
Microsoft Research Report Year 2006, Number 86

The bit-vector Constraint

Lucas Bordeaux & Youssef Hamadi {lucasb/youssefh}@microsoft.com

Microsoft Research

7 J J Thomson Avenue

CB3 0FB Cambridge

United kingdom

Claude-Guy Quimper quimper@alumni.uwaterloo.ca

4895 Berri # 613

Montréal QC H2J 4A3

Canada

Abstract

Some applications require to reason on particular bits of an integer value, and to ex-
press the fact that ”the number X is encoded in binary by the vector of Boolean variables
[xn, . . . , x0]”. The natural way to encode this is using a linear constraint. We show that
bound propagation on this constraint has intriguing properties: it is complete in the sense
that the bounds of the variable xi, i ∈ 0 . . . n are tightly reduced; on the other hand, the
interval of values for X is in general not optimally reduced: it can be up to twice as large
as the optimal. We show that a simple mechanism allows the reasoning to be complete on
X.

Keywords: Constraints, Interval Propagation.

1. The bit-vector Constraint

A number of applications, essentially in verification, require to express constraints on par-
ticular bits of integer variables. The connection between the integer value X and the bit
representation 〈xn, . . . , x0〉 is easily encoded by the constraint:

X =
∑

i=0...n

2ixi (1)

X is an integer variable ranging over [0, 2n+1 − 1] and the xis range over {0, 1}.

More generally, similar encodings can be used to represent tuples of values: if xn, . . . , x0

are variables that all range over the same (small) domain [0 . . . d− 1], the tuple 〈xn, . . . , x0〉
can be represented by an integer variable X; the constraint is then X =

∑

i=0...n dixi. For
simplicity we shall present the results of this paper for the case of binary domains, but they
easily generalize to any arbitrary basis.

Since the variable X can have a large domain (exponential in the number of bits or
components), we shall typically represent the set possible values for a variable using an
interval representation. The question is then how to achieve the best interval propagation
possible for this constraint: is it the case that a basic interval propagation, directly applied
to the linear constraint, will make all the correct interval reductions; or can we design

c©2006 Bordeaux, Hamadi, Quimper.



The bit-vector Constraint

an improved, specialized propagator for bit-vect? This note answers these questions. Our
results are the following:

1. If we use the linear encoding and perform bound propagation on it, the bounds for
the pseudo-Boolean variables xi (i ∈ 0 . . . n) are reduced optimally;

2. On the other the interval of values for X is not reduced optimally: it can be up to
twice as large as the interval that is reduced optimally;

3. We show that a simple algorithm allows to reduce X optimally.

The notion of ”reduced optimally” is made clear in the following Section. The first
result is presented more formally in Section 3; the second result in Section 4, and the third
result in Section 5. We start by presenting basic material related to interval propagation.

2. Basic Material

Given a variable y ∈ {x0, . . . , xn, X}, we denote by y− and y+ its lower and upper bounds.
Let:

{

σ− =
∑

i=0...n 2ix−
i

σ+ =
∑

i=0...n 2ix+
i

represent the bounds of the sum
∑

i=0...n 2ixi. Given a tuple of values t = 〈an, . . . , a0〉 we
denote by eval(t) the value

∑

i=0...n 2iai.

We give brief a reminder on the notions of bound propagation and bound consistency.
Bound propagation on discrete domains was introduced by Davis (1987) and Cleary (1987);
more recent references on this topic are Yuanlin and Yap (2000); Trick (2001); Harvey and
Stuckey (2003).

2.1 Propagation

Bound propagation works by considering each variable in turn, and checking whether its
lower/upper bounds can be tightened without loosing any solution. For variable X, prop-
agation will make sure that all the values of its range that are inferior to σ− or superior
to σ+ are discarded. For the Boolean variables xi, the following reasoning will be applied:
if we fix xi to 0 and all the other variables xj (j 6= i) to their upper bound then we have
to obtain something at least as large as x−. Otherwise value 0 can clearly be discarded for
xi. Symmetrically, if we fix xi to 1 and all the other variables xj (j 6= i) to their lower
bound then we have to obtain something smaller than x+. Otherwise value 1 can clearly be
discarded for xi. Propagation repeats these rules for each variable until no bound reduction
is possible anymore. The ranges are said to be stable under propagation iff we have:

∀i ∈ 0 . . . n.

{

σ− ≤ X− ≤ σ+ + 2i(x−
i − x+

i )
σ+ ≥ X+ ≥ σ− + 2i(x+

i − x−
i )

(2)

2



Bordeaux, Hamadi, Quimper

2.2 Bound Consistency

The variables are said to be ”bound-consistent” when their bounds have been optimally
reduced, i.e., some solutions would be lost if we reduced these bounds further. More for-
mally, a value v of a variable y is consistent if there is a solution that assigns v to y. The
linear equation is bound-consistent if each bound (y− and y+, for y ∈ {x0 . . . xn, X}) of
every variable is consistent.

Let us insist that, in general, the intervals obtained after propagation are not bound-
consistent (which is why we use the term ”stable under propagation” to describe such
intervals, instead of a term that would use the word ”consistency”).

3. The bit variables are reduced optimally

Our first result states that propagation reduces the variables xi, i ∈ 0 . . . n in an optimal
way:

Proposition 1 Given a constraint of the form (1); if the bounds are stable under propaga-
tion then each variable xi, i ∈ 0 . . . n is bound-consistent.

This proves, in particular, that interval propagation is complete in the sense that if
non-empty intervals are computed, we have the guarantee to have a solution within these
ranges.

To prove this result, we suppose the ranges are stable under propagation. We prove that
the bounds of every xi have a support. The idea is that propagation will only be able to
instantiate some of the variables of highest weight. Let l be the index of the non-instantiated
variable of highest weight. For i > l we denote by ci the constant x+

i = x−
i . The claim is

proved in three steps:

1. We prove that the upper bound of xl has a support.

2. We prove that the lower bound of xl has a support.

3. We prove that both bounds of every xi, i 6= l, have a support.

3.1 The upper bound of xl has a support

We prove by contradiction that xl = 1 has a support. We define C =
∑

i=l+1...n 2ici. Since
the bounds are stable under propagation we have from Eq. 2:

x− − C ≤
∑

i=0...l−1

2ix+
i (3)

2l +
∑

i=0...l−1

2ix−
i ≤ x+ − C (4)

Now if we suppose that xl = 1 has no support, this means that a lexicographic iteration
from α = 〈cn, . . . , cl+1, 1, x−

l−1, . . . , x
−
0 〉 to ω = 〈cn, . . . , cl+1, 1, x+

l−1, . . . , x
+
0 〉 never goes

through a tuple t satisfying eval(t) ∈ [x−, x+]. Because eval(α) ≤ x− and eval(ω) ≥ x+,
at some point we have a tuple t that is such that eval(t) < x− and whose lexicographical
successor t′ is such that eval(t′) > x+.

3



The bit-vector Constraint

• t can be written as:

〈cn, . . . , cl+1, 1, cl−1, . . . , cj+1, 0, x+
j−1, . . . , x

+
0 〉

• and the next tuple t′ as:

〈cn, . . . , cl+1, 1, cl−1, . . . , cj+1, 1, x−
j−1, . . . , x

−
0 〉

for a particular choice of constants cj+1 . . . cl−1. We therefore translate the fact that
eval(t) < x− and that eval(t′) > x+:

2l +
∑

i=j+1...l−1

2ici + 0 +
∑

i=0...j−1

2ix+
i < x− − C (5)

x+ − C < 2l +
∑

i=j+1...l−1

2ici + 2j +
∑

i=0...j−1

2ix−
i (6)

By Eq. (4) and (6) we obtain:

∑

i=j...l−1

2ix−
i <

∑

i=j+1...l−1

2ici + 2j (7)

By Eq. (3) and (5) we obtain:

2l +
∑

i=j+1...l−1

2ici <
∑

i=j...l−1

2ix+
i (8)

Eq. (7) and (8) give:

2l − 2j <
∑

i=j...l−1

2i(x+
i − x−

i ) (9)

Therefore, bounding the right-hand side:

2l − 2j <
∑

i=j...l−1

2i (10)

But:
∑

i=j...l−1

2i =
∑

i=0...l−1

2i −
∑

i=0...j−1

2i = (2l − 1) − (2j − 1)

which contradicts Eq. (10).

3.2 The upper bound of xl has a support

The proof is completely symmetric to the one for the lower bound of xl.

4



Bordeaux, Hamadi, Quimper

3.3 Both bounds of every xi, i 6= l, have a support

We know that there exists a solution that assigns value 0 to xl and a solution that assigns
value 1 to xl. In other words there exist two tuples t1 and t2 of the form:

t1 = 〈cn, . . . , cl+1, 0, al−1 . . . a0〉
t4 = 〈cn, . . . , cl+1, 1, bl−1 . . . b0〉

such that x− ≤ eval(t1) ≤ eval(t4) ≤ x+. These tuples provide a support for the value
ci = x−

i = x+
i of each variable xi, i > l. Now the tuples:

t2 = 〈cn, . . . , cl+1, 0, x+
l−1 . . . x+

0 〉

t3 = 〈cn, . . . , cl+1, 1, x−
l−1 . . . x−

0 〉

are such that x− ≤ eval(t1) ≤ eval(t2) ≤ eval(t3) ≤ eval(t4) ≤ x+. We have exhibited a
support (t3) for the lower bounds of every variable xi, i < l and a support (t2) for the upper
bounds of these variables.

4. X is not reduced optimally

Our second result states that in general propagation does not reduce the bounds of x in an
optimal way. More precisely, we prove that the intervals computed by bound propagation
can be twice as large as they should ideally.

Proposition 2 There exists an infinite family of instances for which the bounds of X are
not consistent after bound propagation; moreover the width of the interval of values for X

after propagation can be arbitrarily close to twice the width of the optimally reduced interval.

This result shows that some improvement is possible. We start by exhibiting an example
where the over-approximation of the bounds of X happens:

Example 1 We consider an 8-bit version of the constraint:

X = 128x7 + 64x6 + 32x5 + 16x4 + 8x3 + 4x2 + 2x1 + 1x0

Now let the ranges be defined as follows:

X ∈ [64, 191], x7, x6 ∈ [0, 1], x5, x4, . . . x0 ∈ [1, 1]

Note that the binary representation of 64 is 〈01000000〉 and the representation of 191 is
〈10111111〉.

The previous ranges are stable under propagation. For instance 64 ≥ 0 + 0 + 32 + 16 +
8 + 4 + 2 + 1, and all the other inequalities of Eq. 2 are also satisfied. Yet value X = 64
is not consistent, since the only assignment of the xis that evaluates to 64 needs the values
xi = 0 for i ≤ 5. Indeed, the smallest consistent value larger than 64 is 〈01111111〉, i.e.,
127.

The example can be generalized: if we take:

5



The bit-vector Constraint

• X− = 2n−1 (i.e., X− = 〈01000000 . . .〉);

• X+ = 2n+1 − 1 − 2n−1 (i.e., X+ = 〈101111111 . . .〉);

• x−
n = 0; x+

n = 1; x−
n−1 = 0; x+

n−1 = 1; (i.e.,the two highest-weight bits are not
instantiated);

• x−
i = x+

i = 1, for i ∈ 1..n − 2 (i.e., the lower-weight bits are fixed to value 1).

Then we have bounds that are stable under propagation, but X− nevertheless has no
support. The lowest value for X that is consistent is obtained by switching all the rightmost
bits of X− to 1, giving the value 2n − 1. The width of the ideal, bound-consistent interval
is 2n+1 − 1− 2n−1 − (2n − 1) = 2n−1 The width of the intervals stable under propagation is:
2n+1 − 1 − 2n−1 − 2n−1 = 2n − 1. We have therefore exhibited, for each size n, an instance
where the over-approximation is:

2n − 1

2n−1

which is getting infinitely close to 2 as n increases.

5. An improved propagator

We now show how the bounds of X can be reduced optimally using a simple linear-time
procedure. This additional step can be performed after the bounds of the xis have been re-
duced by means of classical bound propagation, and we therefore have an optimal reduction
of all intervals.

The algorithm works as follows: let 〈ln . . . l0〉 be the bits of X− and 〈rn . . . r0〉 be the
bits of X+, i.e.,

X− =
∑

i∈0...n 2ili
X+ =

∑

i∈0...n 2iri

We shall simply correct X− and X+ so that their bits all take values that fall within the
domains of the xis. To do that we compute new vectors of values 〈l′n . . . l′0〉 and 〈r′n . . . r′0〉.
Each l′i and r′i is defined as follows, for i ∈ 0 . . . n:

l′i =

{

1 if x−
i = 1

li otherwise
r′i =

{

0 if x+
i = 0

ri otherwise

We last assign X− to
∑

i∈0...n 2il′i and X+ to
∑

i∈0...n 2ir′i. It is clear that we have lost no
solution in the reduction, since the bits of the lis and ris that we modified were not set
correctly. It is also easy to see that the bounds are now consistent: the value of the support
of X− (resp. X+) for variable xi is directly given by l′i (resp. r′i).

References

J. G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149, 1987.

E. Davis. Constraint propagation with interval labels. Artificial Intelligence, 32(3):281–331,
1987.

6



Bordeaux, Hamadi, Quimper

W. Harvey and P. J. Stuckey. Improving linear constraint propagation by changing con-
straint representation. Constraints, 8(2):173–207, 2003.

M. A. Trick. A dynamic programming approach for consistency and propagation for knap-
sack constraints. In Proc. of Int. Conf. on Integration of AI and OR Techniques in CP
for Combinatorial Optimisation Problems (CP-AI-OR), 2001.

Z. Yuanlin and R. H. C. Yap. Arc consistency on n-ary monotonic and linear constraints.
In Proc. of Int. Conf. on Principles and Practice of Constraint Programming (CP), pages
470–483. Springer, 2000.

7


