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Abstract

We present two novel filtering algorithms for the
CUMULATIVE constraint based on a new energetic
relaxation. We introduce a generalization of the
Overload Check and Edge-Finder rules based on a
function computing the earliest completion time for
a set of tasks. Depending on the relaxation used to
compute this function, one obtains different levels
of filtering. We present two algorithms that enforce
these rules. The algorithms utilize a novel data
structure that we call Profile and that encodes the
resource utilization over time. Experiments show
that these algorithms are competitive with the state-
of-the-art algorithms, by doing a greater filtering
and having a faster runtime.

1 Introduction
Scheduling consists of deciding when a set of tasks needs to
be executed on a shared resource. Applications can be found
in economics [Buyya et al., 2005] or in industrial sequencing
[Harjunkoski et al., 2014].

Constraint programming is an efficient way to solve
scheduling problems. Many powerful filtering algorithms
that prune the search space have been introduced for vari-
ous scheduling problems [Baptiste et al., 2001]. These al-
gorithms are particularly adapted for the cumulative problem
in which multiple tasks can be simultaneously executed on
a cumulative resource. Among these algorithms, we note
the Time-Table [Beldiceanu and Carlsson, 2002], the Ener-
getic Reasoning [Lopez and Esquirol, 1996], the Overload
Check [Wolf and Schrader, 2006], the Edge-Finder [Mercier
and Van Hentenryck, 2008] and the Time-Table Edge-Finder
[Vilı́m, 2011].

Constraint solvers call filtering algorithms multiple times
during the search, hence the need for them to be fast and effi-
cient. Cumulative scheduling problems being NP-Hard, these
algorithms rely on a relaxation of the problem in order to be
executed in polynomial time. In this paper, we introduce a
novel relaxation that grants a stronger filtering when applied
in conjunction with known filtering algorithms.

In the next section, we formally define what a Cumula-
tive Scheduling Problem (CuSP) is. Then, we present two

state-of-the-art filtering rules: the Overload Check and Edge-
Finder. We generalize these rules so that they become func-
tion of the earliest completion time of a set of tasks. We
introduce a novel function computing an optimistic value of
earliest completion time for a set of tasks, based on a more
realistic relaxation of the CuSP. Along with this function, we
present a novel data structure, named Profile, we use to com-
pute the function. We introduce two algorithms to enforce
the generalized rules while using our own novel function. Fi-
nally, we present experimental results obtained while solving
CuSP instances from two different benchmark suites.

2 The Cumulative Scheduling Problem
We consider the scheduling problem where a given set of
tasks I = {1, . . . , n} must be executed, without interruption,
on a cumulative resource of capacity C. A task i ∈ I has
an earliest starting time esti ∈ Z, a latest completion time
lcti ∈ Z, a processing time pi ∈ Z+, and a resource con-
sumption value, commonly referred as height, hi ∈ Z+. The
energy of a task i is given by ei = pihi. We denote the ear-
liest completion time of a task ecti = esti +pi and the latest
starting time lsti = lcti−pi. Some of these parameters can
be generalized for a set of tasks Ω ⊆ I.

estΩ = min
i∈Ω

esti lctΩ = max
i∈Ω

lcti eΩ =
∑
i∈Ω

ei

Let Si be the starting time of task i, and its do-
main be dom(Si) = [esti, lsti]. The constraint
CUMULATIVE([S1, . . . , Sn], C) is satisfied if the total re-
source consumption of the tasks executing at any time t does
not exceed the resource capacity C, which is expressed as :

∀t :
∑

i∈I,Si≤t<Si+pi

hi ≤ C. (1)

A solution to the CUMULATIVE constraint is a solution
to the Cumulative Scheduling Problem (CuSP). In addition
to satisfying the CUMULATIVE constraint, one usually aims
at optimizing an objective function, such as minimizing the
makespan, i.e. the time at which all tasks are completed.

Such scheduling problems are NP-Hard [Garey and John-
son, 1979], therefore it is NP-Hard to remove every inconsis-
tent values from the domains of the starting time variables Si.
However, there exist many powerful filtering algorithms run-
ning in polynomial time for the CUMULATIVE constraint. To



execute in polynomial time, these algorithms rely on a relax-
ation of the original problem that generally revolves around a
task property referred as the elasticity [Baptiste et al., 2001].
A task i becomes fully elastic if we allow its resource con-
sumption to fluctuate (and even to interrupt), as long as the
amount of resource consumed in the interval [esti, lcti) is
equal to its energy ei.

3 Preliminaries
We present two filtering algorithms based on an energetic re-
laxation that we later improve using a novel relaxation.

3.1 Overload Check
The Overload Check is a test that detects inconsistencies in
the problem and triggers backtracks in the search tree. The
Overload Check rule enforces the condition that the energy
consumption required by a set of tasks Ω cannot exceed the
resource capacity over the time interval [estΩ, lctΩ).

∃Ω ⊆ I : C(lctΩ− estΩ) < eΩ ⇒ fail (2)

This condition is necessary to the existence of a feasible
solution to the problem. [Wolf and Schrader, 2006] present
an algorithm enforcing this rule running in O(n log n) time.
More recently, [Fahimi and Quimper, 2014] presented an
Overload Check algorithm that runs in O(n) time, using a
data structure named Timeline. Although initially conceived
for the DISJUNCTIVE constraint, it is demonstrated that the
algorihtm can be adapted for the CUMULATIVE constraint,
while maintaining its running time complexity of O(n).

3.2 Edge-Finder
The Edge-Finder algorithm filters the starting time variables.
The algorithms by [Vilı́m, 2009] and [Kameugne et al., 2014]
proceed in two phases : the detection and the adjustment.

The detection phase detects end before end temporal rela-
tions between the tasks. The relation Ω <· i indicates that the
task i must finish after all tasks in Ω are completed.

Given a set of tasks Ω ⊆ I, the Edge-Finder detection rule
enforces the condition that if a task i 6∈ Ω cannot be concur-
rently executed along the tasks in Ω without having any of
them missing their deadline, then the tasks in Ω must end be-
fore the task i ends, i.e. Ω <· i. [Baptiste et al., 2001] present
the following rule.

eΩ∪{i} > C(lctΩ− estΩ∪{i})⇒ Ω <· i (3)

[Vilı́m, 2009] detects all precedences using this rule. He
demonstrates that the rule does not require to be applied for
all subsets. Let the left cut of task i be the set of tasks whose
lct is no greater than lcti, i.e. LCut(I, i) = {j ∈ I | lctj ≤
lcti}. Then the algorithm only needs to enforce the rule (3)
for all distinct left cuts. Additionally, Vilı́m’s detection al-
gorithm introduces the Θ-Λ-tree data structure to achieve a
O(n log n) time complexity.

Assuming a precedence relation Ω <· i is found during the
detection phase, the adjustment phase proceeds to filter the
earliest starting time of task i. The new value is computed
by spending the energy eΩ in the time interval [estΩ, lctΩ) as

follows. A maximum amount of energy is spent on the in-
terval with a restricted capacity of C − hi. The remaining
energy, i.e. max(0, eΩ − (lctΩ− estΩ)(C − hi)), is spent as
early as possible on the interval using the remaining capacity
hi. The time when this remaining energy completes its exe-
cution is the new bound esti. [Baptiste et al., 2001] present
the following rule for the adjustment phase.

Ω <· i⇒ esti ≥ max
Ω′⊆Ω

{
estΩ′ +⌈

eΩ′ − (C − hi)(lctΩ′ − estΩ′)

hi

⌉}
(4)

The main difficulty of the adjustment phase is to com-
pute the subset Ω′ that results in the optimal adjustment.
[Vilı́m, 2009] introduces an adjustment algorithm running in
O(kn log n) time, where k is the number of distinct heights.
His algorithm uses an extended Θ-Λ-tree. In an orthogonal
work, [Kameugne et al., 2014] introduce an adjustment al-
gorithm running in O(n2) time, based on notions of mini-
mum slack and maximum density. Although their algorithm
does not strictly dominate Vilı́m’s algorithm complexity, they
demonstrate that it performs better in practice.

4 Novel function of earliest completion time
The earliest completion time of a set of tasks Ω, denoted ectΩ,
is NP-Hard to compute [Garey and Johnson, 1979]. One nor-
mally uses a relaxation in order to compute an optimistic
(smaller) value of earliest completion time. This relaxation
can be identified as the fully-elastic relaxation [Baptiste et
al., 2001]. In order to differentiate the two functions of ect
presented in this paper, we took the discretion to rename the
function of ect presented by [Vilı́m, 2009] as ectF. It is com-
puted by spending a maximum amount of energy as early
as possible without any regards to the heights of the tasks.
[Vilı́m, 2009] uses the following formula to compute it.

ectF
Ω =

⌈
max{C estΩ′ +eΩ′ | Ω′ ⊆ Ω}

C

⌉
(5)

We introduce a generalization of the Overload Check rule
based on the function ect or any of its relaxation. If a partic-
ular set of tasks cannot be completed before the deadline of
this set, then the problem does not have a solution.

∃Ω ⊆ I : ectΩ > lctΩ =⇒ fail (6)

Substituting the function ect by the fully-elastic relaxed
ectF (5) into rule (6) leads to the well known form of the
Overload Check rule (2). The demonstration follows from
inequalities (7)-(10) being equivalent.

∃Ω ⊆ I : ectF
Ω > lctΩ ⇒ fail (7)

∃Ω ⊆ I :
⌈

max{CestΩ′+eΩ′ |Ω′⊆Ω}
C

⌉
> lctΩ ⇒ fail (8)

∃Ω′ ⊆ I :
⌈
CestΩ′+eΩ′

C

⌉
> lctΩ′ ⇒ fail (9)

∃Ω′ ⊆ I : eΩ′ > C(lctΩ′ − estΩ′) ⇒ fail(10)

However, since ectF
Ω ≤ ectΩ, rule (6) detects more failure

cases than its fully-elastic relaxed version. This suggests to
find stronger relaxations for the function ect than ectF.



From [Vilı́m, 2009], we generalize the Edge-Finder detec-
tion rule. A precedence is detected when a set of tasks Ω,
executing along a task i 6∈ Ω, cannot meet its deadline.

∀Ω ⊂ I,∀i ∈ I \ Ω : ectΩ∪{i} > lctΩ ⇒ Ω <· i (11)

Since computing ectΩ is NP-Hard, one needs to use a re-
laxation. The fully-elastic relaxation results in rule (3). The
demonstration is similar to the one for the Overload Check.

We introduce a stronger relaxation for the function ect that
we call horizontally-elastic. With this relaxation, a task i is
allowed to consume, at any time t ∈ [esti, lcti), between 0
and hi units of resource. Unlike the fully-elastic relaxation, it
cannot consume more than hi units of resource. Given a set
of tasks Ω, ectH

Ω is computed using the following formulas.
Let hmax(t) represent the amount of resource that can be

allocated to the tasks in Ω at time t. A task i can consume at
most hi units of resource at any time in its execution window
[esti, lcti). The resource has a capacity C.

hmax(t) = min
(∑

i∈Ω|esti≤t<lcti
hi, C

)
(12)

Let hreq(t) be the amount of resource required at time t by
the tasks in Ω if they were all starting at their earliest starting
times. In this context, a task i consumes hi units of resource
throughout the interval [esti, ecti).

hreq(t) =
∑

i∈Ω|esti≤t<ecti
hi (13)

We call overflow ov(t) the energy from hreq(t) that cannot be
executed at time t due to the limited capacity hmax(t). This
overflow is accumulated over time and released when the re-
source is no longer saturated. Let hcons(t) be the amount of
resource that is actually consumed at time t. This amount is
given by hreq(t) to which we add the previously accumulated
overflow. The resource consumed is limited by hmax(t).

hcons(t) = min(hreq(t) + ov(t− 1), hmax(t)) (14)
ov(t) = ov(t− 1) + hreq(t)− hcons(t) (15)

ov(min
i∈Ω

esti) = 0 (16)

The earliest completion time occurs when all tasks are com-
pleted. Figure 1 shows the distribution of the energy along
the time line.

ectH = max{t | hcons(t) > 0}+ 1 (17)

Theorem 1 shows that the horizontally-elastic relaxation is
stronger than the fully-elastic one.

est1 est2 ect1 lct1 ect2 lct2ectH
{1,2}

hcons

hmax
hreq

ovh1

h2

C

Figure 1: Fluctuation of the functions hreq, hmax, hcons, and
ov when scheduling two tasks.

Theorem 1. For all Ω ⊆ I, ectF
Ω ≤ ectH

Ω ≤ ectΩ

Proof. The fully-elastic relaxation requires a task i to
consume ei units of resource within the interval [esti, lcti).
The horizontally-elastic relaxation has the same constraint
with the added restriction that no more than hi units of
resource should be consumed at any given time, which can
only make a schedule finish later, hence ectF

Ω ≤ ectH
Ω. In the

CuSP, a task must consume either 0 or hi units of resource at
time t ∈ [esti, lcti). Morever, there is no interruption. These
conditions are even stronger, hence ectH

Ω ≤ ectΩ. �

Theorem 2. The Overload Check and Edge-Finder based on
the horizontally-elastic relaxation detect a superset of in-
consistencies and precedences than their respective version
based on the fully-elastic relaxation.

Proof. Since ectF
Ω ≤ ectH

Ω for all Ω (Theorem 1), the fail con-
dition ectF

Ω > lctΩ implies the fail condition ectH
Ω > lctΩ.

Similarly, ectF
Ω∪{i} > lctΩ implies the detection condition

ectH
Ω∪{i} > lctΩ. Consider the instance with C = 2 and four

tasks whose parameters 〈esti, lcti, pi, hi〉 are 〈0, 4, 2, 1〉,
〈1, 4, 1, 2〉, 〈1, 4, 1, 2〉, and 〈1, 4, 1, 2〉. Only the Overload
Check based on the horizontally-elastic relaxation fails.
In the instance with C = 2 and the tasks x : 〈0, 5, 2, 1〉,
y : 〈1, 5, 2, 1〉, z : 〈1, 5, 2, 2〉, and w : 〈1, 10, 2, 1〉. The
precedence {x, y, z} <· w is only detected when using the
horizontally-elastic relaxation. �

5 Resource Utilization Profile
To efficiently compute ectH, we introduce a data struc-
ture called Resource Utilization Profile, or simply Profile,
that stores the resource utilization over time, as in Fig-
ure 1. Similarly to [Gay et al., 2015], we represent the Pro-
file as an aggregation of juxtaposed rectangles of different
lengths and heights. Rectangles are expressed with tuples
〈time, capacity,∆max,∆req〉, where time is the start time, ca-
pacity is the remaining capacity of the resource at the start
time, ∆maxand ∆reqare two quantities initialized to zero. The
ending time is the starting time of the next rectangle. These
tuples are stored in a sorted linked list whose nodes are called
time points, referring to the starting times of the rectangles.
The Profile is initialized with a time point of capacity C for
every distinct value of est, ect and lct. We add a sufficiently
large time point to act as sentinel. Finally, while initializing
the data structure, pointers are kept so that Testi , Tecti , and
Tlcti return the time point associated to esti, ecti, and lcti.

The algorithm ScheduleTasks proceeds in batch to
schedule a set of tasks Θ on the profile P . The algorithm
computes the functions hreq(t), hmax(t), hcons(t), and ov(t).
To ensure a strongly polynomial running time complexity, the
algorithm does not process indiviual time points, but time in-
tervals for which the functions do not fluctuate. Line 23 sets
the remaining capacity of a time point to the capacity of the
resource minus the consumed capacity hcons. For future uses,
line 11 stores the overflow at the moment of processing the
time point and line 32 resets this overflow to the minimum
overflow encountered in later time points.



Algorithm 1: ScheduleTasks(Θ, c)

for all time point t do t.∆max ← 0, t.∆req ← 022
for i ∈ Θ do44

Increment Testi .∆max and Testi .∆req by hi5
Decrement Tlcti .∆max and Tecti .∆req by hi6

t← P.first, ov ← 0, ect← −∞, S ← 0, hreq ← 07
while t.time 6= lctΘ do99

t.ov← ov1111
l← t.next.time− t.time12
S ← S + t.∆max13
hmax ← max(S, c)14
hreq ← hreq + t.∆req15
hcons ← min (hreq + ov, hmax)16
if 0 < ov < (hcons − hreq) · l then17

l← max
(

1,
⌊

ov
hcons−hreq

⌋)
18

t.insertAfter(t.time + l , t.capacity, 0, 0)2020

ov ← ov + (hreq − hcons) · l21
t.capacity← c− hcons2323
if t.capacity < c then ect← t.next.time24
t← t.next25

t.ov← ov26
m←∞27
while t 6= P.first and m > 0 do2929

m← min(m, t.ov)30
t.ov← m3232
t← t.previous33

return ect, ov34

Lemma 1. The Profile contains at most 4n + 1 time points.

Proof. There is initially one time point for every distinct
value of est, ect and lct and one sentinel. One additional
time point can be created per task being scheduled on the
Profile when its energy is fully spent (line 20). �

Lemma 2. ScheduleTasks runs in O(n) time.

Proof. The loops on lines 2, 4, 9, and 29 iterate over time
points. By Lemma 1 they execute O(n) times. �

Theorem 3. The Profile obtained with ScheduleTasks
complies with the horizontally-elastic relaxation.

Proof. A task i can only be executed during the interval
[esti, lcti) and can consume at most hi units of the resource
at any time point in this interval. This property is enforced
with the hmax value. An amount of ei energy is spent for each
task i as the height of a task i is added to the hreq value for
the interval [esti, ecti), which has a length of pi. �

6 Overload Check
We present an algorithm that enforces the Overload Check
rule based on the horizontally-elastic relaxation, i.e. :

∃Ω ⊆ I : ectH
Ω > lctΩ ⇒ fail (18)

Algorithm 2: OverloadCheck(I, C)

Θ← ∅1
for i ∈ I in ascending order of lcti do2

Θ← Θ ∪ {i}3
ect, ov ← ScheduleTasks(Θ, C)4
if ect > lcti or ov > 0 then fail5

The algorithm OverloadCheck is essentially the same as
Vilı́m’s [2009] except for the value of ect that is computed
using ScheduleTasks. The algorithm also fails if some
overflow was unspent beyond time lctΘ.
Lemma 3. OverloadCheck runs in O(n2) time.

Proof. The linear time algorithm ScheduleTasks is
called n times. �

7 Edge-Finder Detection
We introduce an algorithm that enforces the Edge-Finder
rule (11) based on the horizontally-elastic relaxation.

Like Vilı́m’s [2009] algorithm, Detection iterates over
all tasks in non-increasing order of lct. On each iteration, the
function ScheduleTasks schedules on an empty Profile
the left cut Θ of the current task. DetectPrecedences
tests for precedence detection the tasks in Λ. The function
DetectPrecedences returns all tasks j ∈ Λ for which
the rule (11) detects Θ <· j, but requires all tasks in Λ to
have the same height. This is why the loop on line 8 of
Detection iterates over all heights in Λ. When a prece-
dence is detected with task j, it dominates all precedences
that could be further discovered, so j is removed from Λ.

The algorithm DetectPrecedences iterates over the
profile in backward order and keeps track of the remaining
resource capacity over the time intervals. While processing
time t, the algorithm certifies that a task of height h and en-
ergy at most e starting at time t can finish at or before lct.
Moreover, it keeps track of the overflow ov that a task start-
ing before time t can spend after time t. When the algorithm
processes a time t for which there is a task j ∈ Λ such that
estj = t and ej − max(0, hj(ectj − lct)) > e, it infers that
task j cannot finish before time lct, i.e. Θ <· j. The term

Algorithm 3: Detection(I, C)

Prec← ∅, Θ← I, Λ← ∅1
for t ∈ {lcti | i ∈ I} \ {mini∈I lcti} in desc. ord. do2

Θ← Θ \ {j | lctj = t}3
Λ← Λ ∪ {j | lctj = t}4
ect, ov ← ScheduleTasks(Θ, C)5
if ov > 0 then fail6
for h ∈ {hi | i ∈ Λ} do88

Λh ← {i ∈ Λ | hi = h}9

Ω← DetectPrecedences(Θ,Λh, h, lctΘ)10
Prec← Prec ∪ {Θ <· j | j ∈ Ω}11
Λ← Λ \ Ω12



Algorithm 4: DetectPrecedences(Θ,Λh, h, lct)

for all time point t do t.∆max ← 01
for i ∈ Θ do2

Decrement Testi .∆max by hi3
Increment Tlcti .∆max by hi4

minest← mini∈Λh esti5
t← getNode(lct).previous6
Ω← ∅, e← 0 , ov ← 0, hmax ← h7
while t.time ≥ minest do8

l← t.next.time− t.time9
hmax ← hmax + t.next.∆max10
c← min(t.capacity, hmax − (C − t.capacity))11
e← e + l ·min(c, h) + max(0,min(ov, (h− c)l))12
ov ← max(0, ov + l(c− h))13

Ω← Ω ∪ {j ∈ Λh |1515
estj = t.time, ej −min(0, hj(ectj −lct)) > e}16

t← t.previous17

return Ω18

Algorithm 5: Adjustment(Prec, C)

for Θ <· i ∈ Prec do1
ect, ov ← ScheduleTasks(Θ, C − hi)2
esti ← max(esti,ComputeBound(i,Θ, ov))3

max(0, hj(ectj − lct)) represents the energy of task j that
cannot be spent within [estΘ, lctΘ).

Lemma 4. DetectPrecedences runs in O(n) time.

Proof. All loops iterate O(n) times, once per time point
(Lemma 1). Tasks in Λ are added at most once to Ω on
line 15. Therefore DetectPrecedences runs in O(n). �

Lemma 5. Detection runs in O(kn2) time, where k is the
number of distinct heights.

Proof. Detection calls ScheduleTasks for each task.
For all distinct heights, it calls DetectPrecedences.
Hence a complexity of O(n(n + kn)) = O(kn2). �

8 Edge-Finder Adjustment
We introduce a stronger adjustment algorithm that utilizes the
strength of the horizontally-elastic relaxation. Given a prece-
dence relation Θ <· i discovered during the detection phase,
Adjustment computes the new value for esti.

Let the bottom (resp. upper) part of the resource be a
portion with capacity C − hi (resp. hi). Adjustment
iterates through all detected precedences Θ <· i and sched-
ules the tasks in Θ on the bottom part of the resource. Be-
cause of this restriction on the capacity, the energy of the
tasks is not fully scheduled which results in an overflow ov
returned by ScheduleTasks. This overflow is an accu-
mulation of small overflows that ScheduleTasks encoded

on the profile as follows. For each time point t, t.ov indi-
cates how much overflow, that contributed to the final over-
flow, was accumulated on the time interval (−∞, t.time].
All this overflow must be scheduled on the upper part of
the resource. ComputeBound simulates the execution of
ScheduleTasks that schedules the tasks in Θ. How-
ever, it only allows t.ov units of energy on the time interval
(−∞, t.time] to be scheduled on the upper part of the re-
source. Term dtotal represents the energy that was scheduled
on the upper part in the previous iterations, while d represents
the energy that is about to be scheduled on the upper part in
the current iteration. When ovmax units of energy are sched-
uled on the upper part, the algorithm stops and returns the
time when this event occurs. This is where esti is adjusted.
Lemma 6. Adjustment runs in O(n2).

Proof. ComputeBound iterates O(n) times (Lemma 1) and
each iteration executes in O(1). ScheduleTasks also
runs in linear time. Adjustment calls these algorithms
O(n) times for a total complexity of O(n2). �

Consider a detected precedence Θ <· i. Let adjFi (adjHi ) be
the earliest starting time of task i after being adjusted using
the classic rule (4) (the algorithm Adjustment).

Theorem 4. For all precedences Θ <· i, adjFi ≤ adjHi

Proof. Both adjustments assign as much energy as possible
on the bottom part of the resource and the remaining energy
onto the upper part. But the horizontally-elastic relaxation

Algorithm 6: ComputeBound(i,Θ, ovmax)
for all time point t do t.∆max ← 0, t.∆req ← 01
for i ∈ Θ do2

Increment Testi .∆max and Testi .∆req by hi3
Decrement Tlcti .∆max and Tecti .∆req by hi4

t← min{t | t.ov > 0}, ov ← 0 , dtotal ← 05
S ← 0, hreq ← 06
while t.next 6= null do7

l← t.next.time− t.time8
S ← S + t.∆max9
hmax ← min(S,C)10
hreq ← hreq + t.∆req11
hcons ← min (hreq + ov, hmax)12
if 0 < ov < (hcons − hreq) · l then13

l← max
(⌊

ov
hcons−hreq

⌋
, 1
)

14

d← (hcons − C + hi) · l)15
d← max(0,min(d, ovmax − dtotal, t.next.ov− dtotal)16
if dtotal + d = ovmax then17

return min
(
t.next.time, t.time+

⌈
d

hcons−(C−hi)

⌉ )
18

dtotal ← dtotal + d19
ov ← ov + (hreq − hcons) · l20
if t.time + l < t.next.time then21

t.time← t.time + l22
else t← t.next23

return −∞24



0 500 1000 1500
HE runtime (s)

0

500

1000

1500

FE
 ru

nt
im

e 
(s

)

Static

0 500 1000 1500
HE runtime (s)

0

500

1000

1500

FE
 ru

nt
im

e 
(s

)

DomOverWDeg

0 500 1000 1500
HE runtime (s)

0

500

1000

1500

FE
 ru

nt
im

e 
(s

)

ImpactBasedSearch

0 1000 2000 3000
HE backtracks (1k)

0

1000

2000

3000

FE
 b

ac
kt

ra
ck

s (
1k

)

0 1000 2000 3000 4000
HE backtracks (1k)

0

1000

2000

3000

4000

FE
 b

ac
kt

ra
ck

s (
1k

)

0 200 400 600 800
HE backtracks (1k)

0

200

400

600

800

FE
 b

ac
kt

ra
ck

s (
1k

)

Figure 2: Runtimes and backtracks comparison

limits to hi the amount of energy spent by a task i at any
given time which shifts the energy later on the schedule.
The fully-elastic relaxation consumes the bottom part of
the resource entirely and packs the remaining energy as
soon as possible on the upper part. The horizontally-elastic
relaxation might not fully consume the bottom part and
does not necessarily pack the remaining energy at the
earliest time on the upper part. Consider the instance with
C = 3 and five tasks whose parameters 〈esti, lcti, pi, hi〉 are
x : 〈0, 4, 2, 1〉, y : 〈1, 4, 1, 3〉, z : 〈2, 4, 1, 3〉, w : 〈2, 4, 1, 1〉,
and v : 〈1, 10, 3, 1〉. We get adjFv = 2 < adjHv = 3 for the
precedence {x, y, z, w}<· v. �

9 Experimental results
We implemented the algorithms for the Choco 2 solver and
tried them on the benchmarks BL [Baptiste and Le Pape,
2000] and PSPLib [Kolisch and Sprecher, 1997] of Re-
source Constrained Project Scheduling Problems (RCPSP).
This problem has multiple resources of varied capacities on
which the tasks, subject to precedence constraints, are simul-
taneously executed. We minimize the makespan. The base
model has one starting time variable per task, one makespan
variable, and one CUMULATIVE constraint per resource for
which the Time-Table rule is enforced [Beldiceanu and Carls-
son, 2002]. From this common core, we create two models
that are compared against each other. In the horizontally-
elastic model, we enforce the Overload Check and Edge-
Finder rules as explained in the previous sections. In the
fully-elastic model, we rather post our implementation of a
constraint that enforces the Overload Check and Edge-Finder
rules as described by [Vilı́m, 2009]. We used three differ-
ent branching heuristics: a static variable and value ordering,

DomOverWDeg [Boussemart et al., 2004], and Impact Based
Search [Refalo, 2004]. All experiments were run on an Intel
Xeon X5560 2.667GHz quad-core processor.

Figure 2 compares runtimes and backtracks for both mod-
els. We only report instances that were solved within 25 min-
utes. For the highly-cumulative instances from the BL bench-
mark, our method gives a speedup for 85%, 82% and 63%
of the instances using the static, the DomOverWDeg and the
Impact Based Search heuristics. The Impact Based Search
leads to the lesser improvement since it tends not to branch
on values that would be filtered. For the highly-disjunctive
instances from the PSPLib benchmark, we notice a lesser im-
provement of runtimes since the instances are generally easier
to resolve. Our method still allows a speedup for 75% of the
instances for all three heuristics.

The horizontally-elastic relaxation grants a significant im-
provement in the runtimes, although not as significant for the
backtracks. This is explained by Vilı́m’s algorithm that pro-
cesses a large number of detected precedences that do not lead
to adjustments. We observed that our algorithm only discov-
ers precedences that lead to adjusments. Moreover, our algo-
rithm processes each precedence in linear time.

10 Conclusion

We generalized the Overload Check and Edge-Finder rules
using a function of earliest completion time (ect). We intro-
duced a stronger relaxation of ect. We presented an innova-
tive data structure used in two new algorithms that enforce
the Overload Check and Edge-Finder rules. Experimental re-
sults demonstrate the effectiveness of our method. In fact, our
algorithms solved many RCPSP instances with fewer back-
tracks and in faster times than the state-of-the-art algorithms.
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