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Abstract

The CUMULATIVE constraint greatly contributes to the suc-
cess of constraint programming at solving scheduling prob-
lems. SOFTCUMULATIVE, a version of the CUMULATIVE
constraint where overloading the resource incurs a penalty
is, however, less studied. We introduce a checker and a fil-
tering algorithm for SOFTCUMULATIVE, which are inspired
by the energetic reasoning rule for the CUMULATIVE. Both
algorithms can be used with a classic linear penalty function,
but also with a quadratic penalty function, where the penalty
of overloading the resource increases quadratically with the
amount of the overload. We show that these algorithms are
more general than existing algorithms and outperform a de-
composition of SOFTCUMULATIVE in practice.

1 Introduction
Scheduling problems where tasks share a finite amount of
resources are everywhere in the industry. For instance, a uni-
versity might want to schedule courses in classrooms or a
factory might need to plan its production to minimize the
peak in the power usage of its machines. The constraint pro-
gramming community invested significant efforts in devel-
oping the CUMULATIVE constraint to help solve problems
where the capacity of a resource can never be overloaded.
However, a less studied but as important problem is to allow
the resource to be overloaded in exchange of a penalty. For
instance, a pharmaceutical company could ask its workers
to work overtime to ensure that enough doses of a COVID
vaccine are produced before a deadline.

We present a checker and a filtering algorithm for the
SOFTCUMULATIVE constraint, a generalization of the well
known CUMULATIVE that allows resource overloads. Our
algorithms are based on the energetic reasoning rule used
by CUMULATIVE. The algorithms work for both linear and
quadratic penalty functions. To the best of our knowledge, a
quadratic penalty function cannot currently be modelled by
using an existing global constraint.

Section 2 presents a background from the literature. We
introduce our version of SOFTCUMULATIVE (Section 3),
present our checker (Section 4) and filtering (Section 5) al-
gorithms. We explain how to use our algorithms with lazy
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clause generation solvers in Section 6. Section 7 shows how
relevant our algorithms are in practice before concluding.

2 Background
Scheduling
Consider a set I of n tasks. Each task i ∈ I has to be ex-
ecuted between its earliest starting time esti and its latest
completion time lcti and has for processing time pi. Dur-
ing its execution, the task requires hi units of a resource
at each time point. Let a task i be represented by the tu-
ple 〈esti, lcti, pi, hi〉. From these parameters, it is possible
to compute the earliest completion time ecti = esti +pi and
the latest starting time lsti = lcti−pi of a task i. The en-
ergy ei = pi ·hi represents the total amount of resource con-
sumed during the execution of the task. The earliest starting
time estΩ = mini∈Ω(esti) of the set of tasks Ω ⊆ I is the
earliest time point at which any task in Ω can start. Similarly,
the latest completion time lctΩ = maxi∈Ω(lcti) of Ω is the
latest time point at which any task in Ω can end.

A task i has a compulsory part in the interval [lsti, ecti)
if lsti < ecti. The task must necessarily execute during its
compulsory part since it cannot start later than its latest start-
ing time and cannot end before its earliest completion time.

Using constraint programming, one can use the CU-
MULATIVE(~S, ~p,~h, C) constraint (Aggoun and Beldiceanu
1993) to enforce that, at any time point, the resource con-
sumption of the tasks in execution is less than or equal to
the capacityC of a resource. The constraint uses one starting
time variable Si ∈ [esti, lsti] for each task i in the problem,
as well as parameters for their processing times, heights, and
the capacity of the resource.

Deciding whether the CUMULATIVE constraint can be
satisfied is NP-Complete (Aggoun and Beldiceanu 1993).
Filtering algorithms for the constraint can neither enforce
domain or bounds consistency in polynomial time. Instead,
it is necessary to rely on detection and filtering rules that
work on a relaxation of the constraint. Many such rules have
been introduced over the years. Rules relevant to this pa-
per are presented below. Some rules have faster algorithms
to apply them while others are slower but produce stronger
inconsistency detection and filtering.

The Time-Tabling rule (1) (Beldiceanu and Carlsson
2002) uses a reasoning based on the compulsory parts of the



tasks. At any time point, if the sum of the height of the com-
pulsory parts is greater than the capacity of the resource, the
CUMULATIVE constraint cannot be satisfied. This checker
rule is sufficient to enforce CUMULATIVE. We refer the
reader to (Beldiceanu and Carlsson 2002) for the filtering
rule based on the TimeTabling.

∃t
∑

i∈I : lsti≤t<ecti

hi > C =⇒ fail (1)

The EdgeFinding rule (2) (Mercier and Van Hentenryck
2008) checks for precedences between a set of tasks Ω and
a task i. If the combined energy eΩ∪{i} of the tasks in Ω
and i is greater than the energy available in the interval
[estΩ∪{i}, lctΩ), then i must end after all the tasks in Ω have
ended. Indeed, i is the only task that can execute outside of
[estΩ∪{i}, lctΩ) and prevent an overflow in this interval.

∀i ∈ I,Ω ⊆ I \ {i}
eΩ∪{i} > C · (lctΩ− estΩ∪{i}) =⇒ i ends after Ω

(2)

Of particular interest for this paper is the energetic reason-
ing rule (Lopez and Esquirol 1996). It is one of the strongest
rules, but also one of the slowest to apply. The energetic rea-
soning is based on the notion of left and right shift in an
interval. Let LS(i, l, u) = hi · (min(u, ecti)−max(l, esti))
be the left-shift of task i in the interval [l, u). It repre-
sents the amount of energy that the task consumes in the
interval if it is scheduled at its earliest. The right-shift
RS(i, l, u) = hi · (min(u, lcti) − max(l, lsti)) of task i
in interval [l, u) is symmetric and represents the amount of
energy that task i consumes in the interval if it is sched-
uled at its latest. The minimum intersection MI(i, l, u) =
min(LS(i, l, u),RS(i, l, u)) is the minimum between the
left-shift and the right-shift. Regardless of when a task is
scheduled, it always consumes at least MI(i, l, u) units of
energy in a given interval [l, u), as shown on Figure 1.

l u

LS(1, 2, 9) = 4 RS(1, 2, 9) = 6

MI(1, 2, 9) = min(4, 6) = 4

ect1 lst1

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Example of the minimum intersection of task with
est1 = 0, lct1 = 10, p1 = 4 and h1 = 2. The left gray area
represents the left-shift of 4 while the right gray area repre-
sents the right shift of 6. The minimum intersection is the
minimum between the left and right shift, which is 4. Re-
gardless of where the task is scheduled, it always consume
at least 4 units of energy in that interval.

Let MI(Ω, l, u) =
∑

i∈Ω MI(i, l, u) be the sum of the
minimum intersection of all the tasks in Ω. The satisfiability

rule for the energetic reasoning (3) states that if there ex-
ists an interval for which this sum is greater than the energy
available in that interval on the resource, then the constraint
cannot be satisfied.

∃l,∃u, MI(I, l, u) > C ·(u− l) =⇒ fail (3)

Baptiste and al. (2001) showed that testing the rule on
O(n2) intervals, called intervals of interest, is equivalent
to testing the rule on all possible intervals. There are three
types of intervals of interest (4). While there areO(n2) inter-
vals of interest, there are also O(n2) distinct lower bounds
and O(n2) distinct upper bounds. (Baptiste, Le Pape, and
Nuijten 2001) proposed an O(n2) algorithm to apply the
rule using the intervals of interest and (Ouellet and Quim-
per 2018) improved it to O(n log2 n).

Intervals of interest
Te ={[l, u) | l ∈ O1, u ∈ O2} ∪

{[l, u) | l ∈ O1, u ∈ O(l)} ∪
{[l, u) | u ∈ O2, l ∈ O(u)}

where
O1 = {esti | i ∈ I} ∪ {ecti | i ∈ I} ∪ {lsti | i ∈ I}
O2 = {lsti | i ∈ I} ∪ {ecti | i ∈ I} ∪ {lcti | i ∈ I}
O(t) = {esti + lcti−t}

(4)

It is also possible to filter the starting times using
a rule similar to the checker rule. Baptiste proposed a
Θ(n3) algorithm to do so. Tesch (2018) and Ouellet
and Quimper (2018) independently proposed algorithms in
O(n2 log n) and O(n2 log2 n) respectively.

Lazy clause generation
Several modern constraint programming solvers, such as
Chuffed (Chu 2011) and OR-tools (Perron and Furnon
2019), use the lazy clause generation technique (Ohrimenko,
Stuckey, and Codish 2009) to enhance their performances.
The technique requires that the solver uses a SAT engine as
an additional propagator. Each integer variable is also en-
coded with multiple Boolean variables, for the benefit of the
SAT engine. For instance, an integer variable X can be en-
coded with boolean variables named JX ≥ 1K, JX ≥ 2K,
etc. Furthermore, checker and filtering algorithms must ex-
plain the failures and the filtering they produced using SAT
clauses. This allows the SAT engine to deduce nogoods, re-
dundant SAT constraints that are added during the search to
prevent the solver from making redundant unfruitful explo-
ration. For instance, a checker algorithm that fails because
the value of a variable X is too low could explain it with the
clause ¬JX ≥ 5K ⇒ fail, where ¬JX ≥ 5K is a literal
negating the Boolean variable that encodes the fact that X is
greater or equal to 5.

To allow the SAT engine to generate nogoods that can
be reused more often, one produces the most general clause
possible, with as few and as general literals as possible. For



instance, the literal JX ≥ 2K is more general than JX ≥ 3K
because the latter implies the former.

It is often challenging to generate general explanations for
global constraints, since, by their very nature, global con-
straints work on several variables, often leading to complex
explanations. This means that, unlike constraint program-
ming without nogoods, more filtering is not necessarily bet-
ter, even without considering the running time of the algo-
rithms. A decomposition of a global constraint that uses bi-
nary constraints with small and general explanations could
be better than a global constraint with poor explanations but
better filtering. Without nogoods, one would need to balance
the running time of an algorithm with its filtering strength.
With lazy clause generation, one must also consider the
quality of the explanations. One can use experiments to find
out the best balance between these three factors.

Related Work
De Clercq et al. (2010) introduced a constraint that extends
the CUMULATIVE constraint with the following additional
parameters and variables:

• A sequence J = 〈0, J1, . . . , Jk−1, lctI〉 forming consec-
utive intervals such that interval i is defined as [Ji−1, Ji)

• A sequence L of capacities such that Li ≤ C is the ca-
pacity in the i-th interval of J .

• A sequence Cost of integer variable such that Costi is
the overcost in the i-th interval of J .

• An integer variable Z representing the global penalty of
the constraint.

• A function costFunction ∈ {max, sum} indicating
if the Cost variables should be the maximum or the sum
of the overcost in the intervals.

• A function penaltyFunction ∈ {max, sum} indi-
cating if the penalty variable Z should be the maximum
between or the sum of the Cost variables.

The authors proposed both a O((n+ |J |) · log(n+ |J |))
TimeTabling and anO(n · |J | ·k · log(n)) EdgeFinding algo-
rithm, where k ≤ n is the number of distinct heights among
the tasks. They do not generate explanations of the filtering.

3 SoftCumulative
We define the SOFTCUMULATIVE constraint as follows.

SOFTCUMULATIVE(~S, ~p,~h, C, Z, f) ⇐⇒

Z ≥
∑
t

f
(

max(0,
∑

i∈I:Si≤t<Si+pi

hi − C
) (5)

The variable Si ∈ [esti, lsti] is the starting time of task
i. The parameters ~p, ~h, and C represent respectively the
processing times, the heights, and the capacity of the re-
source. The variable Z is the overcost variable represent-
ing the penalty incurred for overflowing the capacity of the
resource. The function f(x) is a non-decreasing function re-
turning the penalty for overflowing the capacity by x units
at one time point. We use the terms penalty and cost inter-
changeably. We consider two cost functions: a linear cost

f(x) = x and a quadratic cost f(x) = x2. A quadratic cost
function is interesting in cases where spreading the over-
flow over multiple time points is preferable to having few
time points with high overflow. For instance, if one unit of
the resource represents one employee, it is often more cost-
effective to hire one additional employee for a few days than
hire multiple additional employees for only one day. With a
quadratic cost function and a capacity of 0, SOFTCUMULA-
TIVE can be used to spread the tasks as equally as possible
along the time line. Although we focus on the linear and
quadratic cost functions, the algorithms we present can be
easily adapted to use other non-decreasing cost functions.

The CUMULATIVE constraint is a specific case of
the SOFTCUMULATIVE constraint where Z = 0. This
means that it is also NP-Complete to decide whether
SOFTCUMULATIVE has a solution. This also means that
SOFTCUMULATIVE is at least as hard as CUMULATIVE and
that filtering algorithms for SOFTCUMULATIVE cannot be
faster than their equivalent for the CUMULATIVE.

We extend the energetic reasoning to support the cost
function f(x). Let overcost(l, u) be the overcost of an
interval [l, u). If the amount of energy available in that in-
terval is greater than or equal to the energy consumed by the
tasks, the overcost is zero. Otherwise, the overcost is com-
puted as follows.

overcost(l, u) =f(κ) · (u− l)+
(f(κ+ 1)− f(κ)) · (S mod (u− l))

where S =MI(I, l, u)− C ·(u− l),

κ =

⌊
S

u− l

⌋
(6)

Note that with a linear cost function, the overcost is sim-
ply the amount of energy that overflows from the interval.

C = 1

l u

S mod (u− l)

κ = 1

κ+ 1 = 2

0 1 2 3 4 5 6 7 8 9 10

Figure 2: Overcost computation

Figure 2 presents an example of how the overcost in the
interval [2, 9), with a resource of capacityC = 1, and a min-
imum intersection MI(I, 2, 9) = 17 is calculated. 7 units of
energy available on the resource are represented with diag-
onal blue lines. 7 units of energy where the capacity of the
resource is exceeded by 1 unit is represented with orange
dotted points. That leaves 3 units of energy for which the
capacity of the resource is exceeded by 2 units. These units



span only a part of the interval. They are represented with
red vertical lines. For a linear penalty f(x) = x, we obtain
overcost(2, 9) = 10 while a quadratic penalty f(x) = x2

gives overcost(2, 9) = 16.

4 Checker algorithm
We propose a checker algorithm for SOFTCUMULATIVE
based on the energetic reasoning. With the CUMULATIVE
constraint, it is sufficient to find one interval with a mini-
mum intersection greater than the available energy to detect
an inconsistency. With SOFTCUMULATIVE, the checker al-
gorithm instead needs to compute a lower bound on the over-
cost variable. If it is greater than the upper bound, there is
a failure. The approach of the classic energetic checker of
finding one interval where there is an overload can work for
computing a lower bound. However, this approach considers
only one interval at a time. Considering multiple intervals
and combining their overcost lead to a better bound. Hence,
a better solution is to partition the time line into disjoint in-
tervals such that the sum of the overcost is maximized.

We propose to solve this problem using a graph G (see
Figure 3). There is one node for each time point. For each
pair of time points l and u such that l < u, there is an
arc (l, u) with weight overcost(l, u). Each arc (l, u) cor-
responds to an semi-open interval [l, u) of positive length.
The goal is to find the longest path between the first time
point and the last. The sum of the weights of the arcs on that
longest path gives us a lower bound Z on the overcost vari-
able Z. Since the graph is acyclic, we can solve this problem
in polynomial time using dynamic programming.

0 1 2 3
0 0 0

2

1

0

Figure 3: Example of a graph representing the overcost for a
SOFTCUMULATIVE with a capacity of C = 1 with 4 tasks
of the form 〈0, 2, 1, 1〉. There is C · (u− l) = 1 · 2 = 2 units
of energy available on the resource in [0, 2). Each task has a
minimum intersection of 1 in that interval. This means there
is 4 − 2 = 2 units of overcost in the interval [0, 2), making
it part of the the longest path (which is in bold).

This proposed rule adapts the energetic reasoning to the
SOFTCUMULATIVE constraint and Algorithms 1 & 2 apply
this rule.

∃ 〈P0, . . . , Pk〉 , P0 = 0 ∧ Pk = lctI ∧Pt < Pt+1∧∑
t∈{0..k−1}

overcost(Pt, Pt+1) > Z =⇒ fail (7)

Algorithm 1 takes as input the set of tasks, the capacity of
the resource, and a set of critical time points T . By chang-
ing the number of critical time points, we can change the
complexity of the algorithm, which is Θ(|T |2), but also the
quality of the resulting lower bound. With more time points,

Algorithm 1: OvercostBound(I,C,T)

Φ← ~0;
π ← [nil, . . . , nil];
for u = 2..|T | do

for l = 1..u− 1 do
c← Φ[l] + overcost(T[l],T[u]));
if Φ[u] < c then

Φ[u]← c;
π[u]← l;

return 〈Φ[|T |], π〉;

Algorithm 2: SoftEnergeticChecker(I,C,T, Z)
〈α, π〉 ← OvercostBound(I,C,T);
if α ≤ Z then return pass else return fail;

the algorithm is slower, but the lower bound is better. The
OvercostBound algorithm returns the lower bound and
the vector π, a parent vector containing the choices made
by the dynamic programming. The vector π is not relevant
to the checker, but it is later used by the filtering algorithm.
Once the lower bound is computed, we can check whether
it is greater than the upper bound Z of the overcost (Algo-
rithm 2). If so, the algorithm returns a failure.

Let Te be the set of O(n2) time points in (4) used by the
intervals of interest of Baptiste et al. (2001). Let Ts = {esti |
i ∈ I} ∪ {ecti | i ∈ I} ∪ {lsti | i ∈ I} ∪ {lcti | i ∈ I} be
the set of 4n critical time points of each task.

Theorem 1. If Z is set to 0 and T to Te, then
SoftEnergeticChecker is equivalent to the energetic
checker for the CUMULATIVE constraint.

Proof. With an upper bound on 0 for the overcost,
SoftEnergeticChecker returns a failure if and only
if the computed lower bound is 1 or more. There are two
cases.

If the classic energetic checker passes, there does not
exist an interval for which the capacity is exceeded. This
means that the overcost of all intervals is 0. In that case,
the lower bound found by our algorithm is 0 and the
SoftEnergeticChecker passes.

If the classic energetic checker fails, there is at least one
interval for which the capacity is exceeded (and for which
the overcost is greater than 0) and that interval is one of the
intervals of interest. While searching for the longest path,
the SoftEnergeticChecker processes all possible in-
tervals of positive length formed by the time points in T.
Since T corresponds to the lower bounds and upper bounds
of the interval of interest, all intervals of interest (and some
intervals that are not of interest) are examined, including the
one with a positive overcost. Hence, the longest path has
a cost of at least 1 and the SoftEnergeticChecker
fails.

Since there are O(n2) lower bounds and O(n2) up-



per bounds in Te, considering them all would lead to a
SoftEnergeticChecker with a complexity of O(n4),
which is not reasonable for an algorithm that is executed
thousands of times during the search. Instead, we propose to
use the subset Ts that is linear in size. This subset gave us
good results while keeping the complexity of the algorithm
reasonable. Furthermore, this subset is sufficient to apply
two weaker rules, the Time-Tabling and the Edge-Finding,
as shown in Theorem 2.
Theorem 2. If Z = 0 and the set T = Ts, then the
SoftEnergeticChecker applies the Time-Tabling.

Proof. The Time-Tabling rule detects a failure if, at any time
point, the sum of the compulsory parts of the tasks is greater
than the capacity of the resource. Suppose that t is such a
time point.

Let lsti be the latest lst less than or equal to t and let
ectj be the earliest ect greater than or equal to t. By def-
inition, the total amount of energy consumed by the com-
pulsory parts can only increase at time points that are lst
and it can only decrease at time points that are ect. Thus,
the amount of energy consumed by the compulsory parts at
each time point in [lsti, ectj) is the same as the amount at
t. Since the amount consumed at t is sufficient to overload
the resource, the total amount of energy in [lsti, ectj) is suf-
ficient to overload the interval.

Our checker algorithm examines every interval formed
from time points in T and all ect and lst are in that set. Thus,
our checker raises a failure when examining [lsti, ectj).

5 Filtering algorithm
We propose an algorithm based on the checker for filtering
the earliest starting time of the tasks (see Algorithm 3). Fil-
tering the latest completion time is symmetric.

The idea behind the algorithm is to schedule a task to its
earliest and then run the checker algorithm to check if it is
a valid solution. If it is not, we can filter the earliest start-
ing time. We use two strategies to save costly calls to the
checker. First, we use a constant time check to see whether
it is possible that scheduling a task to its earliest makes the
checker fail. Second, we use the longest path returned by the
checker in case of a failure to filter the earliest starting time
of the task as much as possible without recalling the checker.
We do this by sliding the execution of the task from its ear-
liest starting time up to a point where the cost of the path
no longer causes a failure. Each time the task is shifted by
one unit of time, the weight of at most four edges on the path
needs to be updated, namely the edges that span the intervals
that contain esti, esti +1, ecti, and ecti +1.

The algorithm starts by computing a lower bound Z on
the overcost using the checker. Then, for each task i, it per-
forms a check, at line 1, to verify whether the task needs
to be filtered. The check changes slightly depending on the
cost function. In the linear case, if the free energy of the
task, which is the portion of the task that is not compulsory,
is greater than the difference between the computed lower
bound and the upper bound on the overcost, the task might
need to be filtered. Otherwise, scheduling the task at its ear-
liest cannot sufficiently increase the lower bound to cause a

failure and the task does not need to be filtered. Indeed, by
fixing task i to its earliest, we are effectively only using its
left-shift. Thus, the minimum intersection in some intervals
can increase, but only by the free energy. The energy from
the compulsory part is already included because, by defini-
tion, it is both in the left and right shift. This check gains in
importance as the search reaches the bottom of the search
tree. More tasks are fixed, fewer tasks has free energy, and
fewer tasks need to be filtered. For a non-linear cost func-
tion, one additional unit of energy can increase the cost by
more than one unit. Thus, the check only verifies whether
the task has free energy.

If the algorithm finds that a task needs to be filtered, it
fixes the task to its earliest starting time and runs the checker.
If there is a failure, the task cannot be executed at its earliest
and needs to be filtered. To do so, the algorithm increment its
esti by one. To continue the filtering process, lcti is also in-
cremented. The process is repeated until the computed lower
bound on the overcost does not exceed the upper bound.

Algorithm 3: SoftEnergeticFiltering(I,C,T, Z, f )
eMin← 0;
if f is a linear function then

Z ← OvercostBound(I,C,T);
eMin← Z − Z;

for i ∈ I do
1 if hi · (pi −max(0, ecti− lsti)) > eMin then

t← lcti;
lcti ← esti +pi;
Z ′ ← OvercostBound(I,C,T);
while Z ′ > Z do

esti ← esti +1;
lcti ← lcti +1;

2 Z ′ ← OvercostBound(I,C,T);
lcti ← t;

return {esti | i ∈ I};

Algorithm 4: ComputeLongestPath(I,C,T, π)
u← |T |;
P ← [T [u]];
while u > 1 do

u← π[u];
Push T [u] to the front of P ;

return P ;

Note that even if the checker algorithm initially reports a
success, it is possible for the filtering algorithm to remove
all possible values for the starting time of a task, leading to
a failure. This is because the energetic reasoning relaxation
allows all tasks to be preempted. However, by fixing a task
to its earliest, our filtering algorithm removes the possibility
of preemption for the task being filtered.



Algorithm 5: AdjustCost(I, i, P )
Create a task i′ with 〈esti +1, lcti +1, pi, hi〉;
I ′ ← I \ {i} ∪ {i′};
D ← {k | ∃x ∈ {esti, esti +1, ecti, ecti +1},

Pk ≤ x < Pk+1};
return

∑
k∈D overcost(I ′, Pk, Pk+1)−∑

k∈D overcost(I, Pk, Pk+1);

To improve the efficiency of the algorithm, one can com-
pute the longest path P using ComputeLongestPath,
then replace line 2 by Z ′ ← Z ′ + AdjustCost(I, i, P ).
This allows filtering task i as much as possible on the longest
path without having to re-run the checker. The lower bound
Z ′ is instead adjusted incrementally. Algorithm 5 works as
follows. Since the increment is only by one, the minimum
intersection can change in at most four intervals: the inter-
val containing the current esti, the interval containing the
current ecti and the intervals immediately following these
two intervals if the esti or ecti is the upper bound on the
interval. Computing the change in cost is done in constant
time by keeping in cache the minimum intersection for each
interval.

With this adjustment, the complexity of the algorithm is
O(k · |T |2 + r) where k ≤ n is the number of tasks for
which the free energy check passes and r is the total number
of values removed from the domains. Even if r can be as
high as the makespan, it is not necessarily bad since each
value removed from the domain of a variable helps reduce
the search space. We want to minimize the amount of time
spent by the algorithm that leads to no filtering. Spending
time if we are sure to filter is acceptable. If we use the set Ts
of 4n time points as we suggest for the checker algorithm,
we have a complexity of O(k ·n2 + r). If we instead use the
set Te, we have a complexity of O(k · n4 + r).

Note that it is also possible to increase the earliest starting
time by more than one unit at a time, but such an adjustment
depends on the cost function f(x).

Theorem 3. If Z = 0 and the set T = Ts
the SoftEnergeticFiltering algorithm applies the
EdgeFinding rule.

Proof. Suppose the EdgeFinding rule (2) finds a prece-
dence stating that a set Ω must end before task i ends. The
SoftEnergeticFiltering algorithm filters task i un-
til the precedence is no longer detected.

Indeed, if the EdgeFinding rule holds for i and Ω, this
means that there is not enough energy in [estΩ∪{i}, lctΩ)
for both the energy of the tasks in Ω and the energy of i,
given that i is left-shifted. In other words, when i is left-
shifted, overcost(estΩ∪{i}, lctΩ) > 0. Since both the
lower bound and the upper bound on that interval are est and
lct time points, they are in Ts. Thus, when filtering task i,
the SoftEnergeticFiltering algorithm finds at least
one path with positive overcost. Since Z = 0, task i is fil-
tered by at least 1 unit. This reasoning holds as long as the
precedence is detected by the EdgeFinding rule.

6 Explanations
We show how to generate explanations to allow our algo-
rithms to be used with lazy clause generation solvers. The
goal is to have explanations with as few and as general liter-
als as possible. However, due to the global nature of SOFT-
CUMULATIVE, failures or filtering is caused by the interac-
tion between several tasks and the overcost variable. This
means that our explanations will necessarily contain multi-
ple variables and will not be as general as explanations from
binary constraints.

To explain a failure, we use an explanation of the form
conditions =⇒ fail. To explain filtering, we instead
use the form conditions =⇒ JSi ≥ est′iK. The con-
ditions are the same for failure and for filtering since it is
caused, in both cases, by an excess in the energy of some
tasks in the intervals along a path. For that reason, the rest
of the section focuses on the conditions in the left side of the
implication.

In any explanation for SOFTCUMULATIVE, we must in-
clude the literal JZ ≤ ZK for the upper bound on the over-
cost variable.

There are several ways to explain the start variables of
the tasks. A simple, naive explanation would include the lit-
erals JSi ≥ estiK ∧ JSi ≤ lstiK for each task i. However,
not all the tasks in the scope of SOFTCUMULATIVE con-
tribute to the failure or filtering. In fact, only the tasks that
have a positive minimum intersection in one of the intervals
with positive overcost on the longest path contribute to the
failure/filtering. This means we can exclude the other tasks
from the explanation.

It is possible to generalize some literals. The minimum in-
tersection of a task in an interval comes from the minimum
between the left-shift and the right-shift. We can reduce the
maximum between the left and the right shift up to the other
value. For instance, if the left-shift of a task is 4 and its right-
shift is 3, we can reduce the left-shift to 3 while still keeping
our explanation valid. We can do that by increasing the est
for the left-shift and reducing the lst for the right-shift, as
shown in (8). Note that this rule may produce multiple lit-
erals with the same variable. It is possible to simplify the
literals JSi ≥ aK ∧ JSi ≥ bK to JSi ≥ max(a, b)K to keep
only the most restrictive literal.

JZ ≤ ZK ∧
∧

i∈I,1≤k<|P |:
overcost(Pk,Pk+1)>0∧MI(i,Pk,Pk+1)>0

JSi ≥ Pk+1 − xK ∧ JSi ≤ Pk + x+ piK

where x =
min(LS(i, l, u),RS(i, l, u))

hi
(8)

7 Experiments
To ascertain the practical relevance of our SOFTCUMULA-
TIVE checker and filtering algorithms, we used an adapta-
tion to the Resource Constrained Project Scheduling Prob-
lem (RCPSP), which is a problem often used in the literature
to benchmark the CUMULATIVE constraint.

In the RCPSP problem, the goal is to schedule n tasks
on m machines of various capacities. Each task has a fixed



processing time and is executed simultaneously on all ma-
chines. The amount of resource a task consumes varies by
machine and can be zero. There are precedence constraints
between tasks and the goal is to minimize the makespan.

With SOFTCUMULATIVE, we instead want to minimize
the cost of overloading the resources. It is possible to adapt
existing RCPSP instances (that do not allow overloads) by
finding the makespan of the optimal solution and then ei-
ther reducing the capacity of the resources or decreasing
the makespan. With this approach, the makespan becomes
a parameter of the instance and the goal is now to minimize
the sum of overcost over all resources. We tried both ap-
proaches, but, with our benchmarks, reducing the capacity
of the resources gave us more interesting instances. Reduc-
ing the makespan often produced unsatisfiable instances due
to the precedence constraints. We used an adapted version
of the KSD15 D benchmark (Koné et al. 2011). These in-
stances are highly cumulative (more than one task can often
execute at a time). We adapted it by decreasing the capacity
of each resource by four units and fixing the makespan to the
optimal value of the original instance. This gave us interest-
ing instances, several of which can be solved in a reasonable
time. These adapted instances are available in the supple-
mentary material.

We implemented our algorithms in C++ and used the lazy
clause generation solver Chuffed (Chu 2011). We used the
modelling language Minizinc (Nethercote et al. 2007) to im-
plement our models. Our experiments were run on an Intel
Xeon 4110 CPU with a speed of 2.10Ghz. We ran all our
experiments with a timeout of 20 minutes.

In our experiments, we compared our algorithms to the
decomposition of SOFTCUMULATIVE (see Equation 5). We
tested two configurations of our algorithms: the checker
alone and the checker combined with the filtering algorithm.
For both algorithms, we set T = Ts. In our experiments, the
checker and filtering combination always outperformed the
checker alone, so we only report the former to save space.
The interested reader can find the raw results in the annex,
including the checker alone configuration.

(De Clercq et al. 2010) kindly gave us access to their
Java code that uses the solver Choco 2. We tried to solve
our instances with their constraint. However, they only im-
plemented the version of the constraint that computes the
sum of the maximum overloads in each interval. To model
our problem with this version, we need one interval per time
point. Hence, the complexity depends on the makespan. This
is not a good match for our instances with hundreds of time
points. Even for easy instances, we were not able to find the
optimal solution within a few hours with this approach. In
addition, their constraint does not support a quadratic cost
function, which is the most interesting application of our
SOFTCUMULATIVE. Furthermore, naive explanations must
be used with their algorithms since no method of generating
explanations was proposed for these algorithms. Conversely,
our constraint cannot be used to solve their instances since
we do not support a maximum penalty function.

Linear cost function
Figure 4 (left) compares the time taken by the decomposi-
tion and the filtering algorithm when a linear cost function
f(x) = x is used. Almost all instances are solved much
more quickly with the SOFTCUMULATIVE constraint and
its filtering algorithm than by the decomposition. Further-
more, there are many instances for which the decomposition
times out at 20 minutes (the points at 1200 seconds) while
the filtering algorithm is able to solve them to optimality.

The decomposition is better on only 1% of the instances.
Both configurations failed to solve 21.5% of the instances to
optimality and the filtering algorithm is better on 77.5% of
the instances. Furthermore, for nearly 68% of the instances,
the filtering algorithm is more than 10 times faster.

Figure 4: Time in seconds to solve the instances of the ad-
justed KSD15 D benchmark to optimality with a linear (left)
and quadratic (right) cost function for the decomposition and
the filtering algorithm. A time of 1200s means that the solver
times out without proving the optimal solution.

Quadratic cost function
Figure 4 compares the time taken to solve the instances of
the KSD15 D benchmark with the quadratic cost function.
The results are similar to the linear case. Neither algorithm
proved optimality for 24.6% of the instances. The decompo-
sition is better for 2.7% of the instances while the filtering
algorithm is better on 72.7% of the instances. The filtering
algorithm is 10 times faster for 60% of the instances. Hence,
the filtering algorithm is the method of choice to employ
with both linear and quadratic cost functions.

8 Conclusion
We proposed a checker and a filtering algorithm based on
the energetic reasoning for the SOFTCUMULATIVE con-
straint. Unlike previous work, both algorithms support a
quadratic cost function in addition to a linear function. They
are parametrable in the sense that their strength and com-
plexity vary depending of the number of time points passed
as parameters. With the recommended set of time points Ts,
the checker has a complexity of O(n2) and the filtering al-
gorithm has a complexity of O(k · n2 + r) where k is the
number of tasks that pass the free energy check and r is the
number of values pruned from the domain of the variables
after the execution of the algorithm. We showed how to ex-
plain the algorithms to use them with lazy clause generation
solvers and presented evidence that, in practice, our algo-
rithms vastly outperformed the decomposition.
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