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Abstract. The notion of buffered resource is useful in many problems.
A buffer contains a finite set of items required by some activities, and
changing the content of the buffer is costly. For instance, in instruction
scheduling, the registers are a buffered resource and any switch of regis-
ters has a significant impact on the total runtime of the compiled code.
We first show that sequencing activities to minimize the number of
switches in the buffer is NP-hard. We then introduce an algorithm which,
given a set of already sequenced activities, computes a buffer assignment
which minimizes the number of switches in linear time, i.e., O(nd) where
n is the length of the sequence and d the number of buffered items.
Next, we introduce an algorithm to achieve bound consistency on the
constraint Switch, that bounds the number of changes in the buffer,
in O(n2d+ n1.5d1.5) time. Finally, we report the results of experimental
evaluations that demonstrate the efficiency of this propagator.

1 Introduction

We consider a special type of resource, a buffer, corresponding to a set of items
required by some tasks. In order to process a task, all items required by the
task must be present in the buffer. However, the buffer has a limited capacity,
and adding a new item is costly. Therefore, one may want to minimize the
total number of changes, or switches. For instance, in instruction scheduling,
the buffer can stand for memory caches, and minimizing the number of switches
corresponds to minimizing page faults. Alternatively, the buffer may correspond
to the reels of colored threads on an embroidery machine, and minimizing the
number of reels changes over a sequence helps reducing the overall processing
time. Yet another example arises in the design of validation plans for satellite
payload [3]. Here, each test requires some components of the payload to be in a
given configuration, and again the total number of configuration changes during
the test campaign is a significant factor of its total duration.



We show that achieving hybrid consistency on the BufferedResource con-
straint, i.e., domain consistency on the integer variables and bound consistency
on the set variables, is NP-hard. We therefore consider a decomposition involv-
ing an AllDifferent constraint to enforce that the sequence is a permutation
of the original set of tasks, and the constraint Switch, that counts the number
of switches along the sequence.

We introduce an algorithm for finding a support of Switch in linear time,
that is, O(nd) where n is the length of the sequence and d the number of items.
Moreover, we show how bound consistency can be enforced in O(n2d+n1.5d1.5)
time using a flow representation.

Finally, we compare our filtering algorithm against a decomposition on two
crafted optimization problems, albeit derived from industrial applications. In
both cases the objective function is defined using one or several Switch con-
straints. In these experiments, the proposed propagation algorithm for Switch
greatly outperforms the standard decomposition.

The paper is organized as follows: In Section 2 we recall some background
about consistency on constraints involving both integer and set variables. In Sec-
tion 3 we define the BufferedResource and Switch constraints and discuss
their complexities. Then, in Section 4, we introduce an algorithm for achieving
bound consistency on the Switch constraint. Finally, in Section 5, we report
experimental results.

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for subsets of variables. We write dom(X) for the domain of a variable X.
For totally ordered domains, we write min(X) and max(X) for the minimum and
maximum values. A solution is an assignment of values to the variables satisfying
the constraints. We consider both integer and set variables. A set variable S is
represented by its lower bound lb(S) which contains the definite elements and
an upper bound ub(S) which also contains the potential elements.

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C, a bound support on C is a tuple that assigns to
each integer variable a value between its minimum and maximum, and to each
set variable a set between its lower and upper bounds which satisfies C. Accord-
ing to [1], a bound support in which each integer variable is assigned a value
in its domain is called a hybrid support. If C involves only integer variables, a
hybrid support is a support. A constraint C is bound consistent (BC ) iff for each
integer variable Xi, its minimum and maximum values belong to a bound sup-
port, and for each set variable Sj , the values in ub(Sj) belong to Sj in at least
one bound support and the values in lb(Sj) belong to Sj in all bound supports.
A constraint C is hybrid consistent (HC ) iff for each integer variable Xi, every
value in dom(Xi) belongs to a hybrid support, and for each set variable Sj , the



values in ub(Sj) belong to Sj in at least one hybrid support, and the values
in lb(Sj) are all those from ub(Sj) that belong to Sj in all hybrid supports. A
constraint C involving only integer variables is generalized arc consistent (GAC )
iff for each variable Xi, every value in dom(Xi) belongs to a support.

If all variables in C are integer variables, hybrid consistency reduces to gen-
eralized arc-consistency, and if all variables in C are set variables, hybrid con-
sistency reduces to bound consistency.

To illustrate these concepts, consider the constraint C(X1, X2, S) that holds
iff the set variable S is assigned exactly the values used by the integer variables
X1 and X2. Let dom(X1) = {1, 3}, dom(X2) = {2, 4}, lb(S) = {2} and ub(S) =
{1, 2, 3, 4}. BC does not remove any value since all domains are already bound
consistent. On the other hand, HC removes 4 from dom(X2) and from ub(S) as
there does not exist any tuple satisfying C in which X2 does not take value 2.
Note that as BC deals with bounds, value 2 was considered as possible for X1.

3 The BufferedResource and Switch Constraints

We consider the problem of performing a set of tasks, each requiring a set of
resources to be available on a buffer, whilst bounding the number of switches of
resources on the buffer. We are given:

– A maximum buffer size ki and a minimum buffer usage ki at time i;
– A set of resources R = {r1, . . . , rm};
– A set of tasks T = {Ti}1≤i≤n, where each task Ti ∈ T is associated with the

set of resources it requires, that is, ∀i ∈ [1, n], Ti ⊆ R.

Example 1. For instance, suppose that we want to embroid n garments. Each
garment requires a set of colors. However, only k reels and therefore k different
colors of thread can be loaded on the embroidery machine. Hence, whenever we
embroid a garment requiring a color of thread that is not already mounted on the
machine, we need to switch it with one of the currently mounted reels. Each such
switch is time consuming. Therefore, the goal is to sequence the garments so that
we minimize the number of reel changes. In other words, we want to compute
a permutation of the tasks p : [1, n] 7→ [1, n] and an assignment σ : [1, n] 7→ 2R

of the buffer over time such that the items required by each task are buffered
(∀1 ≤ i ≤ n, Ti ⊆ σ(pi)), the size of the buffer is not exceeded (ki ≤ |σ(i)| ≤ ki)
and the number of switches

∑
1≤i<n |σ(i+ 1) \ σ(i)| is minimized.

We introduce the BufferedResource constraint to model this pattern.

Definition 1 (BufferedResource). Let X1, . . . , Xn be integer variables, S1,
. . . , Sn be set variables, k1, . . . , kn and k1, . . . , kn be integers, and M an integer
variable. The constraint BufferedResource([X1, . . . , Xn], [S1, . . . , Sn], [k1, . . . ,
kn], [k1, . . . , kn],M) holds if and only if:

1. ∀i, j ∈ [1, n], i 6= j → Xi 6= Xj (X1, . . . , Xn is a permutation)
2. ∀i ∈ [1, n], ki ≤ |Si| ≤ ki (the buffer has a bounded capacity)
3. ∀i, Ti ⊆ SXi

(when a task is processed, all required resources are buffered)



4.
∑

1≤i<n |Si+1 \Si| ≤M (the number of switches is less than or equal to M)

We shall see that this constraint is NP-hard (even if the buffer’s size is fixed).
Hence, throughout the rest of the paper we shall consider a decomposition:

BufferedResource(X1, . . . , Xn, S1, . . . , Sn, [k1, . . . , kn], [k1, . . . , kn],M)⇔
AllDifferent(X1, . . . , Xn)

∧ ∀i ∈ [1, n], ki ≤ |Si| ≤ ki
∧ ∀i, Ti ⊆ SXi

∧ Switch([S1, . . . , Sn], [k1, . . . , kn], [k1, . . . , kn],M)

And in particular the constraint Switch, defined as follows:

Definition 2 (Switch). Let S1, . . . , Sn be set variables, ki a lower bound on the
cardinality of Si, ki an upper bound on the cardinality of Si, and M an integer
variable. The constraint Switch([S1, . . . , Sn], [k1, . . . , kn], [k1, . . . , kn],M) holds
if and only if: ∀i ∈ [1, n], ki ≤ |Si| ≤ ki ∧

∑
1≤i<n |Si+1 \ Si| ≤M

Example 1 (Continued). Assume that we want to embroid 5 garments, each re-
quiring one of 5 colors as shown in Fig. 1a, on a machine with 3 reels of thread.
Let the domains shown Fig. 1b represent the possible permutations at some point
during search. To this sequence of variables corresponds a sequence of set vari-
ables shown in Fig. 1c. Whereas the BufferedResource constraint defines the
possible combinations for all X’s and S’s, the constraint Switch involves only
the set variables. We illustrate a support for Switch with M = 2 in Fig. 1d and
a feasible solution for BufferedResource corresponding to the permutation
2, 1, 3, 4, 5 with 4 switches in Fig. 1e.

T1 = {B,G, Y }
T2 = {B,G,R}
T3 = {W,Y }
T4 = {B,R,W}
T5 = {R,W, Y }

(a) Garments

X1 = {1, 2}
X2 = {1, 2}
X3 = {3, 4, 5}
X4 = {3, 5}
X5 = {4, 5}

(b) Perm.

{B,G} ⊆ S1 ⊆ {B,G,R, Y }
{B,G} ⊆ S2 ⊆ {B,G,R, Y }
{R} ⊆ S3 ⊆ {B,R,W, Y }
{W,Y } ⊆ S4 ⊆ {R,W, Y }
{R,W} ⊆ S5 ⊆ {B,R,W, Y }

(c) Buffer bounds

S1 = {B,G,R}
S2 = {B,G,R}
S3 = {B,W,R}
S4 = {Y,W,R}
S5 = {Y,R,W}

(d) Support

S1 = {B,G,R}
S2 = {B,G, Y }
S3 = {B,W, Y }
S4 = {B,W,R}
S5 = {Y,W,R}

(e) Solution

Fig. 1: Illustration of Example 1.

Theorem 1. Achieving HC on BufferedResource is NP-hard.

Proof. We reduce Hamiltonian path (on undirected graphs) to the problem
of finding a satisfying solution to BufferedResource. Let G = (V,E) be
an undirected graph with |V | = n and |E| = m. We build an instance of
BufferedResource on the integer variables [X1, . . . , Xn], the set variables
[S1, . . . , Sn] and switch variable M .



– For each vi ∈ V , we have a task Ti requiring m items, that is, a set Ti
of cardinality m that contains one value j for every edge ej ∈ E such that
vi ∈ ej . In order to make sure that |Ti| = m, we use as fillers values appearing
in no other task ({i ∗m+ j}1≤j≤m−d(vi) where d(vi) is the degree of vi).

– There is one integer variable Xi per vertex vi ∈ V with domain {1, . . . , n}.
– There are as many set variables Si as vertices in the graph G, with domains

ranging from the empty set to the whole universe of values: {} ⊆ Si ⊆
{1, . . . , (n + 1)m} for each vi ∈ V . The cardinality of each one of these set
variables is ki = ki = m.

– The domain of M is set to the single value (n− 1)(m− 1).

We first show that the existence of an Hamiltonian path entails the existence
of a solution of BufferedResource on the construction above. We set the
value of Xi to the rank of the vertex vi in the Hamiltonian path. Observe that
given a permutation, there is a unique valuation of the set variables satisfying
the constraint: ∀i ∈ [1, n], SXi = Ti. Consider any two consecutive set variables
Sj , Sj+1. Their domains correspond to two consecutive vertices in the Hamilto-
nian path, hence they share exactly one value: the common edge between the
two nodes. The number of switches between these two set variables is thus equal
to m− 1, hence the total number of switches is (n− 1)(m− 1).

Next we show that the existence of a solution entails the existence of an
Hamiltonian path in G. Consider any two consecutive set variables Sj , Sj+1,
and assume that Xi = j and Xk = j + 1. There are two cases, either there
exists an edge ex = (vi, vk) in E and then Ti ∩ Tk = {x} or such edge does not
exist, and therefore Ti ∩ Tk = ∅. Since there are (n− 1) consecutive pairs of set
variables, and since the only possible value for M is (n − 1)(m − 1), the first
case must hold for every consecutive pair. We can therefore conclude that there
exists a path visiting every vertex of the graph exactly once. ut

Observe that the cardinality of each set variable Si can be as low as 3 since
Hamiltonian path is still NP-hard when the maximum degree of a vertex is 3.
On the other hand, the proof above requires both the total number of resources
and the bound on the number of switches to be large.

4 Filtering Algorithm for Switch

In this section, we show how bound consistency can be enforced on Switch
in O(n2d + n1.5d1.5) time. First we introduce a greedy algorithm that finds an
assignment minimizing the number of switches in O(nd) time where d is the
total number of resources. Let L be the number of switches of that assignment.
Then we introduce a filtering procedure based on a network flow representation.
The cost of the flow represents the number of switches and for each pair Si, v
such that v ∈ ub(Si) there is an edge in the network that can receive a unit of
flow if and only if the set Si may contain the value v in a support. Observe that
forcing v ∈ Si may never entail more than two extra switches in the optimal



assignment with L switches. Therefore, we need to prune the set variables only
if the difference between L and the upper bound of M is at most 1.

The algorithm we propose therefore proceeds as follows. First, we compute
a flow of minimum cost, which is a support, and provides a lower bound on M .
Then, if max(M) − min(M) ≤ 1, we consider the residual graph with respect
to this flow, and re-weight the edges so as to eliminate negative costs. Then we
find all null cycles and, if max(M)−min(M) = 1, all cycles of weight 1. Table 1
summarizes the complexity of these four steps.

Step Complexity

Finding an optimal assignment O(nd)
Re-weighting the residual graph O((nd)1.5)
Finding null cycles O(nd)
Finding cycles of weight 1 O(n2d)

Total O(n2d+ n1.5d1.5)

Table 1: Summary of the algorithm and its complexity.

4.1 Finding a Support

We present an algorithm that greedily constructs a support for the Switch
constraint. This support is optimal in the sense that it minimizes the number
of switches. The algorithm FindSupport (Algorithm 1) successively assigns the
variables S1 to Sn to sets σ1 to σn. At each step i, the algorithm computes a
priority for each value. The lower the priority is for value v, the more likely
the value v will belong to σi. While processing the variables Si for i = 1..n, we
maintain for each value v the index next∈(v) = min({j | v ∈ lb(Sj), j ≥ i}∪{n+
1}) that is the smallest variable index no smaller than i such that v ∈ lb(Sj).
We also maintain the index next 6∈(v) = min({j | v 6∈ ub(Sj), j ≥ i} ∪ {n + 1})
that is the smallest variable index no smaller than i such that v 6∈ ub(Sj).
If next∈(v) < next6∈(v), the value v will be required in the sequence Si . . . Sn
before it gets forbidden. We assign such a value a priority between 1 and n. If
next∈(v) > next6∈(v), the value v will be forbidden in the sequence Si, . . . , Sn
before it gets required. We assign such a value a priority between n+2 and 2n+1.
Finally, if next∈(v) = next6∈(v), we assign to value v a priority of n+1. This later
case only occurs if the value v is allowed to appear but not required to appear
in every variable of the sequence Si, . . . , Sn. The insertion of a value that is not
required or that does not belong to the previous set σi−1 induces a unnecessary
switch. Such a value is given a penalty of 2n+1 on its priority. Once the priority
is computed, we add the value lv = prio(v)× (d+ 1) + v to a set L. From lv, we
can retrieve the value using the arithmetic operation lv mod (d+ 1). Moreover,
the smaller the priority is, the smaller the value lv is. The algorithm keeps a
counter k of the number of values that can be added to σi without causing an
unnecessary switch, i.e. a switch that is not due to the requirement v ∈ lb(Si).
This counter is the cardinality that will be given to σi. If k 6∈ [ki, ki], we update
k to the closest value between ki and ki. We call the algorithm Selection(L, k)



Algorithm 1: FindSupport([S1, . . . , Sn], [k1, . . . , kn], [k1, . . . , kn])

for v = 1..d do next∈(v)← next 6∈(v)← 1;
σ0 ← ∅;
for i = 1..n do

L← ∅, k ← 0;
for v ∈ ub(Si) do

if next∈(v) < i then next∈(v)← i;
1 while next∈(v) ≤ n ∧ v 6∈ lb(Snext∈(v)) do next∈(v)← next∈(v) + 1;

if next6∈(v) < i then next 6∈(v)← i;
2 while next6∈(v) ≤ n ∧ v ∈ ub(Snext 6∈(v)) do next6∈(v)← next6∈(v) + 1;

prio←


next∈(v) if next∈(v) < next6∈(v)
n+ 1 if next∈(v) = next6∈(v)
2(n+ 1)− next6∈(v) if next∈(v) > next6∈(v)

;

3 if v 6∈ lb(Si) ∧ v 6∈ σi−1 then prio← prio +2n+ 1 else k ← k + 1
L← L ∪ {prio×(d+ 1) + v};

k ← min(max(k, ki), ki);
lmax ← Selection(L, k);
σi ← {l mod (d+ 1) | l ∈ L ∧ l ≤ lmax};

return [σ1, . . . , σn];

to retrieve the kth smallest element in L. This algorithm has a running time
complexity of O(d) when implemented using a divide-and-conquer strategy and
a randomized partition algorithm [4]. We finally retrieve the k smallest elements
lv from L and include their respective value v in the set σi. Some values might
share a same priority, the algorithm breaks ties on the lexicographical order of
the values in order not to obtain sets with cardinality greater than k. The vector
[σ1, . . . , σn] constitutes an optimal support to the constraint.

Theorem 2. The algorithm FindSupport returns a support of Switch that
minimizes the number of switches.

Proof. Let nexti∈(v), nexti6∈(v), and prioi(v) be the values of next∈(v), next 6∈(v)
and prio(v) at iteration i.

We consider an optimal solution σ that cannot be built by FindSupport. Let
θi be the instantiation of Si by FindSupport and let i be the first index such
that θi 6= σi. One of the three following propositions is true:

1. σi ⊂ θi, hence ∃v such that |{w | prioi(w) < prioi(v)}| ≤ |θi|, v 6∈ σi;
2. θi ⊂ σi, hence ∃v such that |{w | prioi(w) < prioi(v)}| > |θi|, v ∈ σi;
3. σi 6⊂ θi & θi 6⊂ σi, hence ∃v, w s.t. prioi(v) < prioi(w), v 6∈ σi and w ∈ σi;

Case 1: Since v 6∈ σi, we have v 6∈ lb(Si) and |θi| > ki. Therefore, |σi−1 ∪ lb(Si)| >
ki. It follows that v ∈ σi−1, hence adding v to σi does not add any v-switch (and
might prevent one latter).

Case 2: Since v 6∈ θi, we have v 6∈ lb(Si) and since v ∈ σi we have |θi| > ki.
Therefore, |σi−1 ∪ lb(Si)| < ki. It follows that v 6∈ σi−1, hence removing v from
σi suppresses one v-switch (and might entail one latter).



Case 3: From now on, we assume prioi(v) < prioi(w), v 6∈ σi and w ∈ σi. We
now show that for some j > i, we can swap all instances of w for v in the sets
σi, . . . , σj−1 whilst not increasing the number of switches. Let σ′ be the solution
obtained by this transformation on σ. For each such operation, we get strictly
closer to a solution that can be obtained by FindSupport. We say that there is a
v-switch at index i in solution σ iff v ∈ σi \σi−1. Since the transformation only
changes indices i to j − 1 and values v and w, we only have to count v-switches
and w-switches from index i to j.

Notice that prioi(v) < prioi(w) & w ∈ σi−1 implies v ∈ σi−1. Indeed, in
Line 3 of Algorithm 1, we make sure that values in σi−1 ∪ lb(Si) have the best
priority. Moreover, since w and v can be interchanged, none of them is in lb(Si).

We first consider the case where only v is in the previous buffer: w 6∈ σi−1
and v ∈ σi−1. Let j be the minimum integer greater than i such that either
w 6∈ σj or v ∈ σj or w ∈ lb(Sj) or v 6∈ ub(Sj) or j = n+ 1.

Now we count v- and w-switches on the solutions σ and σ′ .

– On σ there is a w-switch at index i, and there may be a v-switch at index j.
– On σ′ there is no v-switch, however there may be a w-switch at index j.

Therefore, in this case the transformation can only decrease the number of
switches, or leave it unchanged.

Now we consider the case where both v and w are either in or out the previous
buffer: w ∈ σi−1 ⇔ v ∈ σi−1. Let j be the minimum integer greater than i such
that either w 6∈ σj or v ∈ σj or j = n + 1. We show that v ∈ ub(Sl) and
w 6∈ lb(Sl) for all i ≤ l < j, i.e.,

j ≤ nexti∈(w) and j ≤ nexti6∈(v) (1)

Now, by hypothesis, prioi(w) > prioi(v). There are two cases:

1. nexti∈(v) < next6∈(i)v: In this case, nexti∈(v) < nexti∈(w). However, v ∈
σnexti∈(v) entails j ≤ nexti∈(v), therefore proposition 1 is correct in this case.

2. nexti∈(v) ≥ next 6∈(i)v: In this case, nexti∈(w) ≥ nexti6∈(w) and next6∈(i)v >

nexti6∈(w). However, w 6∈ σnexti6∈(w) we have j ≤ nexti6∈(w), therefore proposi-

tion 1 is correct in this case too.

Now we count v- and w-switches on the solutions σ and σ′ .

– On σ there is a w-switch at index i iff w 6∈ σi−1. Moreover, if v ∈ σj there is
a v-switch at index j.

– On σ′ : there is a v-switch at index i iff v 6∈ σi−1. Moreover, if w ∈ σj there
is a w-switch at index j.

By definition of j, w ∈ σj implies that v ∈ σj , hence there is a w-switch at
index j in σ′ only if there is a v-switch at index j in σ. Moreover, by hypothesis,
w 6∈ σi−1 ⇔ v 6∈ σi−1. It follows that the number of switches may not increase
after the transformation. ut

The increments on line 1 and 2 are executed at most n times for each value v.
The Selection algorithm is called exactly n times and has a running time com-
plexity of O(d). Consequently, the algorithm FindSupport runs in time O(nd).



4.2 Network Flow Model

Let σ1, . . . , σn be an optimal solution with L switches, such as the one computed
by FindSupport. For any set Si, any value v ∈ ub(Si) can be inserted into σi
by adding at most 2 more switches (unless | lb(Si)| = ki). Indeed we can add a
value v to Si or replace any value w ∈ Si \ lb(Si) with v, entailing at most one
switch with Si−1 and one switch with Si+1. Hence no pruning is required unless
max(M)− L < 2,.

We therefore focus on the case where max(M) − L < 2 and we describe an
algorithm that finds the values that can be used without additional switches and
the values that require exactly one additional switch.

We construct a network flow Gs where every flow of value d represents a
solution to the Switch constraint. The network has the following nodes. For
every v ∈ ub(Si), we have the nodes avi and bvi . For 0 ≤ i ≤ n, we have a
collector node Ci. The collector node C0 is the source node and the collector
node Cn is the sink node.

Each edge has a capacity of the form [l, u] where l is the required amount
and u is the allowed amount of flow that can circulate through the edge. The
network Gs has the following edges:

1. An edge between the node avi and bvi for every v ∈ ub(Si)
(a) with capacity [1, 1] if v ∈ lb(Si);
(b) with capacity [0, 1] otherwise.

2. An edge between bvi and avi+1 of capacity [0, 1] if these two nodes exist.
3. An edge between bvi and Ci of capacity [0, 1] for 1 ≤ i ≤ n and v ∈ ub(Si).
4. An edge between Ci−1 and avi of capacity [0, 1] for 1 ≤ i ≤ n and v ∈ ub(Si).
5. An edge between Ci−1 and Ci of capacity [d− ki, d− ki] for 1 ≤ i ≤ n.

All edges have a cost of zero except the edges (Ci−1, a
v
i ) for 2 ≤ i ≤ n and

v ∈ ub(Si) that have a cost of 1. The cost c(f) of a flow f is the sum, over
the edges, of the cost of the edge times the amount of flow on this edge, i.e.
c(f) =

∑
(x,y)∈E f(x, y)c(x, y). Figure 2 shows the network flow of Example 1.

Lemma 1. Each flow of value d in Gs corresponds to an assignment of the
Switch constraint where capacities are satisfied.

Proof. We construct a solution σ1, . . . , σn by setting v ∈ σi if and only if the edge
(avi , b

v
i ) accepts a unit of flow. Since the flow value is d and there are between

d− ki and d− ki units of flow circulating through the edge (Ci−1, Ci), there are
between ki and ki edges (avi , b

v
i ) accepting a unit of flow, thus ki ≤ |σi | ≤ ki. ut

Lemma 2. The cost of a flow in Gs gives the number of switches in the solution.

Proof. The amount of flow going out of the collector Ci−1 to the nodes avi in-
dicates the number of switches between Si−1 and Si. Since these edges have a
cost of 1, the cost of the flow equals the number of switches in the solution. Note
that a flow can go through the nodes bvi−1, Ci−1, and then avi which counts as
a switch. Such cases do not occur in a minimum-cost flow as the flow could go
through the edge (bvi−1, a

v
i ) at a lesser cost. ut
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Fig. 2: The network flow associated to the Switch constraint of Example 1. Bold
edges represent the flow. A pair of nodes (avi , b

v
i ) in bold indicates that v ∈ lb(Si)

and that the flow must go through the edge (avi , b
v
i ).

4.3 Bound Consistency

The function FindSupport computes a minimum-cost flow with a flow value
of d. Let f(x, y) be the amount of flow circulating on the edge (x, y) that has
capacity [l, u]. The residual graph Gr has the same nodes as the original network
but has the following edges. If f(x, y) < u, there is an edge (x, y) with capacity
[l−f(x, y), u−f(x, y)] and cost c(x, y). If f(x, y) > l there is an edge (y, x) with
capacity [f(x, y) − u, f(x, y) − l] and cost −c(x, y). Note that in the residual
graph, all costs are either -1, 0, or 1.

Theorem 3. Let f be a flow of minimum cost in Gs, and Gr the corresponding
residual graph, Switch is BC if and only if:

1. For all v ∈ ub(Si), f(avi , b
v
i ) > 0 or the edge (avi , b

v
i ) belongs to a cycle of

cost lower than or equal to max(M)− c(f) in Gr.
2. For all v ∈ lb(Si), f(avi , b

v
i ) > 0 and there is no cycle of cost lower than or

equal to max(M)− c(f) in Gr that involves the edge (bvi , a
v
i ).

Proof. By Lemma 1, we know that a flow in Gs corresponds to an assignment
of S1, . . . , Sn that satisfies the capacities of the sets. Moreover, by Theorem 2,
we know that the support corresponding to f minimizes the number of switches.
Hence, f witnesses the existence of a support for all v ∈ Si such that f(avi , b

v
i ) >

0. Now, if f(avi , b
v
i ) = 0, it is known that there is a flow going through the edge

(avi , b
v
i ) iff there exists a cycle in Gr passing by the edge (avi , b

v
i ). Moreover, by

Lemma 2, the cost of the minimum cycle passing by the edge (avi , b
v
i ) gives the

number of required additional switches if v ∈ Si is forced. It follows that in this
case, v ∈ Si has a support iff there exists a cycle of cost max(M)− c(f) or less
going through (avi , b

v
i ) in the graph Gr.



The flow f satisfies the bounds and capacities of the sets. Therefore, if
f(avi , b

v
i ) = 0 then v cannot be in the lower bound of Si. Now, suppose that

f(avi , b
v
i ) > 0. By a reasoning similar as above, we have that there exists a

bound support where v 6∈ Si iff there exists a cycle of cost max(M) − c(f) or
less going through (bvi , a

v
i ) in the graph Gr. Therefore, v ∈ lb(Si) is entailed iff

there is no such cycle. ut

Recall that we assume max(M) ≥ c(f) + 2 where c(f) is the number of
switches in an optimal solution. Therefore, we are interested to find all cycles of
cost 0 and 1. We now describe how can this be done efficiently.

Since computing the minimum cycles is as hard as finding shortest paths, we
first perform a preprocessing operation that will eliminate negative weights in the
residual graph. This preprocessing is the same as the one used in Johnson’s all-
pair shortest path algorithm and was also used by Régin to filter Cost-GCC [7].

We add a dummy node z to the residual graph that is connected to all other
nodes with an edge of null cost. We compute the shortest path from the dummy
node z to all other nodes. This can be done using Goldberg’s algorithm [5]
which computes the shortest path in a graph in O(

√
|V ||E| logW ) time where

|V | is the number of vertices, |E| is the number of edges, and W is the greatest
absolute cost of an edge. In our case, we have |V | ∈ O(nd), |E| ∈ O(nd), and
W = 1 which leads to a complexity of O((nd)1.5). Let π(x) be the shortest
distance between the dummy node z and the node x. Let (x, y) be an edge in
the residual graph with cost c(x, y). We re-weight this edge with the cost function
cπ(a, b) = c(a, b)+π(a)−π(b). It is known that with the new cost function, there
are no negative edges and that the cost of any cycle remains unchanged.

Finding null cycles in the new re-weighted residual graph becomes an easy
problem. Since there are no negative edges, a cycle is null if and only if all its
edges have a null cost. We can thus compute the strongly connected components
in the graph induced by the edges of null costs. All values v ∈ ub(Si) such that
the edge (avi , b

v
i ) belongs to a null cycle has a support without extra switches.

To compute the supports with one additional switch, we modify once more
the residual graph. We delete all edges with a cost greater than 1. Such edges
necessarily lie on a path of weight greater than 1 and are not relevant. Only
edges with weight 0 and 1 remain in the graph. We create two copies of the
graph. We connect the two copies as follows: if there is an edge (x, y) of cost
cπ(x, y) = 1, then we delete this edge in both copies and add an edge from x in
the first graph to y in the second graph. The intuition is that to travel from a
node in the first graph to a node in the second graph, one must pass through
an edge of cost 1. Moreover, it is not possible to cross twice such an edge. So all
paths in the resulting graph have cost at most 1.

To find a cycle of cost 1 passing by the edge (avi , b
v
i ) in the original graph,

one needs to find a path from bvi in the first graph to avi in the second graph.
The problem is therefore transformed to a problem of reachability.

Computing whether there is a path from each of the O(nd) nodes bvi to their
associated nodes avi can be done using O(nd) depth first search (DFS) for a total
computational time of O(n2d2). However, we use a key information to decrease



this complexity. We know that to generate one more switch, the flow needs to
pass by a collector. We can restrict our search to the cycles passing by a collector.
For each of the n collectors Ci, we can compute with a DFS the nodes F 0

i that
can be reached from this collector with a forward path of cost 0 and the nodes
F 1
i that can be reached with a path of cost 1. While doing the DFS, we use

two bitsets to represent F 0
i and F 1

i and flag the nodes in the appropriate bitsets
depending whether the node belongs to the first copy of the graph or the second
copy. We perform the same operation on the transposed graph to compute the
nodes B0

i and B1
i that can be reached with a backward path from collector Ci

with a cost of at most 0 and at most 1. We then compute the set of nodes Pub
that lie on a cycle of cost at most 1 that passes by a collector as follows.

Pub =

n⋃
i=1

(
F 0
i ∩B1

i ∪ F 1
i ∩B0

i

)
(2)

For every v ∈ ub(Si) such that v 6∈ σi and avi ∈ Pub, then it is possible to modify
the solution σ to obtain a new solution σ′ with v ∈ σ′i. One simply needs to
push one unit of flow on the cycle on which lies the node avi . Since this node has
(avi , b

v
i ) has unique outgoing edge in the residual graph, the new flow will pass

by (avi , b
v
i ) and will have at most one more switch.

We use the same idea to test whether v 6∈ Si has a bound support whenever
f(avi , b

v
i ) > 0. We compute the set Plb that contains all indices i such that there

does not exist a cycle of cost at most 1 that passes by a collector and by the
edge (bvi , a

v
i ) as follows.

Plb = {i | 6 ∃j s.t. (avi ∈ B0
j ∧ bvi ∈ F 1

j ) ∨ (avi ∈ B1
j ∧ bvi ∈ F 0

j )} (3)

For every v 6∈ lb(Si) such that v ∈ σi and i ∈ Plb, then it would not be possible
to modify the solution σ to obtain a new solution σ′ with v 6∈ σ′i. Indeed there is
no alternative for the unit of flow going through (avi , b

v
i ) without increasing the

cost above max(M). We can therefore deduce that v should be added to lb(Si).
Each of the n DFS runs in time O(nd). The union and intersection oper-

ations required for the computation of Pub and Plb can be done using bitwise
conjunction and disjunctions in time O(n2d). So the computation of the cycles
are done in time O(n2d).

5 Experimental Evaluation

We tested our propagator for Switch on two optimization problems based on
industrial applications. However, they have been somewhat abstracted and sim-
plified for the purpose of our experiments. Moreover, we randomly generated two
sets of instances.1 All experiments were run on Intel Core i5 2.30GHz machine
with 6GB of RAM on Windows 7. For each problem, we have generated 50 in-
stances of four classes, each defined by a tuple of parameters. We compare two

1 Available at http://homepages.laas.fr/ehebrard/switch/



Choco programs that differ in the representation of the objective function. In
the first model it is decomposed into a sum of reified LessThan (<) constraints.
In the second model, the objective function is represented using a single Switch
constraint (for the first problem), or several (for the second problem). All other
constraints are the same in both models. Finally, we used two search heuristics
(Impact-based Search [6] and the Domain over Weighted Degree Heuristic [2],
denoted respectively Impact and Wdeg).

Embroidery Scheduling. This first problem is derived from a real life scheduling
problem in the textile industry involving job-dependent setup times.

A set of n garments have to be embroidered using m machines. Each garment
is characterized by a set coli ⊆ {1, . . . , k} of colors required for embroidering a
given pattern. Last, at most cj reels of threads can be mounted on machine j
(i.e., at most cj colors of threads can be used without changing the reels).

The load on each machine must be balanced, so we assume that each machine
will process n/m garments. A feasible solution for this problem is a mapping
of the garments to the machines f : {1, . . . , n} 7→ {1, . . . ,m}. Moreover, each
garment i must be assigned a position si on the machine it is assigned to, and
for each machine j the set of colors of threads Sjg available when processing

the the gth garment must be sufficient for embroidering that garment (Eq. 5)
while taking into account the maximum number of reels that can be mounted on
each machine (Eq. 6). However, whenever the next garment to be embroidered
requires a color of thread that is not loaded on the machine, one need to turn
the machine off, change some reels and restart the machine. The number of reel
changes must therefore be minimized (Eq. 4).

minimize :
∑

1≤j≤m
∑

1≤g<n/m |S
j
g+1 \ Sjg | (4)

subject to : ∀i ∈ {1, . . . , n} coli ⊆ Sf(i)s(i) (5)

∀j ∈ {1, . . . ,m}, g ∈ {1, . . . , n/m} |Sjg | ≤ cj (6)

We have a set of n integer variables with domain {1, . . . ,m} standing for the
mapping of garments to position in the sequence (we consider here the whole
sequence obtained by concatenating the sequences on each machine). Then we
have n set variables, one for each garment and standing for the set of colors of
threads on the machine when embroidering the ith garment. Then we used a
set of Element constraints to channel these two sets of variables. In the first
model, the objective function is implemented through a decomposition using a
Sum of reified LessThan and Member constraints. In the second model, the
objective is stated as a sum of m Switch constraints (one per machine).

Test Sequencing. Next we consider the design of validation tests. A set of n tests
have to be performed in order to verify a system involving a set F of k features.
A test i is defined by a set oni ⊆ F of features that must be turned ON, and
a set offi ⊆ F \ oni of features that must be turned OFF while doing the test.



A configuration is a complete characterization of the system, represented by the
set Cj ⊆ F of features that are ON (all other features are considered OFF).

The verification will go through m phases during which the system will be
in a given configuration, and a subset of the tests will be performed. A feasible
solution is a sequence of m configurations [S1, . . . , Sm] and a mapping of the tests
to a phase f : {1, . . . , n} 7→ {1, . . . ,m} such that each test is compatible with
the configuration in which it is done (Eq. 8). Moreover, there are restrictions
on the number of features that can be ON simultaneously (Eq. 9). Finally, the
total duration of the test campaign depends on the set of features that need to
be turned ON during the transitions between two configurations (Eq. 7).

minimize :
∑

1≤j<m |Sj+1 \ Sj | (7)

subject to : ∀j ∈ {1, . . . ,m} l ≤ |Sj | ≤ u (8)

∀i ∈ {1, . . . , n} oni ⊆ Sf(i) & offi ∩ Sf(i) = ∅ (9)

We use two straightforward models for this problem. In both models, we have
a set of n integer variables with domain {1, . . . ,m} standing for the mapping
between tests to phases and m set variables standing for the configuration during
phase j. Then we use a set of Element constraints to channel these two sets
of variables. In the first model, the objective function is implemented through a
decomposition using a Sum of reified LessThan and Member constraints. In
the second model, the objective is stated as a Switch constraint.

Results. We generated 4 classes of 50 instances, for each of the two problems,
parameterized respectively by number of garments, colors and machines, and
number of tests, features and configurations. For each class, we report the mean
value of the objective function over time in both models. Results are shown in
Figure 3 and Figure 4, for the Embroidery and Test Sequencing problems, respec-
tively. These curves were obtained by averaging the step functions corresponding
to the runs of one algorithm on every instance of the class.

We observe that the model using the propagator for Switch clearly outper-
forms the decomposition model. In particular, the decomposition does not seem
able to significantly improve the objective after the initial drop. It is interesting
to notice that whilst Wdeg outperforms Impact on the decomposition model, it
is slightly worse in the model using the global constraint (except for the classes
〈100, 2, 5〉 in the Embroidery benchmark and 〈300, 10, 15〉 for the Test Sequenc-
ing benchmark). This is actually not surprising since Wdeg relies heavily on the
shape of the constraint network and is severely hindered when using a global
constraint. Despite this, the propagator yields better results, irrespective of the
heuristic that is used. On the Embroidery problem, the improvement on the ob-
jective value obtained by using the propagator ranges from 32 to 48% (counted
on the best heuristic in each case). On the Test Sequencing problem, we observe
more modest but still sizeable improvements, ranging from 12 to 29%.
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(a) 100 garments, 2 machines, 5 colors
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(b) 80 garments, 2 machines, 7 colors
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(c) 100 garments, 2 machines, 7 colors
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(d) 120 garments, 3 machines, 7 colors

Fig. 3: Embroidery: #switches over time

6 Conclusion

We have introduced the constraints BufferedResource and Switch to reason
about the number of item switches in a buffered resource. The former constraint
is NP-hard, however it can be effectively decomposed using the latter in con-
junction with an AllDifferent. We have introduced a linear algorithm to find
a support to the Switch constraint, that is, to assign a sequence of set variables
standing for the buffer so that the number of switches is minimized. Further-
more, using this algorithm and a flow-based model, we have shown that bound
consistency can achieved in O(n2d + n1.15d1.5) time. Finally, our experimental
results show that this propagator is a significant improvement with respect to
expressing this relation with primitive constraints.

References

1. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The range and roots
constraints: Specifying counting and occurrence problems. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, pages 60–65,
2005.



 30

 35

 40

 45

 50

 55

 60

 65

 70

 0  10000  20000  30000  40000  50000  60000

o
b
j
e
c
t
i
v
e
 
(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(a) 150 tests, 15 config., 15 features

 30

 40

 50

 60

 70

 80

 90

 0  10000  20000  30000  40000  50000  60000

o
b
j
e
c
t
i
v
e
 
(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(b) 300 tests, 20 config., 10 features

 50

 60

 70

 80

 90

 100

 0  10000  20000  30000  40000  50000  60000

o
b
j
e
c
t
i
v
e
 
(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(c) 300 tests, 20 config., 15 features

 30

 40

 50

 60

 70

 80

 90

 0  10000  20000  30000  40000  50000  60000

o
b
j
e
c
t
i
v
e
 
(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(d) 300 tests, 10 config., 15 features

Fig. 4: Test Sequencing: #switches over time

2. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting Systematic Search by
Weighting Constraints. In Proceedings of the 16th European Conference on Artificial
Intelligence - ECAI’04, pages 146–150, 2004.

3. G. Verfaillie C. Maillet and B. Cabon. Constraint programming for optimising
satellite validation plans. In 7th International Workshop on Planning and Scheduling
for Space (IWPSS’11), 2011.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, third edition edition, 2009.

5. A. V. Goldberg. Scaling Algorithms for the Shortest Path Problem. SIAM Journal
on Computing, 24:494–504, 1995.

6. P. Refalo. Impact-Based Search Strategies for Constraint Programming. In Pro-
ceedings of Principles and Practice of Constraint Programming - CP’04. LNCS No.
3258, pages 557–571, 2004.
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