t) {wda,t) it & >0

—zc(a,t) otherwise

The functioncost(A, t) returns the cost for having the multiset of activitiéexecuted
at timet.

cost(A,t) = icos(a,A,t} 1)
a=1

The overall cost associated to a schediiis the sum of the costs associated with each
time slot.

T
cost(S) = Y cost(acts,t),t) (2)

t=1

A satisfiable schedulis a schedule such that each shifsatisfies the scheduling rules.
An optimal schedulés a satisfiable schedule whose cost is minimal.

2.2. Literature Review

Employee Scheduling and Rostering Problems have beenststgnstudied in the scien-
tific literature, with early papers dating from 1954. For anabete literature review on the
subject, the reader is referred to Erehal. [16, 15] for a survey on the topic and a detailed
annotated bibliography on more than 700 papers (with 64ngapethe more specific Shift
Scheduling Problem).

4 C.-G. QUIMPER AND L.-M. ROUSSEAU

2.3. Single-Activity Shift Scheduling Problem

The Shift Scheduling Problem (SSP) was first introduced big Fi#] in the context of
scheduling toll booth operators and the first integer pnogmnéng model to address it was
proposed shortly after by Dantzig [11]. In this set coveriagnulation, all the possible
variables (shifts that could be performed by the employaesenumerated a priori. The
objective is thus to select the set of shifts that covers deh@and minimizes the cost.
This approach has since remained very popular with more 1B8rpapers applying it to
Employee Scheduling and Rostering [15] and is used in mamyoercial workforce man-
agement systems. Its strength lies in the fact that the amtplinvolved in assembling
the shifts (choosing length, placing breaks, etc.) is hiddehe enumeration phase. It also
introduces an integrality gap in the mixed integer formolat However, when flexibility is
introduced in the model through multiple breaks, multipleak types, multiple activities,
or simply longer operating hours, the number of possibléshiecomes quite large. A
natural solution to this problem is a Branch and Price apgr@proposed by Trick et al.
[22]) where the shifts that are still manually generatedanly introduced in the model
when they are necessary.

In an attempt to address this difficulty, Moondra [24], Bettiand Jacobs [4, 5], Thomp-
son [?], Aykin [2, 3] and Rekiket al. [28] proposed and pursued research on implicit
formulations. In these models, shift types, specified bytisgtime and length, are not
coupled with break positions at first. For instance, one rdependently decide how many
employees are going to work from 8am to 4pm and how many ereplgre going to be
on break at 10am. Specific constraints (namely forward ac#vi@rd constraints) have
been introduced and refined over time to ensu re the exisnae/alid schedule. The
actual schedule can later be reconstructed with a polyreimia algorithm. The main
advantage of this approach is that the number of decisidahlas is significantly reduced
compared to the covering formulations. However, it is nowchbarder to express diffi-
cult constraints that regard the construction of individilidfts or even cost structures that
depend on the global composition of one shift. Furthermuoeg of these approaches are
able to schedule multiple activities (even if [28] does nmmit as future work).

Some problems are often too large to be solved with an exatttade This is the case
for the Tour Scheduling problem where one wants to constheshifts over one week
or more. In such cases, heuristics and metaheuristics aeatipg methods. We note
the use of tabu search [17], simulated Annealing [8], ancegjerlgorithms [13]. These
approaches, which rely on clever neighborhood structuaes able to quickly produce
good solutions for large problems.

2.4. Multiple-Activity Shift Scheduling Problem

If the literature on single-activity shift scheduling isryeich, problems dealing with mul-
tiple activities have however been seldom studied.

Loucks and Jacobs [20] and Ritzmaetral. [29] are among the few papers that attempt
to address the multi-activity context. Both papers modettiur scheduling problem (shift
scheduling over one week) with Boolean assignment vaigalsigecifying the number of
employees assigned to a given task at a given hour. Sinceapypecbaches yield very large

A LNS APPROACH TO SHIFT SCHEDULING ... 5)

MIP formulations, they both proposed heuristic techniguesonstruct and improve the
solutions. Furthermore, they do not place breaks or meaisglthe shift, nor do they
handle regulations concerning the transition betweenites.

Vatri [33] proposed using a column generation with an heigrispproach to build a
schedule for air traffic controllers. The problem solvednsted to a sliding time window
(of typically a few hours) and breaks are not taking into acts. Bouchard [7] extends the
work of Vatri to include break placement but both dominanoe the search for solutions
are done heuristically.

Demassey et al. [12] proposed a column generation apprasedon constraint pro-
gramming and regular languages that can solve the multipikdtst case presented here. If
computing the linear relaxation through column gener&atatone efficiently for problems
containing up to 10 activities, branching to find integeusiohs is much more difficult as
the approach can only find solutions to some of the small¢amges, when the linear
relaxation is also integer.

3. The Shift Scheduling Problem and Regular Languages

The scheduling rules defining what is a valid feasible scleaahay vary from one instance
to another. Itis essential to define a framework that is flexémough to encode most cases
encountered when modeling a shift scheduling problem.

3.1. Modeling the Scheduling Rules

We recall the notion of automaton and show how automata catehtiee scheduling rules.
An automatonis a tupleA = (@, qo, F, X,) whereQ is a set of statesyy € Q is
the initial state,F' C @ are the final states; is an alphabet, and C Q x X x Q is
a transition table. A sequencte X" is accepted by the automatehif there exists a
sequence of + 1 statesr, ..., r, € Q such thatr;_1, S[¢], r;) is a transition iy, where
ro = qo is the initial state, and,, € F is a final state. Automata are often depicted with a
directed graph where each state is a node and each trangitiom) € § is a directed edge
between node and node- labeled with character. A languagel over an alphabeX is
a set of sequences of elements taken from an alphlabdthe sequences recognized by
an automatom form aregular language The reader is referred to [18] for more detailed
explanations on regular languages and automata.
Lets now look at a automatong that models the scheduling addollows.

ExamMpPLE: Consider the following scheduling rules.

1. An employee works for a maximum of two consecutive periagds

2. Two consecutive working periods are followed by at least breaks §).
3. A day may not start nor end on break..

The automaton depicted in Figure 1 accepts all shifts gatigfthe three scheduling
rules.
([l

6 C.-G. QUIMPER AND L.-M. ROUSSEAU

l

Figure 1. Automaton accepting any shift an employee can work accgrttinthe scheduling rules stated in
Example 3.1

3.2. VLSN Using Regular Languages

We show how local search can solve the shift scheduling pmbVhen there exists a reg-
ular language that fully captures the scheduling rulesngJaisimple large neighbourhood
approach based on dynamic programming, we find a set of wdfik #at fits the demand
curve and minimizes the overall cost.

Let A = (Q, qo, F,6) be an automaton that recognizes the work shifts satisfyieg t
scheduling rules. We want to find a set of sequerttes {si,...,s,} accepted by the
automaton such that the overall cost stated in Equation 2rignized.

Following [25], we create a layered graphthat we call theexpanded graphFor every
stateq € @ of the automaton, we create + 1 nodes labeled?,...,q¢”. Each node
belongs to a different layer of the graph. For every traositiy, c,r) € §, we add the
edgegq’, r"™1) to G, for 0 < i < T, that we label with the character Finally we remove
from the graphG every edge and every node that do not lie on a path connetiingade
g5 to one of the nod@f whereg; € F'is afinal state. Using the automaton of Example 3.1
presented in Figure 1, we obtain the expanded graph of FRyure

We define what is &asible path

Definition 1. [Feasible Path] A feasible path is a path in an expanded graghfat has
exactlyT' edges.

Notice that a feasible path starts with the nadeand finishes with a node} where
gr € Fis afinal state. Consider any feasible pathlf one follows the edges of this
feasible path and prints the characters associated witly edge, we obtain a sequence
accepted by the automatof. In fact, every feasible path in the expanded gréapis
associated with a sequence accepted by the automaton aydegaence accepted by the
automaton can be retrieved by following a feasible path.

To construct an initial feasible schedule, we randomlydeldeasible paths and obtain
n sequencesy, ..., s,. We then aim at improving the overall cost of this solutioings

A LNS APPROACH TO SHIFT SCHEDULING ... 7

O @ =@
@ b/ \ b w@
&) © ¢ ©

Figure 2. Expanded graph associated with the automaton presentegureR. withT = 6.

Large Neighborhood Sear¢B2]. To do so, we select a sequeng@among the: sequences
and replace it by a new sequengdghat maximizes the improvement of the global solution.
The rest of this section discusses how to obtain this newesempiv.

Suppose that at timg employeer was scheduled to accomplish an activityout we
reschedule this employee to work on activity.e. s.[t] = a andN[t] = b. The two
activitiesa andb might be identical or not. With this new assignment, the essbciated
with the time slott can potentially change. Recall that the multiset of aééigiexecuted at
timet is ac{.S,t). The cost of the schedule at timet is cost(act(S, t),t). If we replace
activity a by activity b, the cost of the new schedule at tirhdecomeseost(act(S, t) \
{a} U {b},?).

We assign a cost to every edge in the expanded gfaph follows. Lete = (a!, b'+?!)
be an edge id+ labeled with character. We assign to the edgea cost ofcost(act(S, t) \
{s,[t]} U{c},t). The expanded graph now has the following property.

LEMMA 1 Letp be a feasible path an& be the sequence associated with this feasible
path. The cost (or length) gfis equal to the cost of the schedule obtained by replaging
by N.

Proof: Thet! edge in the path has a cost afst(act(S,t) \ {s.[t]} U {N[t]}). The
sum of the cost of each edge givesit(S \ {s,} U {N}) which is exactly the cost of the
schedule obtained by replacing the sequenasith V. []

It follows from Lemma 1 that the sequence associated withsHwetest path in the ex-
panded graplds is the one that better replaces sequencim S. The running time com-
plexity of finding the shortest path in a layered graph is prtpnal to the number of
edges in the graph. In our case, finding the shortest patleiaxpanded grap&¥ requires
O(T)4)) steps.

Improving a schedul& can therefore be done by choosing a sequence S, com-
puting the costs of the edges in the expanded graph accamifignds,, computing the
shortest path in the expanded graph, and finally replaginyy the sequence associated

8 C.-G. QUIMPER AND L.-M. ROUSSEAU

with the shortest path. This operation can be repeated aitdital minimum is reached,
i.e. until the length of the shortest path in the expandeghy€ais equal to the cost of the
current schedule for any. € S. Notice that the graph needs to be computed only once.
Only the weights on the edges need to be computed at eactidtera

3.3. Enhancing Regular Languages

One can easily enrich a regular language by modifying theeaed graph. For instance,
one could make a state inaccessible for a specific time slotrhgving the corresponding
node from the appropriate layer. Some transitions coulnl lad£ome unavailable between
some layers. Such modifications to the expanded graph aid tssenodel operations that
can only be accomplished at particular times of the day. Rstance, if lunches must be
taken inside a specific period of the day, one can remove angition associated with a
lunch break outside of that period. Finally, one can set alfo@st to every transition in
the graph. This cost is added to the cost already computeelvEny edge. Fixed costs
are useful to model exceptions in a schedule that involvet deor instance, employees
working after 6pm might require a higher salary.

4. The Shift Scheduling Problem and Context-Free L anguages

Context-free grammars are useful since they can encoderri@hguages than automata.
We first formally define what context-free grammars are amah tixplain how they can
encode scheduling rules.

A context-free grammar is a tupleé = (N, S, X, P) whereN is a set of symbols called
the non-terminals S € N is thestarting non-terminal¥ is a set of symbols called the
terminals and P is a set ofproductionsof the formA — w whereA € N is a non-
terminal andw is a sequence of terminals and non-terminalspaksing treeis a tree
where the leaves are terminal symbols and the inner-nodasoarterminal symbols. The
root of a parsing tree is the starting non-termisal The children of an inner-noda
form a sequence such that the productioA — w belongs to the grammar. A context-
free grammar recognizes a sequefice X" if there exists a parsing tree whose leaves,
when visited from left to right, reproduce the sequefiteWe represent non-terminals
with capital letters and terminals with lower case lettenkess otherwise specified. The
abbreviationd — w | u refers to two distinct production$ — w andA — w.

The sequences recognized by a context-free gramhfiarm acontext-free language
grammar is in th&€homsky normal forrf every production is either of the ford — BC
or A — a, i.e. if a non-terminal produces either two non-terminalsme terminal. Every
context-free language can be recognized by a grammar wiittéthe Chomsky normal
form. Context-free grammars can recognize any regularuagg but automata cannot
recognize every context-free languages. Context-fremgrars therefore encode a richer
class of languages.

A LNS APPROACH TO SHIFT SCHEDULING ... 9

Context-free grammars can model the scheduling rules ageghio Example 3.1. Notice
that the grammar is not in its Chomsky normal form.

B — b|bB 3)
S — wBS | wwbBS | w | ww 4

4.1. VLSN Using Context-Free Languages

We present a large neighbourhood operator for shift scivegiproblems modeled with
context-free languages. In the previous section, theficate proving that a sequence of
characters belongs to a regular language was a path in amatao. \We therefore looked
for the path in the automaton that induces the smallest ddwt.certificate proving that a
sequence belongs to a context-free grammar is a parsingWeevill therefore find the
parsing tree that induces the smallest cost to the schedule.

We assume that the grammar modeling a valid schedule for pfogee is in its normal
Chomsky form such as the grammar introduced in Example 4.1.

EXAMPLE: The grammar7 presented be low ensures that an employee executes activity
a for an undefined period of time followed by activityfor another undefined period of
time.

S— AB A— AAla B — BB|b
O

The CYK parser [9, 19, 34] is an algorithm based on dynamigmmming that decides
whether a sequence belongs to a context-free languagee Befuence belongs to the
language, the algorithm returns a parsing tree.

Following [27], we use the CYK parser to build a graph embeaddill possible parsing
trees (see Figure 3). Algorithm 1 creates a DAG such thatdhErodes are associated
with a terminal character and a position in the sequence. ifitier nodeN (4, i, j) is
associated with a non-termindl, a starting positiori, and a span of. The inner node
N(A,1i,7) belongs to the graph if there exists a sub-string of lengstarting at the*”
position that can produce the non-termialIf such a node exists, it has children which
are a list of pairs of nodes. For instance the nddge4, i, j) could have has children a
pair of nodes(N (B, i,k), N(C,i + k,j — k)). The relation between the parent and the
children indicates that the productich— BC € G can produce the non-termindl at
position with a span ofj by concatenating the sub-string of lendtlstarting at position
1 and the sub-string of length— & starting at positiori + k. After building all relations
between the nodes, the algorithm removes any node that @ontitbute to the production
of a parsing-tree, i.e. any node that does not have for aorcisst nodeNV (S, 1, 7). Note
thatChildren(z) is the set of all nodes for whichis a direct parent.

Algorithm 1 constructs a graph called tgeammar graph Since Algorithm 1 runs in
O(|G|n?) steps, the size of the grammar graph is bounde®py?|G|). In practice, the
grammar graph is usually much smaller as its size is corafidjereduced by line 18. The
grammar graph obtained from the grammar introduced in E¥arhp over a sequence of

10 C.-G. QUIMPER AND L.-M. ROUSSEAU

1 for all non-terminalsA do

2 for i € [1,T] do

4 Create nodé&V(A4,1,1)

5 Children(N(A,i,1)) «— {t| A -t € G}

6 for j € [2,T]do

7 | forie(l,T—j+1]do

8 for all non-terminalsA do

9 Create nodéV (A4, 1, j)

1 Children(N(A,1,7)) «

12 {(N(B,i,k), N(C,i+k,j—k))|
13 kell,j), A— BC € G,

14 Children(N(B,i,k)) # 0,

16 Children(N(C,i+k,j —k)) #0}

18 D_elete any node that does not have the ndd#), 1, 7') among its ancestors.
Algorithm 1: This algorithm based on the CYK parser [9, 19, 34] conssracgraph
embedding all possible parsing trees of sequences of I@hgghognized by the grammar
G.

Possible sequences:

e aab
o abb

C
(N(A, 1, 1)) (N(A.z, 1)) (N(B,z, 1)) (N(B,s, 1D
v v v v
a a b b
Figure 3. The grammar graph obtained with the grammar introduced iantpte 4.1 andl’ = 3. Each

plus-node represents a pair of children. For instance, liremode bellowN (A, 1,2) represents the relation
Children(N(A,1,2)) = (N(A,1,1),N(A,2,1)).

A LNS APPROACH TO SHIFT SCHEDULING ... 11

lengthT = 3 is depicted in Figure 3. The grammar graph contains the pgiste of the
two sequences of length 3 belonging to the language. Indagtsequence of lengffihas
its parsing tree embedded in the grammar graph as guardntdbd following lemma.

LEMMA 2 The grammar graph produced by Algorithm 1 embeds the patséegof any
sequence of length accepted by the grammé#.

Proof: Let S be an arbitrary sequence recognized by the granthaiThere exists a
parsing tree certifying that the sequertteelongs toG. The nodes corresponding to the
the leaves of this parsing tree are necessarily createdher8las the algorithm creates a
node for all possible terminals. Every inner node of the iparsree is connected to its
children on line 11. This observation results from the octmess of the CYK parser [9,
19, 34]. Finally, since the root of the parsing tree corresisoto the nodév(S, 1,7, no
nodes belonging to the parsing tree are removed on line 18. []

We can produce a random sequence accepted by the gra@hyatraversing the gram-
mar graph from the root and randomly branching on a pair délodm until we reach the
leaves. Repeating this for every employee, we can produdeittal random schedule
S={s1,...,8n}

As with regular languages, we improve the schedilgy choosing a sequeneg € S
that we replace with a new sequen¥e This new sequenck minimizes the overall cost
of the new schedule. The cost of the time slot the schedule is given bycost(S[t], t).

If the activity executed in the work shif{” at timet is N[t] = a, the new cost for the time
slot ¢ becomesost(S[t] \ {s.[t]} U {a},t). We will assign weights to the nodes in the
grammar graph function of these new costs.

Each leaf of the grammar graph is associated with a parti¢ee slot. A leaf-node
N(A,t, 1) is associated with the time slat For every leaf-nodév (A, ¢, 1) and for every
character appearing in a productiod — a € G, Algorithm 2 computes the cost of
the assignmenN[t] = a. The algorithm selects the charactethat induces the smallest
cost on the time slot and assigns a weight equal to this cost to the leaf-mé¢lé, ¢, 1).
The weight of a parsing tree is equal to the sum of the weigésgyaed to its leaves.
The following relation holds between a sequefégits parsing tree, and the cost of the
scheduleS \ {s,} U{N}.

LEMMA 3 Algorithm 2 assigns to nod® (.S, 1, T) a weight equal to the smallest cost of
a schedule obtained by replacing the sequendey a sequencé/.

Proof: Algorithm 2 computes the cost of the parsing tree with thellesaweight. This
fact follows from the proof of optimality of the weighted-®&yalgorithm [21]. LetN be
the sequence associated with this parsing tree. Any patr®echas exactly one leaf per
time slott with costcost(S[t] \ {s-[t]} U {N]t]},t). The sum of the costs of every leaf is
cost(S\{s-}U{N}) is exactly the cost of the schedulevhere we replaced the individual
sequencea,. by N. []

To retrieve the sequendé whose cost is computed by Algorithm 2, one simply needs to
backtrack in the grammar graph to the nodes that minimizexpeessions on lines 3 and
6.

12 C.-G. QUIMPER AND L.-M. ROUSSEAU

1 for every leaf nodéV (4,1, 1) do

3 | weigh(N(4,i,1)) — min{cost(S[i] \ {s.[i]} U{a},i) | A — a € G}

4 for every inner nodeéV (A, 1, j) in post-orderdo

6 weight(N (4,1, 7)) « min{weigh{ N (B, z,y)) + weigh{ N (C, w, 2)) |

7 (N(B,z,y), N(C,w,z)) €

8 Children(N(A4,1,7))}

9 return weight N(S,1,T))
Algorithm 2: Compute the cost of the best schedule obtained by replagirg .S by
another sequence.

The local search repeatedly chooses a sequgrfcem S and replaces it by the sequence
N that minimizes the cost of the overall schedule. This precesitinues until it reaches
a local minimum. Notice that the grammar graph only need®todmstructed once. Only
the weights need to be recomputed at each iteration.

4.2. Enhancing Context-Free Languages

Following [27], one can enrich a context-free language bgdeing some conditions on
the applicability of a productiodd — BC'. For instance, one can restridtto represent a
sequence of a specific length. The non-termidasndC' might also have to meet some
requirements about the length of the sequences they repr&milarly, a production can
be restrained to be effective only at particular times ofdag. We denote a constrained
literal A with AL whereP C N is the set of positions wheré can occur in the sequence
andS C N is the set of valid spans for the subsequercelf the symbolS or P are
omitted, we assume that the set of valid positions and valéhs isN. A weightw can
also be associated with a production. Each time a produiiosed in the schedule of
an employee, the weight of the production is added to the ht@ifjthe parsing tree. We
indicate the weightv of a production on the arrow as follows: = BC. One can omit to
mention the weight whenever it is nuII

For instance, the productiaf, 4 8.9 BC{2 57} can be applied only if the sequence
obtained has a length between 2 and 4 characters the sgamldétalC is betwen 1 and
3, and the subsequen€kappears at positions 2, 5, or 7. The weight associated wigh th
production is 8.9 and the literd is unconstrained.

These new restrictions on the productions are useful to hsitd@tions where a worker
must work a certain amount of time before changing actiwitiecan have a lunch break
only at lunch time. Weights on production can be used to empoeferences or to model
the case when extra salary must be given to an employee dwing gver-time.

Implementing these constraints only require minor moditims to the algorithm. On
line 16 in Algorithm 1, when processing the productu&é’ Rt BSZ’C?, we add the
extra-conditions that € P,, 7 € Py, and: + k € P, as well asj € Sy, k € S, and
j—kes..

A LNS APPROACH TO SHIFT SCHEDULING ... 13

C
c
O, ég\‘i S — aCa|bCh
_><{b:: c %/‘b C — cClec

c

Figure 4. An automaton and an context-free grammar encoding the égegiwe*a | be*b. The states 2 and 3
encode the same pattern than the states 4 and 5 while theceieegrammar has only one production to encode
the patternc*

Each time a production appears in the parsing tree of a sequits weight is added to
the total weight of the parsing tree. Line 3 in Algorithm 2 ¢ake into account the weight
of the productionrd = « when computing the weight of a leaf. Line 6 could also take int
account the weight of productiod = BC when computing the combined weight of a
pair of children.

5. Regular Languagesvs Context-Free L anguages

The choice between an automaton or a context-free grammaode! the scheduling rules
does not influence the local search since the large neighbodmoperators return the same
sequence in either case. However, we observed that the gragnaph generally has fewer
nodes and fewer pairs of children than the expanded graphddes and edges. Nodes
in an expanded graph must carry the information accumulated the beginning of the
sequence to the end. This information can include, for msathe number of breaks
encountered so far in the sequence. In grammar graphs, oodeseed to carry the
information about a sub-sequence which is independentlyhat precedes or succeeds
this sub-sequence.

Consider for instance a language that encodes any sequiantegswith either am
or ab followed by a sequence @fs and finishing with the same caracter it started with.
The automaton and the context-free grammar on Figure 4 lnathde this language. The
states 2 and 3 of the automaton encode the same pattern thataths 4 and 5. This
redundance is necessary to carry the information aboutntecfiracter of the sequence.
However, the productio®’ — cC | ¢ does not carry any information about what precedes
or follows the subsequence d$. In many cases, the duplication of states in an automaton
produces expanded graphs larger than grammar graphs.tBeeening time of the large
neighbourhood operators are proportional to the size ofjthph containing all the valid
parsings, the context-free grammars often offer lower agaifonal time.

Itis also generally easier to model the scheduling rulek wadntext-free grammars than
with automata. Context-free grammars are more expresstee.the scheduling prob-
lem solved in our experiments, a context-free grammar ofrbdyctions captures all the
scheduling rules while the equivalent automaton requiressands of states.

14 C.-G. QUIMPER AND L.-M. ROUSSEAU

6. Experimental Results
6.1. Problem Description

We consider the following shift scheduling problem withemployees anah activities
over a period of time discretized inf® = 96 time slots of 15 minutes each. During each
time slot, an employee can either rest, be in break, lunclvpok on a given activity.

The schedule of an employee must respect the following rules

1. A break has a duration of 15 minutes.
2. Alunch has a duration of 1 hour.
3. A part-time employee can take one break during his shift.

4. A full-time employee is entitled to one break, one lunchd @nother break in this
order.

5. When an employee starts working on an activity, he workafdéeast one hour on the
same activity.

6. Lunches and breaks are scheduled between two periodsf wo

7. An employee must have a break or a lunch before changingtisst

8. Periods of rest are to be scheduled at the beginning ontthefethe day.

9. A part-time employee must work a minimum of 3 hours and fetvan 6 hours a day.

10. A full-time employee must work a minimum of 6 hours and aimaum of 8 hours a
day.

11. At specific times of the day, when the business is closestyemployee must either
rest, lunch, or be on break.

As an example, a full time employee could rest between mitragd 9am, then work
on activity 1 from 9am to 10:30am, break, work on activity @nfr 10:45am to 12:00pm,
lunch, work on activity 3 from 1:00pm to 2:30pm, break, workarxtivity 4 from 2:45pm
to 5:00pm, and rest until midnight.

We model the rules using the following context-free gramnidentifiers between de-
limiters (. . .) are terminal symbols.

R — (rest) R | (rest) A; — lactivity;) ' A; | (activity;)™
Wigoo)y = Aiforl1 <i<m P — W (break) W
F— PLP S — RPy724R | RE3038 R

L — (lunch) (lunch) (lunch) (lunch)

A LNS APPROACH TO SHIFT SCHEDULING ... 15

Following section 4.2, we constrained some productionkérfollowing way. The pro-
ductionW4 .y — A; can only produce a sequence of at least four charactersesyineg
a minimum of one hour of work. In the productidh — RFj3 35, F' must be a se-
guence of 30 to 38 characters as a full time employee must bekeen 6 and 8 hours
without counting breaks and lunch. In the productibr- RPj17 24 R, the length of the
sequence produced by must be between 17 and 24 characters long which corresponds
to the amount of work time assigned to a part-time employes @l15-minutes break. Fi-
nally, to model rule 11, we restrict the productions — (activity;)”* A; (activity;)™
to be applied only at position8; associated with business hours for activity

We tested our model on the first benchmark introduced in [TBe benchmark has 10
instances withn activities wheren ranges from 1 to 10 for a total of 100 instances.

Experimental settings

The implementation was performed in C++ using the compiter4y1.0 provided in SUSE
Linux. The experiments were run on an AMD Opteron 2.3 GHz. Jé¢muencs,. € S are
replaced in a round-robin way and the search is performearfetour for every instance.
Each time the search reached a local optimum, the searcheststed from a random
initial solution. We used both the grammar described abonkeam automaton encoding
the same language, but since this automaton contains thdsiséstates, it was generated
by a another C++ program.

Table 1 compares the differences between a local searaparsamutomaton and the same
local search using a grammar. The columns atghe number of activitie§G,|/|G.| iS
the ratio between the size of the grammar graph and the siteeafxpanded grapfi,;
and7} (respT;" andT;") are the average (resp median) time, in milliseconds, thuat@

a neighbor using a grammar and an automaigiz, (¢,/7,) is the average standard de-
viation of the solutions returned by search using a gramanao(maton). To obtain these
figures we first compute the standard deviation over all tims far each single instance
and then average them over the 10 instances. Fingllf, (o}/Z}) is the average stan-

dart deviation when we compare the best solution obtairr dfteecond of computation

time. To evaluate this we divided the results in 3600 indepansets of 1-second run and
compared the best solution of each set.

Analysis

The ratio|G,|/|G.| between the size of the grammar graph and the expanded drapt s
that the grammar graph grows slower than the expanded gragh the number of activ-
ities increases. Indeed, the expanded graph is in averagjéesithan the grammar graph
for instances with one activity but is bigger than the gramgnaph for larger instances.

Since both search algorithms have a time complexity whighraportional to the size
of the graph they traverse, it is thus normal that the avetiageto compute a neighbor
is larger using the grammar operator than the automaton Wfeecan also deduce that,
given graphs of equivalent size, computing a parsing trebghktly more time consuming
than computing a path, since the advantage in favor of grasordy occurs after three
activities. Thus for the more classical instances, wittyamle activity, the approach using

16 C.-G. QUIMPER AND L.-M. ROUSSEAU

Table 1.Comparison of a one-hour search using an automaton andansesang a grammar.

m |Ggl|/|Gal Te Tg T8 Tf 0a/Ta OL/TL 0g/Z4 o;/fé
1 1.22 9 5 9 3 349% 084% 3.22% 0.69%
2 0.92 14 13 13 10 6.64% 279% 635% 297%
3 0.75 33 33 32 33 721% 3.00% 6.99% 2.88%
4 0.64 54 64 50 61 557% 220% 551% 1.96%
5 0.54 80 94 78 90 382% 166% 3.75% 153%
6 0.47 112 145 108 140 388% 213% 3.95% 1.86%
7 0.41 139 194 135 187 358% 2.06% 341% 1.69%
8 0.39 165 251 161 242 342% 221% 3.40% 1.80%
9 0.38 173 276 167 265 3.13% 204% 326% 1.78%

10 035 234 378 227 368 311% 229% 3.05% 1.88%

an automaton clearly outperformed the grammar since thghgyganerated by the gram-
mars is about 22% larger than the expanded graph and théndeareighborhoods takes
about twice more time. However, when the number of actwitiereases, the model using
grammars becomes much more interesting as it generatelssgndpch are about three
times smaller and allows to explore the neighborhoods al@@% faster. Furthermore,
the grammar model is generally easier to define than the atonwhich needs to be
programmed when its size becomes too large.

The local minimums reached by both methods are generallpad guality, as the stan-
dard deviation is always below 10%. However, in we allow thgodathm to run for 1

second and keep the best solution obtained within that fimig then the standard devia-
tion is significantly reduced and never exceeds 3%.

Comparison on single activity problems

To evaluate the effectiveness of our approach on the moiestygne-activity shift schedul-
ing problem, we compare our method against the MIP modekitestin Cotéet al. [10],
which is an exact approach also relying on regular langualgeg 0], the authors intro-
duced a relaxation in Rule 4 by allowing a full-time employeédave both breaks before
or after the lunch. In order to allow comparisons and testdeistness of our solution,
we also relaxed the problem by adding the following produtgito the grammar. Note

that this relaxation simplifies the automaton, but it makesgroblem more complex as it
allows the existence of more possible shifts.

Q — P {break) W F— QLW | WLQ

The model proposed by [10] was solved using CPLEX 10.0 on &812 Intel Pentium
4 while the local search was run on a AMD Opteron clocked aBRi3. The reader should
thus be careful when comparing the computation times. Gpéexconfigured to stop when
the solution reaches an integrality gap of 1 % or after one bboomputation.

In Table 2 where we show the results obtained by the MIP aral k®arch solversy is
number of activities, # is the instance numiéHP costis the cost of the solution returned
by the MIP solverMIP time is the time in seconds to solve the probldmg is a linear
relaxation lower bound for the costy, andt,q, are the time for the local search to find a

A LNS APPROACH TO SHIFT SCHEDULING ... 17

Table 2.Comparison of robustness against a MIP model.

m # MIP Cost MIP Time lower bound t59 ti, min cost
1 1 172.67 1.50 172.67 0.22 022 172.67
1 2 164.58 1029.01 162.94 0.27 0.67 162.94
1 3 169.44 393.96 168.86 0.24 0.48 169.01
1 4 133.45 39.89 13212 0.21 024 132.67
1 5 145.67 10.41 1446 0.20 020 145.11
1 6 135.06 20.36 134.41 0.32 0.32 134.82
1 7 150.36 6.25 14942 0.35 2243 150.06
1 8 148.05 274.92 147.2 1.26 13.86 148.05
1 9 182.54 15.47 18254 4.32 432 182.54
1 10 147.63 5.50 146.44 0.31 16.26 147.42

solution at 5 %, and 1 % of theB and finallymin costis the best solution returned by the
local search.

The local search finds a solution at one percent of the optintlain 25 seconds for every
instance with one activity. For these instances, the soistreturned are either equivalent
or better than those found by the MIP solver.

7. Conclusion and Future Works

Using the fact that regular languages and context-free grais can model the scheduling
rules in a shift scheduling problem, we developed two opesdahat use regular or context-
free languages as large neighbourhood search operatang these operators in a simple
large neighborhood approach, we were able to solve all eadhproblems in only a few
minutes.

In the future, we would like to investigate which sequence S is the most appropriate
to replace. We currently select the sequence$ in a round-robin way. We would like
to choose a sequence that leads tmadlocal minimum and that directs the search to an
unexplored portion of the search space. We would like to doenbur operators with some
meta-heuristics, which would be able to explore more thanlooal minimum. Another
idea is to implement some kind of long term memory, to allowresun to benefit from
what was learned in the preceding ones.

References

1. R.K Ahuja, O. Ergun, J.B. Orlin, and A.P. Punnen. A survéyery large scale neighborhood search
techniquesDiscrete Applied Mathematic423:75-102, 2002.

2. T. Aykin. Optimal shift scheduling with multiple break mdows. Management Sciencd2(4):591-602,
1996.

3. T. Aykin. A composite branch and cut algorithm for optinsaiift scheduling with multiple breaks and
break windows.Journal of the Operational Research Socjet9(6):603-615, 1998.

4. S. Bechtold and L. Jacobs. Implicit modeling of flexibledk assignment in optimal shift scheduling.
Management Sciencd6(11):1339-1351, 1990.

5. S. Bechtold and L. Jacobs. The equivalence of generalosering and implicit integer programming
formulations for shift schedulingNaval Research Logisticd3(2):233—-249, 1996.

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

C.-G. QUIMPER AND L.-M. ROUSSEAU

A. Bonaparte and J.B. Orlin. Using grammars to generatelagge scale neighborhoods for the traveling
salesman problem and other sequencing problemktéger Programming and Combinatorial Optimiza-
tion, pages 437-451, 2005.

M. Bouchard. Optimisation des pauses dans le problmeldlieddion des horaires avec quarts de travail.
Memoire de maitrise, Ecole Polytechnique de Montreal, 2004

M. Brusco and L. Jacobs. A simulated annealing approadhet@olution of flexible labor scheduling
problems.ournal of the Operational Research Socjety(12):1991-1200, 1993.

J. Cocke and J. T. Schwartz. Programming languages aincctimpilers: Preliminary notes. Technical
report, Courant Institute of Mathematical Sciences, NewkYéniversity, 1970.

M.-C. Coté, B. Gendron, and L.-M. Rousseau. Tmodeliegegular constraint with integer programming.
In Fourth International Conference on Integration of Al and @&chniques in Constraint Programming
(CP-AI-OR 07 pages 29-43, 2007.

G. Dantzig. A comment on edies traffic delay at toll bootperations Research pages 339-341, 1954.
S. Demassey, G. Pesant, and L.-M. Rousseau. A costrdgaged hybrid column generation approach.
Constraints 11(4):315-333, 2006.

F. Easton and N. Mansour. A distributed genetic algoritbr deterministic and stochastic labor scheduling
problems.European Journal of Operations Researtfi8:505-523, 199.

L. Edie. Traffic delays at toll boothsJournal Operations Research Society of Ameri2¢2):107-138,
1954.

A. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, and @rSiAn annotated bibliography of personnel
scheduling and rosteringAnnals of Operations Researct?27:21-144, 2004.

A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Sgaffieduling and rostering: A review of applica-
tions, methods and modelEuropean Journal of Operational Researdb3:3-27, 2004.

F. Glover and C. McMillan. The general employee schedufiroblem: An integration of ms and ai.
Computers and Operations ReseartB(6):563-573, 1986.

J. Hopcroft, R. Motwani, and J. D. Ulimaimtroduction to Automata Theory, Languages, and Compunati
Addison Wesley, 2001.

T. Kasami. An efficient recognition and syntax-analyagorithm for context-free languages. Technical
Report Scientific report AFCRL-65-758, Air Force Cambridgesearch Lab, Bedford, MA, 1965.

J.S. Loucks and F.R. Jacobs. our scheduling and taglassit of a heterogeneous wok force : a heuristic
approach Decision Science22:719-739, 1991.

C. D. Manning and H. Schiitzeoundations of statistical natural language processiMJT Press, 1999.

A. Mehrotra, K. Murthy, and M. Trick. Optimal shift schdihg: A branch-and-price approaciNaval
Research Logisti¢cgt7:185—-200, 2000.

C. Meyers and J.B. Orlin. Very large-scale neighborhseach techniques in timetabling problems. In
The Practice and Theory of Automated Timetablingpalges 36-52, 2006.

S. Moondra. An linear programming model for work forckestuling for banksJournal of Bank Research
6:299-301, 1976.

G. Pesant. A regular language membership constrairfinite sequences of variables. Rroceedings
of the Tenth International Conference on Principles anddficee of Constraint Programming (CP 2004
pages 482-495, 2004.

C.-G. Quimper and T. Walsh. Global grammar constraihtsProceedings of the Twelfth International
Conference on Principles and Practice of Constraint Pragmaing (CP 2006pages 751-755, 2006.

C.-G. Quimper and T. Walsh. Decomposing global grammasttaints. InPrinciples and Practice of
Constraint Programming CP 20Qpages 590-604, 2007.

M. Rekik, J.-F. Cordeau, and F. Soumis. Using bendermsndpasition to implicitly model tour scheduling.
Annals of Operations Researctil8:111-133, 2004.

L. Ritzman, L.J. Krajewski, and M.J. Showalter. The dggagation of aggregate manpower plaMan-
agement Scieng@2:1204-1214, 1976.

L.-M. Rousseau, M. Gendreau, and G. Pesant. Using edmtstrased operators with variable neighborhood
search to solve the vehicle routing problem with time windodournal of Heuristics8(1):43-58, 2001.

M. Sellmann. The theory of grammar constraintsPtaceedings of the Twelfth International Conference
on Principles and Practice of Constraint Programming (CR80pages 530-544, 2007.

P. Shaw. Using constraint programming and local seamthads to solve vehicle routing problems. In
Proceedings of the Fourth International Conference on Eigles and Practice of Constraint Programming
CP 1998 pages 417-431, 1998.

A LNS APPROACH TO SHIFT SCHEDULING ... 19

33. E. Vatri. Integration de la generation de quart de ttataie 'attribution d’activites. Memoire de maitrise,

Ecole Polytechnique de Montreal, 2001.
34. D. H. Younger. Recognition and parsing of context-fiamegliages in tim@?2. Information and Contrgl

10(2):189-208, 1967.

