
Time-Table Extended-Edge-Finding for the Cumulative
Constraint

Pierre Ouellet and Claude-Guy Quimper

Université Laval, Québec, Canada

Abstract. We propose a new filtering algorithm for the cumulative constraint.
It applies the Edge-Finding, the Extended-Edge-Finding and the Time-Tabling
rules in O(kn logn) where k is the number of distinct task heights. By a proper
use of tasks decomposition, it enforces the Time-Tabling rule and the Time-Table
Extended-Edge-Finding rule. Thus our algorithm improves upon the best known
Extended-Edge-Finding propagator by a factor of O(logn) while achieving a
much stronger filtering.

1 Introduction

Scheduling problems consist of deciding when a task should start and which resource
should execute it. Many side constraints can enrich the problem definition. For instance,
a precedence constraint can force a task to complete before another can start. The need
to cope with side constraints makes constraint programming a very attractive tool since
it is handy to specify extra requirements in the problem without tweaking the scheduling
algorithms provided by the constraint solver.

The CUMULATIVE constraint encodes a large variety of scheduling problems. It
allows the tasks to request a portion of a cumulative resource. Tasks can execute con-
currently as long as the workload is below the capacity of the resource.

There exist multiple techniques to filter the cumulative constraint. Most of these
techniques are filtering rules that reason over a time interval and that deduce the rela-
tive positions between the tasks or the position relative to a given time point. Among
the popular rules, there are the not-first/not-last [1], the Time-Tabling [2–5], the Edge-
Finding [6, 7], the Extended-Edge-Finding [8], and the Energetic Reasoning rule [9].
The later rule dominates them all except for the not-first/not-last. Vilı́m [10] proposes
to combine the Edge-Finding rule to the Time-Tabling rule to obtain a level of filtering
greater than what is obtained by individually applying the Edge-Finding and Time-
Tabling. He calls this new technique the Timetable Edge Finding. Schutt et al. [11]
combines the technique with the use of nogoods and obtain impressive results.

We propose an algorithm that performs both Edge-Finding and Extended-Edge-
Finding filtering. It is largely inspired by Vilı́m’s Edge-Finder [6] and is mostly an
extension of it. We also propose an algorithm that performs Time-Tabling and Time-
Table Extended-Edge-Finding, using the pruning rules from Vilı́m [10]. However, our
algorithm differs from [10] in three points: 1) the algorithm we present performs Time-
Tabling as well as Time-Table Extended Edge-Finding; 2) when the number of distinct
task heights is constant, the new algorithm runs in time O(n log n); 3) both algorithms

are non-idempotent but the new algorithm guaranties to perform some filtering on all
tasks for which the Edge-Finding, Extended-Edge Finding, Time-Tabling, and Time-
Table Extended-Edge-Finding rules apply.

2 Preliminaries

We consider a set I of n non-preemptive tasks. A task i ∈ I is specified by its earliest
starting time (esti), its latest completion time (lcti), its processing time (pi), and its
height (hi). From the previous attributes, one can compute the earliest completion time
(ecti) of a task i with the relation ecti = esti+pi and its latest starting time (lsti) with
the relation lsti = lcti−pi. The energy (ei) of a task i is the amount of consumption of
the resource during its execution and satisfies ei = pihi. We extend this notation to a
subset of tasks Ω ⊆ I as follows.

estΩ = min
i∈Ω

esti lctΩ = max
i∈Ω

lcti eΩ =
∑
i∈Ω

ei (1)

A cumulative resource is characterized by its capacity C. A task i starts at time
si and executes during pi units of time. The task consumes hi units of the cumulative
resource over the time period [si, si + pi). Solving a cumulative scheduling problem
consists of finding, for each task i ∈ I, the starting times si such that esti ≤ si ≤ lsti
and such that at any time t, the cumulative usage of the resource does not exceed C.∑

i∈I|t∈[si,si+pi)

hi ≤ C ∀ t ∈ Z (2)

Deciding whether there exists a solution to the cumulative scheduling problem is
NP-Complete, even for the disjunctive case where C = 1.

The CUMULATIVE constraint encodes the cumulative scheduling problem (CuSP).
This constraint restrains the starting times to satisfy Equation (2). It takes as parame-
ter the vector of starting time variables, the vector of processing times, the vector of
heights, and the resource capacity. The earliest starting times and latest completion
times are encoded in the domains of the starting time variables by setting dom(Si) =
[esti, lsti].

CUMULATIVE([S1, . . . , Sn], [p1, . . . , pn], [h1, . . . , hn], C) (3)

2.1 Slack, E-Feasibility and Energy Envelope

For a given time interval [a, b), let Ω = {i ∈ I | a ≤ esti ∧ lcti ≤ b}, the slack
(SlΩ) is the remaining energy of the resource within the interval once all tasks in Ω are
processed.

SlΩ = C(b− a)− eΩ (4)

A CuSP is said to be energy-feasible (E-Feasible) if it has no interval of negative slack.
The envelope or energy envelope of a task i (Envi), is a measure of the potential

consumed energy of the resource up to the completion of i. It takes into account the full

2

resource capacity prior to the starting time of task i regardless of its effective usage. We
extend the definition of the envelope to a subset of tasks Ω ⊆ I.

Envi = Cesti + ei EnvΩ = max
Θ⊆Ω

(CestΘ + eΘ) (5)

2.2 Edge-Finding

Edge-Finding aims at finding necessary orderings within the tasks and deducing related
time-bound adjustments. The filtering usually occurs in two steps. The first step detects
a relation of precedence Ω l i where Ω ⊂ I and i ∈ I \Ω. Such a precedence implies
that task i finishes after all tasks in Ω are completed and is detected when the task i
cannot be scheduled in the interval [estΩ∪{i}, lctΩ] along with the other tasks in Ω.

C(lctΩ − estΩ∪{i}) < eΩ∪{i} ⇒ Ω l i (6)

The second step consists in pruning the domain of the task i based on the detected
precedence Ω l i. Although several techniques exist, the goal is to deduce the avail-
ability of the resource for the task i within the interval. Nuijten [12] uses the following
method. Given a set Θ ⊆ Ω, she divides and assigns the energy in eΘ into two blocks.
The first block of (C −hi)(lctΘ − estΘ) units of energy evenly consumes C −hi units
of the resource over the time interval [estΘ, lctΘ). The second block of energy is sched-
uled at its earliest time within the interval [estΘ, lctΘ) using the remaining hi units of
resource. When this second block completes, the task i can start its execution.

Ω l i⇒ est′i = max
Θ⊆Ω

estΘ +

⌈
eΘ − (C − hi)(lctΘ − estΘ)

hi

⌉
(7)

Vilı́m [6] detects all precedences in O(n log n) and shows how to perform the op-
timal pruning in O(kn log n) where k = |{hi | i ∈ I}| is the number of distinct task
heights. By comparing tasks with minimum slack intervals, Kameugne et al. [7] produce
a single-step quadratic algorithm. It finds all tasks that need to be adjusted according
to the Edge-Finder rule and prunes them. Although their algorithm does not always de-
duce the best adjustment (7) on the first detection, multiple executions of their algorithm
converge to the same fixed point.

2.3 Extended-Edge-Finding

The Extended-Edge-Finding rule stipulates that if the task i, when starting at its earliest
time, overlaps the time interval [estΩ , lctΩ) and that the energy of task i over this
interval plus the energy eΩ overloads the resource, then i must finish after all tasks in
Ω have completed.

estΩ ∈ [esti, ecti) ∧ eΩ + hi(ecti− estΩ) > C(lctΩ − estΩ)⇒ Ω l i (8)

Mercier and Van-Hentenryck [8] detect and prune the precedences in time O(kn2)
where k = |{hi | i ∈ I}| is the number of distinct task heights.

3

2.4 Time Tabling

Time Tabling consists of finding the necessary usage of the resource over a time interval.
For a task that satisfies lsti < ecti, the interval [lsti, ecti) determines the fixed part of
the task. Let f(Ω, t) be the aggregate of the fixed parts that spans over time t by the
tasks in Ω and let f(Ω, [a, b)) be the aggregate of the fixed parts over the time interval
[a, b) by the tasks in Ω.

f(Ω, t) =
∑

i∈Ω|t∈[lsti,ecti)

hi f(Ω, [a, b)) =
∑
t∈[a,b)

f(Ω, t) (9)

If a task i cannot complete before time t and hi + f(I \ {i}, t) > C, then the task i
must start after time t.

ecti > t ∧ C < hi + f(I \ {i}, t)⇒ est′i > t (10)

Figure 1 depicts the Time-Tabling rule. Letort et al. [5] introduce a sweep tech-
nique that iterates over time and gradually enlarges the aggregate while pruning the
tasks. Their method is later improved [13] and copes with very large sets of tasks.
Beldiceanu et al. [4] propose an original technique reasoning over slack using a relation
with the problem of rectangles placement.

est

lct

ect

lst

p

p

Cfp

C-h
Σ fp

fp

fp

fp

est’

A

ect’

Fig. 1. A task with a fixed part, all tasks with a fixed part, the aggregate of the fixed parts and the
Time-Tabling rule applied to task A.

2.5 Time-Table Extended-Edge-Finding

Recent efforts [10, 11] enhanced the Edge-Finding and Extended-Edge-Finding rules
by taking into account the necessary usage of the resource due to fixed parts. The Time-
Table Extended Edge-Finding combines the techniques of the Time-Tabling, the Edge-
Finding, and the Extended-Edge-Finding. Let efΩ be the energy of the tasks in Ω plus
the fixed energy of the tasks in I \Ω spent within the interval [estΩ , lctΩ).

efΩ = eΩ + f(I \Ω, [estΩ , lctΩ)) (11)

Substituting eΩ by efΩ in (6) and (8) leads to the Time-Table Extended-Edge-Finding
rules. Substituting eΘ by efΘ in (7) gives the new adjustment rule.

4

2.6 The Cumulative Tree and the Overload Checking Test

The algorithm we propose utilizes a cumulative tree similar to those introduced by
Vilı́m [6, 14, 15]. The cumulative tree is an essentially complete binary tree with n
leaves. Its main purpose is to compute the time interval [a, b) that optimizes functions
of the form f(a, b,Ω, Λ). Its leaves from left to right are associated to the tasks sorted
in non-decreasing order of earliest starting time (est). The leaf of task i is labeled {i}
and their association holds throughout the execution of the algorithm. When the algo-
rithm moves a task from a set to another, values in its associated leaf are re-initialized
accordingly and the functions are updated from the leaf up to the root in O(log n). This
data structure has proven very effective in particular for the Overload Checking that
tests the E-feasibility. We illustrate in the following.

The function to optimize is the envelope of the subset Ω ⊆ I. From Equation (5).

EnvΩ = max
Θ∈Ω

(CestΘ + eΘ)

The algorithm initializes all tasks as member of Ω. It iterates over every task j in de-
creasing order of lctj . The algorithm ends an iteration by moving task j from Ω to
Λ triggering a sequence of updates from its associated leaf. It results in the root hold-
ing the maximum envelope value of all intervals [estΘ, lctΘ) ⊆ [estΩ , lctΩ) where
lctΘ = lctΩ = lctj at the beginning of any iteration. If EnvΩ > C lctj , the algorithm
detects an overload.

To achieve the computation (see Figure 2), an envelope value and an energy value
are required in every nodes. For a leaf {i}, these values are those of its corresponding
task e{i} = pihi and Env{i} = Cesti + ei when i ∈ Ω. They are set to zero when the
task is moved to Λ. For the inner nodes v, the values are computed from the ones held
by their left (l) and right (r) children as follows.

ev = el + er Envv = max{Envl+er , Envr}

A

C

B
0 lct

θ
Ω

lctest

A D C E H F G

C F

F

B C
Env

D
e

E
e

F
e

G

e

e

eEnv

Env

Env

H
e

Fig. 2. A cumulative tree with its leaves sorted in increasing order of est (left) and a schematic
representation of the cumulative resource with the time axis labeled with the lct (right). The
algorithm moved task G to Λ at the previous iteration. It now iterates over task F . At this point,
all tested intervals are upper bounded by lctF . In this instance, the maximum envelope value is
induced by the leaf associated to task C. The right part of the figure shows the optimal interval
[estΘ, lctΘ) = [estC , lctF). It is composed by the set of tasks {C,D,E, F,H}. The left part of
the figure shows all the values that are cumulated up to the root resulting in the optimal value.

5

3 New Filtering Rules

The algorithm we present enforces the Edge-Finding and Extended-Edge-Finding rules
to filter the lower bound of the starting time variables. A symmetric algorithm can
filter the upper bounds. It proceeds by detecting any surplus of energy within a time
interval [estΩ , lctΩ) should a task i start at its earliest starting time esti. If the surplus
is positive, the algorithm detects that task i cannot start at time esti and performs the
exact adjustment to the lower bound of task i that erases the surplus.

We consider two cases where the Edge-Finding rule applies. The weak case occurs
when the Edge-Finding rule (6) applies and ecti < lctΩ holds. We denote this rule
EFw. The strong case occurs when ecti ≥ lctΩ and leads to the strong Edge-Finding
rule denoted EF s. The weak and strong cases also apply to the Extended-Edge-Finding
rule (8) and leads to the two detection rules EEFw and EEF s1. In all cases, the Edge-
Finding rules apply when estΩ < esti and the Extended-Edge-Finding rules apply
when estΩ ≥ esti.

When one of these four rules detects a surplus, we denote by σEFw(i, Ω), σEEFw(i, Ω),
σEF s(i, Ω), and σEEF s(i, Ω) the extra energy requirement in the time interval [estΩ , lctΩ)
should task i start at time esti.

σEFw(i, Ω) = eΩ∪{i} − C(lctΩ − estΩ) (12)
σEEFw(i, Ω) = eΩ + hi(ecti− estΩ)− C(lctΩ − estΩ) (13)
σEF s(i, Ω) = eΩ + hi(lctΩ − esti)− C(lctΩ − estΩ) (14)
σEEF s(i, Ω) = eΩ − (C − hi)(lctΩ − estΩ) (15)

These quantities are used to combine the detection and the adjustment rules into a
single rule that adjusts the earliest starting time of task i. In the weak case (ecti < lctΩ),
we obtain these two rules.

EFw : esti ≥ estΩ ∧σEFw(i, Ω) > 0⇒ est′i = lctΩ −pi +
⌈
σEFw(i, Ω)

hi

⌉
EEFw : esti < estΩ ∧σEEFw(i, Ω) > 0⇒

est′i = lctΩ −(ecti− estΩ) +

⌈
σEEFw(i, Ω)

hi

⌉
In the strong case (ecti ≥ lctΩ), we have this adjustment rule for the Edge-Finding

EF s : esti ≥ estΩ ∧σEF s(i, Ω) > 0⇒ est′i = esti+

⌈
σEF s(i, Ω)

hi

⌉
and the following one for the Extended-Edge-Finding

EEF s : esti < estΩ ∧σEEF s(i, Ω) > 0⇒ est′i = estΩ +

⌈
σEEF s(i, Ω)

hi

⌉
1 The rules EFw, EEFw, EF s, and EEF s respectively represents the cases inside, left, right,

and through in [10].

6

We show that these new adjustment rules are identical to the adjustment rule (7)
when the relation Θ = Ω holds. The case when Θ ⊂ Ω is handled later.

Lemma 1. The rules EFw, EEFw, EF s, and EEF s are equivalent to the adjustment
rule (7) when Θ = Ω.

Proof. The adjustment for the rule EF s is

est′i = esti+

⌈
eΩ + hi(lctΩ − esti)− C(lctΩ − estΩ)

hi

⌉
= estΩ +

⌈
eΩ − (C − hi)(lctΩ − estΩ)

hi

⌉
which is equivalent to rule (7) when Θ = Ω. The adjustment for the rule EEF s is

est′i = estΩ +

⌈
eΩ − (C − hi)(lctΩ − estΩ)

hi

⌉
which is equivalent to rule (7) when Θ = Ω. The adjustment for the rule EFw is

est′i = lctΩ −pi +
⌈
eΩ + ei − C(lctΩ − estΩ)

hi

⌉
= lctΩ +

⌈
eΩ − C(lctΩ − estΩ)

hi

⌉
= estΩ +

⌈
eΩ − (C − hi)(lctΩ − estΩ)

hi

⌉
which is equivalent to rule (7) when Θ = Ω. The adjustment for the rule EEFw is

est′i = lctΩ −(ecti− estΩ) +

⌈
eΩ + hi(ecti− estΩ)− C(lctΩ − estΩ)

hi

⌉
= lctΩ +

⌈
eΩ − C(lctΩ − estΩ)

hi

⌉

This form was already proved equivalent to rule (7) when Θ = Ω. ut

We show that successively applying, in no particular order, the rules EFw, EEFw,
EF s, and EEF s leads to the same fixed point as the adjustment rule (7).

Lemma 2. After applying the rules EFw and EEFw, the inequality ect′i ≥ lctΩ holds,
where ect′i is the new earliest completion time of task i.

Proof. After applying the rule EFw, we obtain ect′i = lctΩ +
⌈
σEFw (i,Ω)

hi

⌉
. Since

σEFw(i, Ω) > 0, we have ect′i > lctΩ . The same applies for the rule EEFw. ut

Lemma 2 ensures that when there are tasks for which the weak rules EFw and EEFw

apply, after the adjustment of the rules, only the strong rules EF s and EEF s can apply.

7

Lemma 3. Successively applying the adjustment rules EFw, EEFw, EF s, and EEF s

leads to the same fixed point obtained by using the adjustment rule (7).

Proof. LetΘ be the set that maximizes the expression in (7). Since Lemma 1 covers the
case whereΘ = Ω, we suppose thatΘ ⊂ Ω. In the strong case, we have the inequalities
lctΘ ≤ lctΩ ≤ ecti. In the weak case, Lemma 2 ensures that these inequalities also hold
after applying the rules EFw or EEFw. Therefore, we only need to check whether the
rules EF s and EEF s can be applied with the set of tasks Θ. Since the set Θ leads to an
adjustment, the numerator in (7) is positive which implies eΘ > (C−hi)(lctΘ − estΘ).
If esti < estΘ then the rule EEF s applies and leads to the same filtering as rule (7).

Suppose that esti ≥ estΘ and that the adjustment rule (7) prunes the earliest starting
time esti further. Then this inequality holds.

esti < estΘ +
eΘ − (C − hi)(lctΘ − estΘ)

hi
(16)

This is equivalent to 0 < eΘ+hi(lctΘ − esti)−C(lctΘ − estΘ). Therefore, σEF s(i, Θ) >
0 and the rule EF s prunes the est at the same position as rule (7) does. Consequently,
after adjusting esti, either Θ = Ω and the adjustment is equivalent to the rule (7) or
Θ ⊂ Ω and the rules EF s and EEF s can still be applied in a future iteration. ut

4 A New Extended-Edge-Finding Algorithm

We present a new algorithm that performs the Extended-Edge-Finding. Algorithm 1 is
largely based on Vilı́m’s algorithm [6] for the Edge-Finding of the cumulative constraint
and its cumulative tree data structure. We broaden the scope of the cumulative tree with
two more sets, Ψ and Γ and substitute Ω for Θ to go along our notation. Therefore,
the algorithm uses a cumulative Ω,Λ, Ψ, Γ tree. These four sets are different status of
the tasks during the execution of the algorithm and serve computational purposes. The
mechanic of the cumulative tree is illustrated in Section 2.6.

An essentially complete binary tree of |I| leaves is built, with leaves from left to
right associated to the tasks sorted in non-decreasing order of est, breaking ties on the
smallest lct. The algorithm iterates on heights in {hi | i ∈ I ∧ ecti < lcti} in arbitrary
order, with h being the current height. These operations occur within an iteration.

The cumulative tree is initialized with all its tasks in Ω. It iterates through the tasks
in non-increasing order of latest completion time (lct). We say that j is the current task.
Thus, lctj is the upper bound of all optimized intervals at the current iteration.

The algorithm partitions the tasks I into four sets: Γ is the set of excluded tasks,
Ω = {i ∈ I \ Γ | lcti ≤ lctj} is the set of unprocessed tasks, Λ = {i ∈ I \ (Ω ∪ Γ) |
hi = h, ecti < lctj} is the set of processed tasks of height h with earliest completion
time smaller than lctj , and Ψ = {i ∈ I \ (Ω ∪ Γ) | hi = h, ecti ≥ lctj} is the
set of processed tasks of height h with earliest completion time greater than or equal
to lctj . As it iterates through the tasks, the current latest completion time lctj changes
and might result in moving tasks from Λ to Ψ . At any time, a task can move from Λ
and Ψ to the set of excluded tasks. Those are tasks that are ignored for the rest of the
iteration. At the end of the iteration, the task j is removed from Ω and added to Λ if
hj = h ∧ ectj < lctj , otherwise, the task cannot be further filtered and is added to Γ .

8

The algorithm utilizes the cumulative tree to optimize the surplus functions (12)
to (15) and performs an overload check. Whenever a detection applies, the correspond-
ing task is pruned according to the adjustment rule and then moved to Γ . Then, the al-
gorithm updates the nodes from the leaf associated to the pruned task up to the root and
checks for an other detection. To efficiently compute the functions, eleven values are
held in the nodes. Some of these values are function of the horizon Hor = maxi∈I lcti,
i.e. the latest time when a task can complete. For a leaf node v, these values are.

ev =

{
ei if i ∈ Ω
0 otherwise

Envv =

{
C esti+ei if i ∈ Ω
−∞ otherwise

(17)

Envhv =

{
(C − h) esti+ei if i ∈ Ω
−∞ otherwise

eΛv =

{
ei if i ∈ Λ
−∞ otherwise

(18)

EnvΛ =

{
C esti+ei if i ∈ Λ
−∞ otherwise

exΛv =

{
h ecti if i ∈ Λ
−∞ otherwise

(19)

eΨv =

{
h(Hor− esti) if i ∈ Ψ
−∞ otherwise

EnvΨv =

{
C esti+e

Ψ if i ∈ Ψ
−∞ otherwise

(20)

exΨv =

{
hiHor if i ∈ Ψ
−∞ otherwise

(21)

EnvxΛv = −∞ EnvxΨv = −∞ (22)

For an inner node v, its left child and right child are denoted left(v) and right(v).
These values are computed recursively as follows.

ev = eleft(v) + eright(v) (23)
Envv = max(Envleft(v) +eright(v),Envright(v)) (24)

Envhv = max(Envhleft(v) +eright(v),Env
h
right(v)) (25)

eΛv = max(eΛleft(v) + eright(v), eleft(v) + eΛright(v)) (26)

EnvΛv = max(EnvΛleft(v) +eright(v),Envleft(v) +e
Λ
right(v),Env

Λ
right(v)) (27)

exΛv = max(exΛleft(v), ex
Λ
right(v)) (28)

eΨv = max(eΨleft(v) + eright(v), eleft(v) + eΨright(v)) (29)

EnvΨv = max(EnvΨleft(v) +eright(v),Envleft(v) +e
Ψ
right(v),Env

Ψ
right(v)) (30)

exΨv = max(exΨleft(v), ex
Ψ
right(v)) (31)

EnvxΛv = max(EnvxΛleft(v) +eright(v), ex
Λ
left(v) +Envhright(v),Envx

Λ
right(v)) (32)

EnvxΨv = max(EnvxΨleft(v) +eright(v), ex
Ψ
left(v) +Envhright(v),Envx

Ψ
right(v)) (33)

9

est

C

p

0 Hor

C-h

Hor

est

p

ect

ect

fp

θ

ΩΩ

θ

Hor0
est

EEF

EEF

EF

EF

S

W

S

W σ

σ

σ

σ

EEFS

EEFW

EFS

EFW
Env

e

eΛ

eΛexΛ

exΛ

hEnv

hEnv

hEnv

Env

Env

exψ

exψ

eψ

eψ

fp fp

e

e

e

e

e

h

h

h

h

θ

θ

fpe

e

fp

Ωe

Fig. 3. Geometric illustration of the values cumulated by the tree, the four filtering rules and
their detected surplus. The blue squares depict the cumulated energy of all tasks in Ω. The figure
shows the optimal interval [estΘ, lctΘ) within [estΩ , lctΩ). All four rules are a combination of
the energy of a task i 6∈ Ω and an optimal envelope. In this figure, each rule detects a surplus of
2 units of energy.

At the root of the tree, four values are particularly important and have the following
equivalences. We use these relations to rewrite the conditions of the Edge-Finding and
Extended-Edge-Finding rules.

EnvΛ = max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Λ

estΘ≤esti

C estΘ +eΘ + ei (34)

EnvΨ = max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Ψ

estΘ≤esti

C estΘ +eΘ + h(Hor− esti) (35)

EnvxΛ = max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Λ

esti≤estΘ

(C − h) estΘ +eΘ + h ecti (36)

EnvxΨ = max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Ψ

esti≤estΘ

(C − h) estΘ +eΘ + hHor (37)

The functions σEFw(i, Ω), σEEFw(i, Ω), σEF s(i, Ω), and σEEF s(i, Ω) can be opti-
mized using the functions above.

10

max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Λ

estΘ≤esti

σEFw(i, Θ) = EnvΛ−C lctj (38)

max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Ψ

estΘ≤esti

σEF s(i, Θ) = EnvΨ −C lctj −h(Hor− lctj) (39)

max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Λ

esti≤estΘ

σEEFw(i, Θ) = EnvxΛ−C lctj (40)

max
Θ⊆Ω

lctΘ=lctΩ

max
i∈Ψ

esti≤estΘ

σEEF s(i, Θ) = EnvxΨ −C lctj −h(Hor− lctj) (41)

Using the above relations, Algorithm 1 computes the surplus and applies the rules
EFw, EF s, EEFw, and EEF s accordingly. The for loop on line 1 iterates k = |{hi |
i ∈ I}| times. Each time the repeat loop on line 2 executes, a task moves out from the
set Λ or Ψ which can happen only once for each task. Such an operation triggers the
update of the cumulative tree in time Θ(log n). The total running time complexity is
therefore O(kn log n).

5 Task Decomposition and Time-Tabling

We show how to decompose a problem with n tasks into a problem with at most
5n tasks. This decomposition facilitates the design of a new algorithm for the Time-
Tabling. It also allows to perform the Time-Table Extended-Edge-Finding not by chang-
ing the Algorithm 1, but rather by changing its input. Task decomposition is a technique
also used by Schutt et al. [1] and Vilı́m [10].

The tasks in I are decomposed into two sets of tasks: the depleted tasks T and the
fixed tasks F . For every task i such that lsti < ecti, there is a fixed energy of height hi
in the interval [lsti, ecti). We replace the task i ∈ I by the task i′ ∈ T with esti′ = esti,
lcti′ = lcti, pi′ = pi − ecti+ lsti, and hi′ = hi. If lsti ≥ ecti, we create a task i′ ∈ T
that is a copy of the original task i. Let Z be the set of all time points esti, lsti, ecti, and
lcti. We consider two consecutive time points a and b in Z with positive fixed energy,
i.e. f(I, [a, b)) > 0. We create a fixed task f ∈ F with estf = a, lctf = b, pf = b− a,
hf = f(I, a). This task has no choice but to execute at its earliest starting time.

Since |Z| ≤ 4n, there are fewer than 4n fixed tasks and the decomposition has fewer
than 5n tasks. Two distinct tasks f1, f2 ∈ F produce two disjoint intervals [estf1 , lctf1)
and [estf2 , lctf2). Figure 4 depicts this transformation.

5.1 Task Decomposition Algorithm

Algorithm 2 takes as input the set of original tasks I and returns the set of depleted
tasks T and the set of fixed tasks F . The algorithm has a running time complexity of
O(n log n). Indeed, the dimension of vector r is at most 4n and requires O(n log n)
to sort. The function IndexOf can be implemented with a binary search with time
complexity O(log n) and is called at most n times. The first and second for loop have a
time complexity of O(n log n) and O(n) for a total of O(n log n).

11

Algorithm 1: ExtendedEdgeFinder(I)
Hor← maxi∈I lcti;
for h ∈ {hi | i ∈ I ∧ ecti < lcti} do1

Ω ← I;
Λ← ∅;
Ψ ← ∅;
for j ∈ I in non-increasing order of lctj do

if Env > C lctj then Fail;
∆← {i ∈ Λ | ecti ≥ lctj};
Λ← Λ \∆;
Ψ ← Ψ ∪∆ \ {i ∈ Ψ | esti ≥ lctj};
repeat2

σ(EFw)← EnvΛ−C lctj ;
σ(EEFw)← EnvxΛ−C lctj ;
σ(EF s)← EnvΨ −C lctj −h(Hor− lctj);
σ(EEF s)← EnvxΨ −C lctj −h(Hor− lctj);
m← max{σ(EEFw), σ(EEF s), σ(EFw), σ(EF s), };
if σ(EEFw) = m > 0 then

Let i ∈ Λ be the unique task whose value exΛ is used for the
computation of EnvxΛ;
Let k ∈ Ω be the unique task whose value estk is used for the
computation of Envh;
est′i ← lctj −(ecti− estk) +

⌈
σ(EEFw)

hi

⌉
;

Λ← Λ \ {i};
else if σ(EEF s) = m > 0 then

Let i ∈ Ψ be the task with smallest est whose value exΨ is used for the
computation of EnvxΨ ;
Let k ∈ Ω be the unique task whose value estk is used for the
computation of Envh;
est′i ← estk +

⌈
σ(EEFs)

hi

⌉
;

Ψ ← Ψ \ {i};
else if σ(EFw) = m > 0 then

Let i ∈ Λ be the unique task whose value eΛv is used for the computation
of EnvΛ;
est′i ← lctj −pi +

⌈
σ(EFw)
hi

⌉
;

Λ← Λ \ {i};
else if σ(EF s) = m > 0 then

Let i ∈ Ψ be the unique task whose value eΨ is used for the computation
of EnvΨ ;
est′i ← esti+

⌈
σ(EFs)
hi

⌉
;

Ψ ← Ψ \ {i};
until m ≤ 0 ;
if hj = h ∧ ectj < lctj then Λ← Λ ∪ {j};
Ω ← Ω \ {j};

12

est

lct

ect

lst

p

p

fp

fp + f1 f2 f3 f4 f5 f6 f7

_

+

e

p

Fig. 4. A task with a fixed part, the same task after depletion of its fixed energy, and an energy
aggregate turned into a set of fixed tasks F .

Algorithm 2: TimeTableTaskDecomposition(I)
Create the sorted vector r = {esti, ecti, lsti, lcti} for all i ∈ I without duplicates;
Create the null vector c of dimension |r|;
T ← ∅,F ← ∅;
for i ∈ I do

if ecti > lsti then
a← IndexOf(lsti, r);
b← IndexOf(ecti, r);
c[a]← c[a] + hi;
c[b]← c[b]− hi;
T ← T ∪ {Task(est = esti, lct = lcti, h = hi, p = pi − ecti+ lsti)};

else
T ← T ∪ {Task(est = esti, lct = lcti, h = hi, p = pi};

for l = 1..|r| − 1 do
c[l]← c[l] + c[l − 1];
if c[l − 1] > C then Failure;
if c[l − 1] > 0 then
F ← F ∪ {Task(est = r[l− 1], lct = r[l], h = c[l− 1], p = r[l]− r[l− 1])};

return (T ,F)

5.2 Time-Tabling Algorithm

Algorithm 3 sorts the tasks T in non-decreasing heights and the fixed tasks F in non-
increasing heights. It maintains, using an AVL tree, a set S of time intervals in which
the unprocessed tasks in T cannot execute concurrently with the fixed tasks. The set
S grows as the algorithm iterates through T . While processing the task i′ ∈ T , if
there exists an interval [a, b) ⊆ S such that esti′ < b and esti′ +pi′ > a then the
algorithm retrieves the original task i ∈ I associated to i′ and performs the prun-
ing esti ← min(lsti, b). When lsti < b, the earliest starting time is set to lsti to
force the task to start at the beginning of its fixed part. The AVL tree finds the inter-
val [a, b) in O(log |F|). Sorting the tasks require O(|T | log |T |) and O(|F| log |F|).
Since |T |, |F| ∈ O(n), the overall complexity is O(n log n).

5.3 Time-Table Extended-Edge-Finding

We use the decomposition to perform Time-Table Extended-Edge-Finding. After reach-
ing a fixed point with Algorithm 2 and 3, we pass the tasks T ∪ F as input to Algo-

13

Algorithm 3: FilterTimeTabling(T ,F)
Sort the fixed tasks F in non-increasing order of heights;
S ← {∞}; j ← 0;
for i′ ∈ T in non-decreasing order of height do

while j < |F| ∧ hF[j] > C − hi′ do
S ← S ∪ [estF[j], lctF[j]);
j ← j + 1;

b← min{b 6∈ S | b− 1 ∈ S ∧ esti′ < b};
a← min{a ∈ S | [a, b) ⊆ S};
if esti′ +pi′ > a then

if lsti ≥ ecti then esti ← b;
else esti ← min(lsti, b);

estA= 0 estC = 2

estB= 1 lct A= 12

lct D= 10

lct B= 7

lct C= 6

estD= 3

AB

C D

AB

C Dfp

C

fpD

fp

fp

fp

fp

fp

fp

estA= 3

lct B= 6

Fig. 5. The left part depicts a CuSP with 4 tasks. The upper and lower parts of the time axis in-
dicates the earliest starting times and the latest completion times. The grid determines the energy
units. The processing times and heights are to scale. By not taking into account the fixed part of
task D, neither the Time-Tabling rule nor the Extended-Edge-Finding rule can deduct a pruning.
A decomposition of task D leads to two consecutive updates. The rule EEFw updates the lower
bound of Task A to 3 which creates 6 new units of fixed energy. Then, the Time-Tabling rule
adjusts the upper bound of task B to 6. The right part depicts the resulting CuSP.

rithm 1. Since the fixed tasks will not be filtered, the for loop on line 1 can restrict
the iterations over the heights of the tasks in T . When the earliest starting time of task
i′ ∈ T is filtered to time t, we filter the est of the original task i ∈ I to time esti ←
min(t, lsti). This ensures to perform Time-Table Edge-Finding in time O(kn log n).
Figure 5 shows an example where a task is filtered by Time-Table Extended-Edge-
Finding.

6 Experiments

We tested the different versions of the algorithm with the PSLIB benchmark (Projection
Scheduling Problem Library) [16]. More precisely, we solved instances of the single-
mode resource-constrained project scheduling problem (SMRCPSP). Those instances
are based on series of tasks that can be completed before a given horizon limit. A num-
ber of resources is given with varying capacities of production. Each task has a duration
and an amount of a specific resources used during its execution. Each task also has a
list of other tasks, its successors, that can be started only after this task is completed.

14

The model is based on two constraints. We use a precedence constraint to ensure
the order of the successors is respected and we use a cumulative constraint for each
resource that ensures the execution of the tasks does not overload the resources. We
set the makespan to the best known value reported for the benchmark. We use a binary
variable to enforce a precedence between each relevant pair of tasks. We branch on the
precedence constraints that involve the tasks with the most similar resource consump-
tions and the largest processing times.

We used the CP solver Choco version 2.1.5 on a computer with a AMD Athlon(tm)
II P340 Dual-Core running at 2.20GHz. We ran simultaneously 2 experiments, one
per core. We used the cumulative constraint available in Choco that performs Time-
Tabling [5] and Extended-Edge-Finding [8] that we denote Choco. We denote the Al-
gorithm 1 combined with the Algorithm 3 EEF+TT and the Time-Table Extended-
Edge-Finding TTEEF. Table 1 reports the results.

Benchmark Choco EEF+TT TTEEF
n #instances time out solved bt time solved bt time solved bt time

30 480 10 364 8757 223 377 8757 50 377 8379 54
60 480 20 332 3074 1527 340 3074 269 341 2861 291
90 480 50 321 5024 5522 327 5024 857 329 4635 913

Table 1. Experimental results. Section Benchmark reports the number of tasks n, the number of
instances, and the time out (in seconds) used for the experiment. For each filtering algorithm, we
report the number of instances solved (solved). We report the cumulative number of backtracks
(bt) and the cumulative time (time) required to solve all instances that are commonly solved by
the three algorithms.

Choco and EEF+TT produce the same number of backtracks since they offer the
same filtering. However, EEF+TT is significantly faster than Choco and solves more
instances. TTEEF is slightly slower in time than EEF+TT but solves few more instances
in fewer backtracks.

7 Conclusion

We presented three new algorithms that filter the CUMULATIVE constraint. The first
algorithm is an Extended-Edge-Finder with a time complexity ofO(kn log n). The sec-
ond filtering algorithm performs Time-Tabling in time O(n log n). The third algorithm
performs Time-Table Extended-Edge-Finding in time O(kn log n). These new algo-
rithms proved to be very efficient in practice offering a fast and strong filtering.

15

References

1. Schutt, A., Wolf, A.: A new O(n2 logn) not-first/not-last pruning algorithm for cumulative
resource constraints. In: Proceedings of the 16th International Conference on Principles and
Practice of Constraint Programming (CP 2010). (2010) 445–459

2. Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling and place-
ment problems. Mathematical and Computer Modelling 17(7) (1993)

3. Baptiste, P., Pape, C.L.: Constraint propagation techniques for disjunctive scheduling: The
preemptive case. In: Proceedings of the 12th European Conference on Artificial Intelligence
(ECAI 1996). (1996)

4. Beldiceanu, N., carlsson, M., Poder, E.: New filtering for the cumulative constraint in the
context of non-overlapping rectangles. In: Proceedings of the 5th International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Op-
timisation Problems (CPAIOR 2008). (2008) 21–35

5. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with negative
heights. In: Proceedings of the 8th International Conference on Principles and Practice of
Constraint Programming (CP 2002). (2002) 63–79

6. Vilı́m, P.: Edge finding filtering algorithm for discrete cumulative resources in O(kn logn).
In: Proceedings of the 15th International Conference on Principles and Practice of Constraint
Programming (CP 2009). (2009) 802–816

7. Kameugne, R., Fotso, L., Scott, J., Ngo-Kateu, Y.: A quadratic edge-finding filtering algo-
rithm for cumulative resource constraints. In: Proceedings of the 17th International Confer-
ence on Principles and Practice of Constraint Programming (CP 2011). (2011) 478–492

8. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling. INFORMS Journal
on Computing 20(1) (2008) 143–153

9. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling. Kluwer Academic Pub-
lishers (2001)

10. Vilı́m, P.: Timetable edge finding filtering algorithm for discrete cumulative resources. In:
Proceedings of the 8th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2011). (2011)
230–245

11. Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propagation for the
cumulative resource constraint. In: Proceedings of the 10th International Conference on
Integration of AI and OR Techniques and Constraint Programming for Combinatorial Opti-
mization Problems (CPAIOR 2013). (2013)

12. Nuijten, W.: Time and Resource Constrained Scheduling. PhD thesis, Eindhoven University
of Technology (1994)

13. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumulative
constraint. In: Proceedings of the 18th International Conference on Principles and Practice
of Constraint Programming (CP 2012). (2012) 439–454

14. Vilı́m, P.: O(n logn) filtering algorithms for unary reource constraint. In: Proceedings
of the 1st International conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimisation Problems (CPAIOR 2004). (2004) 335–347

15. Vilı́m, P.: Max energy filtering algorithm for discrete cumulative resources. In: Proceedings
of the 6th International Conference on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR 2009). (2009) 294–308

16. Kolisch, R., Sprecher, A.: Psplib - a project scheduling library. European Journal of Opera-
tional Research 96 (1996) 205–216 http://webserver.wi.tum.de/psplib/.

16

